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    ### From the Publisher


    This book describes the internal algorithms and the structures that form the basis of the UNIX ®operating system and their relationship to the programmer interface. The system description is based on UNIX System V Release 2 supported by AT&T, with some features from Release 3. 


    ### From the Inside Flap


    Preface


    The UNIX system was first described in a 1974 paper in the Communications of the ACM Thompson 74 by Ken Thompson and Dennis Ritchie. Since that time, it has become increasingly widespread and popular throughout the computer industry where more and more vendors are offering support for it on their machines. It is especially popular in universities where it is frequently used for operating systems research and case studies.


    Many books and papers have described parts of the system, among them, two special issues of the Bell System Technical Journal in 1978 BSTJ 78 and 1984 BLTJ 84. Many books describe the user level interface, particularly how to use electronic mail, how to prepare documents, or how to use the command interpreter called the shell; some books such as The UNIX Programming Environment Kernighan 84 and Advanced UNIX Programming Rochkind 85 describe the programming interface. This book describes the internal algorithms and structures that form the basis of the operating system (called the kernel) and their relationship to the programmer interface. It is thus applicable to several environments. First, it can be used as a textbook for an operating systems course at either the advanced undergraduate or first-year graduate level. It is most beneficial to reference the system source code when using the book, but the book can be read independently, too. Second, system programmers can use the book as a reference to gain better understanding of how the kernel works and to compare algorithms used in the UNIX system to algorithms used in other operating systems.


    Finally, programmers on UNIX systems can gain a deeper understanding of how their programs interact with the system and thereby code more-efficient, sophisticated programs.


    The material and organization for the book grew out of a course that I prepared and taught at AT&T Bell Laboratories during 1983 and 1984. While the course centered on reading the source code for the system, I found that understanding the code was easier once the concepts of the algorithms had been mastered. I have attempted to keep the descriptions of algorithms in this book as simple as possible, reflecting in a small way the simplicity and elegance of the system it describes. Thus, the book is not a line-by-line rendition of the system written in English; it is a description of the general flow of the various algorithms, and most important, a description of how they interact with each other. Algorithms are presented in a C-like pseudo-code to aid the reader in understanding the natural language description, and their names correspond to the procedure names in the kernel. Figures depict the relationship between various data structures as the system manipulates them. In later chapters, small C programs illustrate many system concepts as they manifest themselves to users. In the interests of space and clarity, these examples do not usually check for error conditions, something that should always be done when writing programs. I have run them on System V; except for programs that exercise features specific to System V, they should run on other versions of the system, too.


    Many exercises originally prepared for the course have been included at the end of each chapter, and they are a key part of the book. Some exercises are straightforward, designed to illustrate concepts brought out in the text. Others are more difficult, designed to help the reader understand the system at a deeper level. Finally, some are exploratory in nature, designed for investigation as a research problem. Difficult exercises are marked with asterisks.


    The system description is based on UNIX System V Release 2 supported by AT&T, with some new features from Release 3. This is the system with which I am most familiar, but I have tried to portray interesting contributions of other variations to the operating system, particularly those of Berkeley Software Distribution (BSD). I have avoided issues that assume particular hardware characteristics, trying to cover the kernel-hardware interface in general terms and ignoring particular machine idiosyncrasies. Where machine-specific issues are important to understand implementation of the kernel, however, I delve into the relevant detail. At the very least, examination of these topics will highlight the parts of the operating system that are the most machine dependent.


    The reader must have programming experience with a high-level language and, preferably, with an assembly language as a prerequisite for understanding this book. It is recommended that the reader have experience working with the UNIX system and that the reader knows the C language Kernighan 78. However, I have attempted to write this book in such a way that the reader should still be able to absorb the material without such background. The appendix contains a simplified description of the system calls, sufficient to understand the presentation in the book, but not a complete reference manual.


    The book is organized as follows. Chapter I is the introduction, giving a brief, general description of system features as perceived by the user and describing the system structure. Chapter 2 describes the general outline of the kernel architecture and presents some basic concepts. The remainder of the book follows the outline presented by the system architecture, describing the various components in a building block fashion. It can be divided into three parts: the file system, process control, and advanced topics. The file system is presented first, because its concepts are easier than those for process control. Thus, Chapter 3 describes the system buffer cache mechanism that is the foundation of the file system. Chapter 4 describes the data structures and algorithms used internally by the file system. These algorithms use the algorithms explained in Chapter 3 and take care of the internal bookkeeping needed for managing user files. Chapter 5 describes the system calls that provide the user interface to the file system; they use the algorithms in Chapter 4 to access user files.


    Chapter 6 turns to the control of processes. It defines the context of a process and investigates the internal kernel primitives that manipulate the process context. In particular, it considers the system call interface, interrupt handling, and the context switch. Chapter 7 presents the system calls that control the process context. Chapter 8 deals with process scheduling, and Chapter 9 covers memory management, including swapping and paging systems.


    Chapter 10 outlines general driver interfaces, with specific discussion of disk drivers and terminal drivers. Although devices are logically part of the file system, their discussion is deferred until here because of issues in process control that arise in terminal drivers. This chapter also acts as a bridge to the more advanced topics presented in the rest of the book. Chapter 11 covers interprocess communication and networking, including System V messages, shared memory and semaphores, and BSD sockets. Chapter 12 explains tightly coupled multiprocessor UNIX systems, and Chapter 13 investigates loosely coupled distributed systems.


    The material in the first nine chapters could be covered in a one-semester course on operating systems, and the material in the remaining chapters could be covered in advanced seminars with various projects being done in parallel.


    A few caveats must be made at this time. No attempt has been made to describe system performance in absolute terms, nor is there any attempt to suggest configuration parameters for a system installation. Such data is likely to vary according to machine type, hardware configuration, system version and implementation, and application mix. Similarly, I have made a conscious effort to avoid predicting future development of UNIX operating system features Discussion of advanced topics does not imply a commitment by AT&T to provide particular features, nor should it even imply that particular areas are under investigation.


    It is my pleasure to acknowledge the assistance of many friends and colleagues who encouraged me while I wrote this book and provided constructive criticism of the manuscript. My deepest appreciation goes to Ian Johnstone who suggested that I write this book, gave me early encouragement, and reviewed the earliest draft of the first chapters. Ian taught me many tricks of the trade, and I will always be indebted to him. Doris Ryan also had a hand in encouraging me from the very beginning, and I will always appreciate her kindness and thoughtfulness. Dennis Ritchie freely answered numerous questions on the historical and technical background of the system. Many people gave freely of their time and energy to review drafts of the manuscript, and this book owes a lot to their detailed comments. They are Debby Bach, Doug Bayer, Lenny Brandwein, Steve Buroff, Tom Butler, Ron Gomes, Mesut Gunduc, Laura Israel, Dean Jagels, Keith Kelleman, Brian Kernighan, Bob Martin, Bob Mitze, Dave Nowitz, Michael Poppers, Marilyn Safran, Curt Schimmel, Zvi Spitz, Tom Vaden, Bill Weber, Larry Wehr, and Bob Zarrow. Mary Frubstuck provided help in preparing the manuscript for typesetting. I would like to thank my management for their continued support throughout this project and my colleagues, for providing such a stimulating atmosphere and wonderful work environment at AT&T Bell Laboratories. John Wait and the staff at Prentice-Hall provided much valuable assistance and advice to get the book into its final form. Last, but not least, my wife, Debby, gave me lots of emotional support, without which I could never have succeeded.
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PREFACE


The UNIX system was first described in a 1974 paper in the Communications of the ACM [Thompson 741 by Ken Thompson and Dennis Ritchie. Since that time, it bas become increasingly widespread and popular throughout the computer industry where more and more vendors are offering support for it on their machines. It is especially popular in universities where it is frequently used for operating systems research and case studies.


Many books and papers have described parts of the system, among them, two special issues of the Bell System Technical Journal in 1978 EBST.I 781 and 1984


EBLTJ 841. Many books describe the user level interface, particularly how to use electronic mail, how to prepare documents, or how to use the command interpreter called the shell; some books such as The UNIX Programming Environment I Kernighan 841 and Advanced UNIX Programming naochkind 851 describe the programming interface. This book describes the internal algorithms and structures that form the basis of the operating system (called the kernel) and their relationship to the programmer interface. It is thus applicable to several environments. First, it can be used as a textbook for an operating systems course at either the advanced undergraduate or first-year graduate level. It is most beneficial to reference the system source code when using the book, but the book can be read independently, too. Second, system programmers can use the book as a reference to gain better understanding of how the kernel works and to compare algorithms used in the UNIX system to algorithms used in other operating systems.
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PREFACE


Finally, programmers on UNIX systems can gain a deeper understanding of how their programs interact with the system and thereby code more-efficient, sophisticated programs.


The material and organization for the book grew out of a course that I prepared and taught at AT&T Bell Laboratories during 1983 and 1984. While the course centered on reading the source code for the system, I found that understanding the code was easier once the concepts of the algorithms had been mastered. I have attempted to keep the descriptions of algorithms in this book as simple as possible, reflecting in a small way the simplicity and elegance of the system it describes.


Thus, the book is not a line-by-line rendition of the system written in English; it is a description of the general flow of the various algorithms, and most important, a description of how they interact with each other. Algorithms are presented in a C-like pseudo-code to aid the reader in understanding the natural language description, and their names correspond to the procedure names in the kernel.


Figures depict the relationship between various data structures as the system manipulates them. In later chapters, small C programs illustrate many system concepts as they manifest themselves to users. In the interests of space and clarity, these examples do not usually check for error conditions, something that should always be done when writing programs. I have run them on System V; except for programs that exercise features specific to System V, they should run on other versions of the system, too.


Many exercises originally prepared for the course have been included at the end of each chapter, and they are a key part of the book. Some exercises are s


traightforward, designed to illustrate concepts brought out in the text. Others are more difficult, designed to help the reader understand the system at a deeper level.


Finally, some are exploratory in nature, designed for i nvestigation as a research problem. Difficult exercises are marked with asterisks.


The system description is based on UNIX System V Release 2 supported by AT&T, with some new features from Release 3. This is the system with which


am most familiar, but I have tried to portray interesting contributions of other variations to the operating system, particularly those of Berkeley Software Distribution (BSD). I have avoided issues that assume particular hardware ch


aracteristics, trying to cover the kernel-hardware interface in general terms and ignoring particular machine idiosyncrasies. Where mac


important to understand im


hine-specific issues are


plementation of the kernel, however, I delve into the


relevant detail. At the very least, examination of these topics will highlight the parts of the operating system that are the most machine dependent.


The reader must have programming experience with a high-level language and, preferably, with an assembly language as a prerequisite for u book. It is r


nderstanding this


ecommended that the reader have experience working with the UNIX


system and that the reader knows the C language iKernighan 781. However, I have a ttempted to write this book in such a way that the reader should still be able to absorb the material without such background. The appendix contains a simplified description of the system calls, sufficient to understand the presentation
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in the book, but not a complete reference manual.


The book is organized as follows. Chapter 1 is the introduction, giving a brief, general description of system features as perceived by the user and describing the system structure. Chapter 2 describes the general outline of the kernel architecture and presents some basic concepts. The remainder of the book follows the outline presented by the system architecture, describing the various components in a building block fashion. k can be divided into three parts: the file system, process control, and advanced topics. The file system is presented first, because its concepts are easier than those for process control. Thus, Chapter 3 describes the system buffer cache mechanism that is the foundation of the file system. Chapter 4


describes the data structures and algorithms used internally by the file system.


These algorithms use the algorithrns explained in Chapter 3 and take care of the internal bookkeeping needed for managing user files. Chapter 5 describes the system calls that provide the user interface to the file system; they use the algorithms in Chapter 4 to access user files.


Chapter 6 turns to the control of processes. It defines the context of a process and investigates the internal kernel primitives that manipulate the process context.


In particular, it considers the system call interface, interrupt handling, and the context switch. Chapter 7 presents the system calls that control the process context. Chapter 8 deals with process scheduling, and Chapter 9 covers memory management, including swapping and paging systems.


Chapter 10 outlines general driver interfaces, with specific discussion of disk drivers and terminal drivers. Although devices are logically part of the file system, their discussion is deferred until here because of issues in process control that arise in terminal drivers. This chapter also acts as a bridge to the more advanced topics presented in the rest of the book. Chapter 11 covers interprocess communication and networking, including System V messages, shared memory and semaphores, and BSD sockets. Chapter 12 explains tightly coupled multiprocessor UNIX


systems, and Chapter 13 investigates loosely coupled distributed systems.


The material in the first nine chapters could be covered in a one-semester course on operating systems, and the material in the rernaining chapters could be covered in advanced seminars with various projects being done in parallel.


A few caveats must be made at this time. No attempt has been made to describe system performance in absolute terms, nor is there any attempt to suggest configuration parameters for a system installation. Such data is likely to vary according to machine type, hardware configuration, system version and implementation, and application mix. Similarly, 1 have made a conscious effort to avoid predicting future development of UNIX operating system features.


Discussion of advanced topics does not imply a commitment by AT&T to provide particuiar features, nor should it even imply that particular areas are under investigation.


It is my pleasure to acknowledge the assistance of many friends and colleagues who encouraged me while 1 wrote this book and provided constructive criticism of the manuscript. My deepest appreciation goes to Ian Johnstone, who suggested
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that I write this book, gave me early encouragement, and reviewed the earliest draft of the first chapters. Ian taught me many tricks of the trade, and I will always be indebted to him. Doris Ryan also had a hand in encouraging me from the very beginning, and I will always appreciate her kindness and thoughtfulness.


Dennis Ritchie freely answered numerous questions on the historical and technical background of the system. Many people gave freely of their time and energy to review drafts of the manuscript, and this book owes a lot to their detailed comments. They are Debby Bach, Doug Bayer, Lenny Brandwein, Steve Buroff, Tom Butler, Ron Gomes, Mesut Gunduc, Laura Israel, Dean Jagels, Keith Kelleman, Brian Kernighan, Bob Martin, Bob Mitze, Dave Nowitz, Michael Poppers, Marilyn Safran, Curt Schimmel, Zvi Spitz, Tom Vaden, Bill Weber, Larry Wehr, and Bob Zarrow. Mary Fruhstuck provided help in preparing the manuscript for typesetting. I would like to thank my management for their continued support throughout this project and my colleagues, for providing such a stimulating atmosphere and wonderful work environment at AT&T Bell Laboratories. John Wait and the staff at Prentice-Hall provided much valuable assitance and advice to get the book into its final form. Last, but not least, my wife, Debby, gave me lots of emotional support, without which I could never have succeeded.





1


GENERAL OVERVIEW


OF THE SYSTEM


The UNIX system bas become quite popular since its inception in 1969, running on machines of varying processing power from microprocessors to mainframes and providing a common execution environment across them. The system is divided into two parts. The first part consists of programs and services that have made the UNIX system environment so popular; it is the part readily apparent to users, including such programs as the shell, mail, text processing packages, and source code control systems. The second part consists of the operating system that supports these programs and services. This book gives a detailed description of the operating system. It concentrates on a description of UNIX System V produced by AT&T but considers interesting features provided by other verslons too. It examines the major data structures and algorithms used in the operating system that ultimately provide users with the standard user interface.


This chapter provides an introduction to the UNIX system. It reviews its history and outlines the overall system structure. The next chapter gives a more detailed introduction to the operating system.


1.1 HISTORY


In 1965, Bell Telephone Laboratories joined an effort with the General Electric Company and Project MAC of the Massachusetts Institute of Technology to
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develop a new operating system called Multics fOrganick 721. The goals of th Multics system were to provide simultaneous computer access to a large communit; of users, to supply ample computation power and data storage, and to allow users ti share their data easily, if desired. Many people who later took part in the earl: development of the UNIX system participated in the Multics work at Be!


Laboratories. Although a primitive version of the MuItics system was running on E


GE 645 computer by 1969, it did not provide the general service computing foi which it was intended, nor was it clear when its development goals would be met Consequently, Bell Laboratories ended its participation in the project.


With the end of their work on the Multics project, members of the Computing Science Research Center at Bell Laboratories were left without a "convenient interactive computing service" [Ritchie 84al. In an attempt to improve their programming environment, Ken Thompson, Dennis Ritchie, and others sketched a paper design of a file system that later evolved into an early version of the UNIX


file system. Thompson wrote programs that simulated the behavior of the proposed file system and of programs in a demand-paging environment, and he even encoded a simple kernel for the GE 645 computer. At the same time, he wrote a game program, "Space Travel," in Fortran for a GECOS system (the Honeywell 635), but the program was unsatisfactory because it was difficult to control the "space ship" and the program was expensive to run. Thompson later found a little-used PDP-7 computer that provided good graphic display and cheap executing power.


Programming "Space Travel" for the PDP-7 enabled Thompson to learn about the machine, but its environment for program development required cross-assembly of the program on the GECOS machine and carrying paper tape for input to the PDP-7. To create a better development environment, Thompson and Ritchie implemented their system design on the PDP-7, including an early version of the UNIX file system, the process subsystem, and a small set of utility programs.


Eventually, the new system no longer needed the GECOS system as a development environment but could support itself. The new system was given the name UNIX, a pun on the name Multics coined by another member of the Computing Science Research Center, Brian Kernighan.


Although this early version of the UNIX system held much promise, it could not realize its potential until it was used in a real project. Thus, while providing a text processing system for the patent department at Bell Laboratories, the UNIX


system was moved to a PDP-11 in 1971. The system was characterized by its small size: 16K bytes for the system, 8K bytes for user programs, a disk of 512K bytes, and a limit of 64K bytes per file. After its early success, Thompson set out to implement a Fortran compiler for the new system, but instead came up with the language B, influenced by BCPL [Richards 691. B was an interpretive


with the p


language


erformance drawbacks implied by such languages, so Ritchie developed it into one he called C, allowing generation of machine code, declaration of data types, and definition of data structures. In 1973, the operating system was rewritten in C, an unheard of step at the time, but one that was to have tremendous impact on its acceptance among outside users. The number of installations at Bell
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Laboratories grew to about 25, and a UNIX Systems Group was formed to provide internal support.


At this time, AT&T could not market computer products because of a 1956


Consent Decree it had signed with the Federal government, but it provided the UNIX system to universities who requested it for educational purposes. AT&T


neither advertised, marketed, nor supported the system, in adherence to the terms of the Consent Decree. Nevertheless, the system's popularity steadily inereased. In 1974, Thompson and Ritchie published a paper describing the UNIX system in the Communications of the ACM [Thompson 741, giving further impetus to its acceptance. By 1977, the number of UNIX system sites had grown to about 500, of which 125 were in universities. UNIX systems became popular in the operating telephone companies, providing a good environment for program development, network transaction operations services, and real-time services (via MERT


[Lycklama 78a]). Licenses of UNIX systems were provided to commercial institutions as well as universities. In 1977, Interactive Systems Corporation 1


became the first Value Added Reseller (VAR) of a UNIX system, enhancing it for use in office automation environments. 1977 also marked the year that the UNIX system was first "ported" to a non-PDP machine (that is, made to run on another machine with few or no changes), the Interdata 8/32.


With the growing popularity of microprocessors, other companies ported the UNIX system to new machines, but its simplicity and clarity tempted many developers to enhance it in their own way, resulting in several variants of the basic system. In the period from 1977 to 1982, Bel1 Laboratories combined several AT&T variants into a single system, known commercially as UNIX System III.


Bell Laboratories later added several features to UNIX System III, calling the new 2


product UNIX System V, and AT&T announced official support for System V in January 1983. However, people at the University of California at Berkeley had developed a variant to the UNIX system, the most recent version of which is called 4.3 BSD for VAX machines, providing some new, interesting features. This book will concentrate on the description of UNIX System V and wilt occasionally talk about features provided in the BSD system.


By the beginning of 1984, there were about 100,000 UNIX system installations in the world, running on machines with a wide range of computing power from microprocessors to mainframes and on machines across different manufacturers'


product lines. No other operating system can make that claim. Several reasons have been suggested for the popularity and success of the UNIX system.


1. Value Added Resellers add specific applications to a computer system to satisfy a particuiar market.


They market the applications rather than the operating system upon which they run.


2.


What happened to System IV? An internal version of the system evolved into System V.





4


GENERAL OVERVIEW OF THE SYSTEM


• The system is written in a high-level language, making it easy to read, understand, change, and move to other machines. Ritchie estimates that the first system in C was 20 to 40 percent larger and slower because it was not written in assembly language, but the advantages of using a higher-level language far outweigh the disadvantages (see page 1965 of [Ritchie 78W).


• It has a simple user interface that has the power to provide the services that users want.


• It provides primitives that permit complex programs to be built from simpler programs.


• It uses a hierarchical file system that allows easy maintenance and efficient implementation.


• It uses a consistent format for files, the byte stream, making application programs easier to write.


• It provides a simple, consistent interface to peripheral devices.


• It is a multi-user, multiprocess system; each user can execute several processes simultaneously.


• It hides the machine architecture from the user, making it easier to write programs that run on different hardware implementations.


The philosophy of simplicity and consistency underscores the UNIX system and accounts for many of the reasons cited above.


Although the operating system and many of the command programs are written in C, UNIX systems support other languages, including Fortran, Basic, Pascal, Ada, Cobol, Lisp, and Prolog. The UNIX system can support any language that has a compiler or interpreter and a system interface that maps user requests for operating system services to the standard set of requests used on UNIX systems.


1.2 SYSTEM STRUCTURE


Figure 1.1 depicts the high-level architecture of the UNIX system. The hardware at the center of the diagram provides the operating system with basic services that will be described in Section 1.5. The operating system interacts directly 3 with the hardware, providing common services to programs and insulating them from hardware idiosyncrasies. Viewing the system as a set of layers, the operating system is commonly called the system kernel, or just the kernel, emphasizing its 3. In some i m


plementations of the UNIX system, the operating system interacts with a native operating system that, in turn, interacts with the underlying hardware and provides necessary services to the system. Such configurations allow installations to run other operating systems and their applications in parallel to the UNIX system. The classic example of such a configuration is the MERT system


[Lycklama 78a1. More recent configurations include implementations for IBM System/370


computers [Felton 841 and for UNIVAC 1100 Series computers [Bodenstab 841.





1.2


SYSTEM STRUCTURE


Figure 1.1. Architecture of UNIX Systems


isolation from user programs. Because programs are independent of the underlying hardware, it is easy to move them between UNIX systems running on different hardware if the programs do not make assumptions about the underlying hardware.


For instance, programs that assume the size of a machine word are more difficult to move to other machines than programs that do not make this assumption.


Programs such as the shell and editors (ed and vi) shown in the outer layers interact with the kernel by invoking a well defined set of system calls. The system calls instruct the kernel to do various operations for the calling program and exchange data between the kernel and the program. Several programs shown in the figure are in standard system configurations and are known as commands, but private user programs may also exist in this layer as indicated by the program whose name is a.out, the standard name for executable files produced by the C


compiler. Other application programs can build on top of lower-level programs, hence the existence of the outermost layer in the figure. For example, the standard C compiler, cc, is in the outermost layer of the figure: it invokes a C preprocessor,
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two-pass compiler, assembler, and loader (link-editor), all separate lower-I programs. Although the figure depicts a two-level hierarchy of applica programs, users can extend the hierarchy to whatever levels are appropri Indeed, the style of programming favored by the UNIX system encourages combination of existing programs to accomplish a task.


Many application subsystems and programs that provide a high-level view of system such as the shell, editors, SCCS (Source Code Control System), document preparation packages, have gradually become synonymous with the na


"UNIX system." However, they all use lower-level services ultimately provided the kernel, and they avail themselves of these services via the set of system ca There are about 64 system calls in System V, of which fewer than 32 are w frequently. They have simple options that make them easy to use but provide t user with a lot of power. The set of system calls and the internal algorithms implement them form the body of the kernel, and the study of the UNIX operati system presented in this book reduces to a detailed study and analysis of the syste calls and their interaction with one another. In short, the kernel provides t services upon which all application programs in the UNIX system rely, and defines those services. This book will frequently use the terms "UNIX system


"kernel," or "system," but the intent is to refer to the kernel of the UNI operating system and should be clear in context.


1.3 USER PERSPECTIVE


This section briefiy reviews high-level features of the UNIX system such as the fili system, the processing environment, and building block primitives (for example pipes). Later chapters will explore kernel support of these features in detail.


1.3.1 The File System


The UNIX file system is characterized by


• a hierarchical structure,


• consistent treatment of file data,


• the ability to create and delete files,


• dynamic growth of files,


• the protection of file data,


• the treatment of peripheral devices (such as terminals and tape units) as files.


The file system is organized as a tree with a single root node called root


"1"); every non-leaf node of the file system strueture is a (written


direct ory


at the leaf nodes of the tree are either d


of files, and files


irectories, regular files,


files. The name of a file is given by a
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path name
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that describes how to 'mate the
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ierarchy. A path name is a sequence of co
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fsl


bin


etc


usr


unix


dev


src


bin


tty00 tty0 1


mjb au y sh date who


passwd


cmd


date.c


who.c


Figure 1.2. Sample File System Tree


designates a file name that is uniquely contained in the previous (directory) component. A full path name starts with a slash character and specifies a file that can be found by starting at the file system root and traversing the file tree, following the branches that lead to successive component names of the path name.


Thus, the path names "ietcipasswd", "Thin/who", and "/usrisrc/cmd/who.c"


designate files in the tree shown in Figure 1.2, but "Thinipasswd" and


"/usr/srcidate.c" do not. A path name does not have to start from root but can be designated relative to the current directory of an executing process, by omitting the initial slash in the path name. Thus, starting from directory "fdev", the path name


"tty01" designates the file whose full path name is "idev/tty01".


Programs in the UNIX system have no knowledge of the internal format in which the kernel stores file data, treating the data as an unformatted stream of bytes, Programs may interpret the byte stream as they wish, but the interpretation has no bearing on how the operating system stores the data. Thus, the syntax of accessing the data in a file is defined by the system and is identical for all programs, but the semantics of the data are imposed by the program. For example, the text formatting program troff expects to find "new-line" characters at the end of each line of text, and the system accounting program acctcom expects to find fixed length records. Both programs use the same system services to access the data in the file as a byte stream, and internally, they parse the stream into a suitable format. If either program discovers that the format is incorrect, it is responsible for taking the appropriate action.


Directories are like regular files in this respect; the system treats the data in a directory as a byte stream, but the data contains the names of the files in the directory in a predictable format so that the operating system and programs such as
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is (list the names and attributes of files) can discover the files in a directory.


Permission to access a file is controlled by access perrnissions associated wil the file. Access permissions can be set independently to control read, write, an execute permission for three classes of users: the file owner, a file group, an everyone else. Users may create files if directory access permissions allow it. Th newly created files are leaf nodes of the file system directory structure.


To the user, the UNIX system treats devices as if they were files. Device: designated by special device files, occupy node positions in the file system director structure. Programs access devices with the same syntax they use when accessin regular files; the semantics of reading and writing devices are to a large degree th same as reading and writing regular files. Devices are protected in the same wa: that regular files are protected: by proper setting of their (file) access permissions Because device names look like the names of regular files and because the saml operations work for devices and regular files, most programs do not have to knov internally the types of files they manipulate.


For example, consider the C program in Figure 1.3, which makes a new COpy 01


an existing file. Suppose the name of the executable version of the program copy. A user at a terminal invokes the program by typing


copy oldfile newfile


where oldfik is the name of the existing file and newfile is the name of the new file.


The system invokes main, supplying argc as the number of parameters in the list argv, and initializing each member of the array argv to point to a user-supplied parameter. In the example above, argc is 3, argv[0] points to the character string copy (the program name is conventionally the Oth parameter), argv[11 points to the character string oldfile, and argv[2.1 points to the character string newfile. The program then checks that it bas been invoked with the proper number of parameters. If so, it invokes the open system call "read-only" for the file oldfile, and if the system call succeeds, invokes the creat system call to create newfile. The permission modes on the newly created file will be 0666 (octal), allowing all users access to the file for reading and writing. All system calls return —1 on failure; if the open or creat calls fail, the program prints a message and calls the exit system eau with return status 1, terminating its execution and indicating that something went wrong.


The open and creat system calls return an integer called a file descriptor, which the program uses for subsequent references to the files. The program then calls the subroutine copy, which goes into a loop, invoking the read system eau' to read a buffer's worth of characters from the existing file, and invoking the write system call to write the data to the new file. The read system eau returns the number of bytes read, returning 0 when it reaches the end of file. The program finishes the loop when it encounters the end of file, or when there is some error on the read system call (it does not check for write errors). Then it returns from exits


copy and


with return status 0, indicating that the program completed successfully.
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#include <fcntl.h>


char buffert20481;


int version — 1;


I* Chapter 2 explains this */


main(argc, argv)


int argc;


char *argvt);


int fdold, fdnew;


if (arge


3)


printf("need 2 arguments for copy program\n');


exit(1);


fdold open(argv111, O_RDONLY); /* open source file read only *1


if (fdold


—1)


printf("cannot open file %s\n", argvIlD;


exit(1);


fdnew creat(argv[2], 0666);


/* create target file rw for all */


if (fdnew


—I)


printf("cannot create file %An", argv(21);


exit(1);


copy(fdold, fdnew);


exit (0);


copy(old, new)


int old, new;


int count;


while ((count readold, buffer, sizeof(buffer))) > 0)


write(new, buffer, count);


Figure 1.3. Program to Copy a File


The program copies any files supplied to it as arguments, provided it has permission to open the existing file and permission to create the new file. The file can be a file of printable characters, such as the source code for the program, or it can contain unprintable characters, even the program itself. Thus, the two
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invocations


copy copy.c newcopy.c


copy copy newcopy


both work. The old file can also be a directory. For instance,


copy dircontents


copies the contents of the current directory, denoted by the name ".", to a regular file, "dircontents", the data in the new file is identical, byte for byte, to the contents of the directory, but the file is a regular file. (The system call mknod creates a new directory.) Finally, either file can be a device special file. For example, copy /devitty terminalread


reads the characters typed at the terminal (the special file Idevitty is the user's terminal) and copies them to the file terminalread, terminating only when the user types the character control-d. Similarly,


copy /devitty idevitty


reads characters typed at the terminal and copies them back.


1.3.2 Processing Environment


A program is an executable file, and a process is an instance of the program in execution. Many processes can execute simultaneously on UNIX systems (this feature is sometimes called multiprogramming or multitasking) with no logical limit to their number, and many instances of a program (such as copy) can exist simultaneously in the system. Various system calls allow processes to create new processes, terminate processes, synchronize stages of process execution, and control reaction to various events. Subject to their use of system calls, processes execute independently of each other.


For example, a process executing the program in Figure 1.4 executes the lork system call to create a new process. The new process, called the child process, gets a 0 return value from fork and invokes execl to execute the program copy (the program in Figure 1.3). The execl call overlays the address space of the child process with the file "copy", assumed to be in the current directory, and runs the program with the user-supplied parameters. If the execl call succeeds, it never returns because the process executes in a new address space, as will be seen in Chapter 7. Meanwhile, the process that had invoked fork (the parent) receives a non-0 return from the eau, calls wat:, suspending its execution until copy finishes, prints the message "copy done," and exits (every program exits at the end of its main function, as arranged by standard C program libraries that are linked during the compilation process). For example, if the name of the executable program is run, and a user invokes the program by





1.3


USER PERSPECTIVE


11


main(argc, argv)


int argc;


char *argvii;


/* assume 2 args: source file and target file *I


if (fork()


0)


execl("copy m, "copy", argv[1], argv[21, 0);


wait((int *) 0);


printf("copy dorte\n");


Figure 1.4. Program that Creates a New Process to Copy Files


run oldfile newfile


the process copies "oldfile" to "newfile" and prints out the message. Although this program adds little to the "copy" program, it exhibits four major system calls used for process control: fork, exec, wait, and, discreetly, exit.


Generally, the system calls allow users to write programs that do sophisticated operations, and as a result, the kernel of the UNIX system does not contain many functions that are part of the "kernel" in other systems. Such functions, including compilers and editors, are user-level programs in the UNIX system. The prime example of such a program is the shell, the command interpreter program that users typically execute after logging into the system. The shell interprets the first word of a command line as a command name: for many commands, the shell forks


and the child process execs the command associated with the name, treating the remaining words on the command line as parameters to the command.


The shell allows three types of commands. First, a command can be an executable file that contains object code produced by compilation of source code (a C program for example). Second, a command can be an executable file that contains a sequence of shell command lines. Finally, a command can be an internal shell command (instead of an executable file). The internal commands make the shell a programming language in addition to a command interpreter and include commands for looping (for-in-do-done and while-do-done), commands for conditional execution (if-then-else-fl), a "case" statement command, a command to change the current directory of a process (cd), and several others. The shell syntax allows for pattern matching and parameter processing. Users execute commands without having to know their types.


The shell searches for commands in a given sequence of directories, changeable by user request per invocation of the shell. The shell usually executes a command synchronously, waiting for the command to terminate before reading the next command line. However, it also allows asynchronous execution, where it reads the next command line and executes it without waiting for the prior command to terminate. Commands executed asynchronously are said to execute in the
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background. For example, typing the command


who


4


causes the system to execute the program stored in the file Ibinkho, which prints a list of people who are currently logged in to the system. White who executes, the shell waits for it to finish and then prompts the user for another command. By typing


who &


the system executes the program who in the background, and the shell is ready to accept another command immediately.


Every process executing in the UNIX system has an execution environment that includes a current directory. The current directory of a process is the start directory used for all path names that do not begin with the slash character. The user may execute the shell command cd, change directory, to move around the file system tree and change the current directory. The command line


cd iusr/srciuts


changes the shell's current directory to the directory "iusr/srciuts". The command line


cd .1..


changes the shell's current directory to the directory that is two nodes "closer" to the root node: the component ".." refers to the parent directory of the current directory.


Because the shell is a user program and not part of the kernel, it is easy to modify it and tailor it to a particular environment. For instance, users can use the C shell to provide a history mechanism and avoid retyping recently used commands, instead of the Bourne shell (named after its inventor, Steve Bourne), provided as part of the standard System V release. Or some users may be granted use only of a restricted shell, providing a scaled down version of the regular shell. The system can execute the various shells simultaneously. Users have the capability to execute many processes simultaneously, and processes can create other processes dynamically and synchronize their execution, if desired. These features provide users with a powerful execution environment. Although much of the power of the shell derives from its capabilities as a programming language and from its capabilities for pattern matching of arguments, this section concentrates on the process environment provided by the system via the shell. Other important shell 4. The directory "ibin" contains many useful commands and is usually included in the sequence of directories the shell searches.
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features are beyond the scope of this book (see [Bourne 781 for a detailed description of the shell).


1.3.3 Building Block Primitives


As described earlier, the philosophy of the UNIX system is to provide operating system primitives that enable users to write small, modular programs that can be used as building blocks to build more complex programs. One such primitive visible to shell users is the capability to redirect I/O. Processes conventionally have access to three files: they read from their standard input file, write to their standard output file, and write error messages to their standard error file.


Processes executing at a terminal typically use the terminal for these three files, but each may be "redirected" independently. For instance, the command line Is


lists all files in the current directory on the standard output, but the command line Is > output


redirects the standard output to the file called "output" in the current directory, using the creat system call mentioned above. Similarly, the command line mail mjb < letter


opens the file "letter" for its standard intput and mails its contents to the user named "mjb." Processes can redirect input and output simultaneously, as in nroff —mm < docl > docl.out 2> errors


where the text formatter nroff reads the input file (loci, redirects its standard output to the file docLout, and redirects error messages to the file errors (the notation "2>" means to redirect the output for file descriptor 2, conventionally the standard error). The programs Is, mail, and nroff do not know what file their standard input, standard output, or standard error will be; the shell recognizes the symbols "<", ">", and "2>" and sets up the standard input, standard output, and standard error appropriately before executing the processes.


The second building block primitive is the pipe, a mechanism that allows a stream of data to be passed between reader and writer processes. Processes can redirect their standard output to a pipe to be read by other processes that have redirected their standard input to come from the pipe. The data that the first processes write into the pipe is the input for the second processes. The second processes could also redirect their output, and so on, depending on programming need. Again, the processes need not know what type of file their standard output is; they work regardless of whether their standard output is a regular file, a pipe, or a device. When using the smaller programs as building blocks for a larger, more complex program, the programmer uses the pipe primitive and redirection of I/0 to integrate the piece parts. Indeed, the system tacitly encourages such programming
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style so that new programs can work with existing programs.


For example, the program grep searches a set of files (parameters to grep) for g given pattern:


grep main a.c b.c c.c


searches the three files a.c, b.c, and e.c for lines containing the string "main" anc prints the lines that it finds onto standard output. Sample output may be: a.c: main(argc, argv)


c.c: 1* here is the main loop in the program */


c.c: main()


The program wc with the option —I counts the number of lines in the standard input file. The command line


grep main a.c b.c c.c 1 wc —I


counts the number of lines in the files that contain the string "main"; the output from grep is "piped" directly into the wc command. For the previous sample output from grep, the output from the piped command is


3


The use of pipes frequently makes it unnecessary to create temporary files.


1.4 OPERATING SYSTEM SERVICES


Figure 1.1 depicts the kernel layer immediately below the layer of user application programs. The kernel performs various primitive operations on behalf of user processes to support the user interface described above. Among the services provided by the kernel are


• Controlling the execution of processes by allowing their creation, termination or suspension, and communication


• Scheduling processes fairly for execution on the CPU. Processes share the CPU


in a time-shared marmer: the CPU 5 executes a process, the kernel suspends it when its time quantum elapses, and the kernel schedules another process to execute. The kernel later reschedules the suspended process.


• Allocating main memory for an executing process. The kernel allows processes to share portions of their address space under certain conditions, but protects the private address space of a process from outside tampering. If the system runs low on free memory, the kernel frees memory by writing a process 5. Chapter 12 will consider multiprocessor systems; until then, assurne a single processor model.
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temporarily to secondary memory, called a swap device, lithe kernel writes entire processes to a swap device, the implementation of the UNIX system is called a swapping system; if it writes pages of memory to a swap device, it is called a paging system.


• Allocating secondary memory for efficient storage and retrieval of user data.


This service constitutes the file system. The kernel allocates secondary storage for user files, reclaims unused storage, structures the file system in a well understood manner, and protects user files from illegal access.


• Allowing processes controlled access to peripheral devices such as terminals, tape drives, disk drives, and network devices.


The kernel provides its services transparently. For example, it recognizes that a given file is a regular file or a device, but hides the distinction from user processes.


Similarly, it formats data in a file for internal storage, but hides the internal format from user processes, returning an unformatted byte stream. Finally, it offers necessary services so that user-level processes can support the services they must provide, while omitting services that can be implemented at the user level. For example, the kernel supports the services that the shell needs to act as a command interpreter: It allows the shell to read terminal input, to spawn processes dynamically, to synchronize process execution, to create pipes, and to redirect I/O.


Users can construct private versions of the shell to tailor their environments to their specifications without affecting other users. These programs use the same kernel services as the standard shell.


1.5 ASSUMPTIONS ABOUT HARDWARE


The execution of user processes on UNIX systems is divided into two levels: user and kernel. When a process executes a system call, the execution mode of the process changes from user mode to kernel mode: the operating system executes and attempts to service the user request, returning an error code if it fails. Even if the user makes no explicit requests for operating system services, the operating system still does bookkeeping operations that relate to the user process, handling interrupts, scheduling processes, managing memory, and so on. Many machine architectures (and their operating systems) support more levels than the two outlined here, but the two modes, user and kernel, are sufficient for UNIX systems.


The differences between the two modes are


• Processes in user mode can access their own instructions and data but not kernel instructions and data (or those of other processes). Processes in kernel mode, however, can access kernel and user addresses. For example, the virtual address space of a process may be divided between addresses that are accessible only in kernel mode and addresses that are accessible in either mode.


• Some machine instructions are privileged and result in an error when executed in user mode. For example, a machine may contain an instruction that manipulates the processor status register; processes executing in user mode
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Processes


A BCD


Kernel Mode


User Mode


Figure 1,5. Multiple Processes and Modes of Execution


should not have this capability.


Put simply, the hardware views the world in terms of kernel mode and user moch and does not distinguish among the many users executing programs in those modes The operating system keeps internal records to distinguish the many processe executing on the system. Figure 1.5 shows the distinction: the kernel distinguishe between processes A, B, C, and D on the horizontal axis, and the hardwari distinguishes the mode of execution on the vertical axis.


Although the system executes in one of two modes, the kernel runs on behalf o a user process. The kernel is not a separate set of processes that run in parallel ti user processes, but it is part of each user process. The ensuing text will frequentl; refer to "the kernel" allocating resources or "the kernel" doing various operation5


but what is meant is that a process executing in kernel mode allocates the resource or does the various operations. For example, the shell reads user terminal input vi; a system Cali: The kernel, executing on behalf of the shell process, controls th operation of the terminal and returns the typed characters to the shell. The shel then executes in user mode, interprets the character stream typed by the user, does the specified set of actions, which may require invocation of other system calls 1.5.1 Interrupts and Exceptions


The UNIX system allows devices such as I/O peripherals or the system doek t, interrupt the CPU asynchronously. On receipt of the interrupt, the kernel saves it current context (a frozen image of what the process was doing), determines th cause of the interrupt, and services the interrupt. After the kernel services th interrupt, it restores its interrupted context and proceeds as if nothing hal happened. The hardware usually prioritizes devices according to the order tha interrupts should be handled: When the kernel services an interrupt, it blocks ou lower priority interrupts but services higher priority interrupts.


An exception condition refers to unexpected events caused by a process, such a addressing illegal memory, executing privileged instructions, dividing by zero, ani so on. They are distinct from interrupts, which are caused by events that ar
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external to a process. Exceptions happen "in the middle" of the execution of an instruction, and the system attempts to restart the instruction after handling the exception; interrupts are considered to happen between the execution of two instructions, and the system continues with the next instruction after servicing the interrupt. The UNIX system uses one mechanism to handle interrupts and exception conditions.


1.5.2 Processor Execution Levels


The kernel must sometimes prevent the occurrence of interrupts during critica'


activity, which could result in corrupt data if interrupts were allowed. For instance, the kernel may not want to receive a disk interrupt while manipulating linked lists, because handling the interrupt could corrupt the pointers, as will be seen in the next chapter. Computers typically have a set of privileged instructions that set the processor execution level in the processor status word. Setting the processor execution level to certain values masks off interrupts from that level and lower levels, allowing only higher-level interrupts. Figure 1.6 shows a sample set of execution levels. If the kernel masks out disk interrupts, all interrupts except for clock interrupts and machine error interrupts are prevented. 1f it masks out software interrupts, all other interrupts may occur.


Figure 1.6. Typical Interrupt Levels


1.5.3 Memory Management


The kernel permanently resides in main memory as does the currently executing process (or parts of it, at kast). When compiling a program, the compiler generates a set of addresses in the program that represent addresses of variables
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and data structures or the addresses of instructions such as functions. The compi generates the addresses for a virtual machine as if no other program will exec'


simultaneously on the physical machine.


When the program is to run on the machine, the kernel allocates space in mi memory for it, but the virtual addresses  generated by the compiler need not identical to the physical addresses that they occupy in the machine. The ken coordinates with the machine hardware to set up a virtual to physical addr, translation that maps the compiler-generated addresses to the physical machi addresses. The mapping depends on the capabilities of the machine hardware, a the parts of UNIX systems that deal with them are therefore machine depende For example, some machines have special hardware to support demand pagii Chapters 6 and 9 will discuss issues of memory management and how they relate hardware in more detail.


1.6 SUMMARY


This chapter has described the overall structure of the UNIX system, t relationship between processes running in user mode versus kernel mode, and t assumptions the kernel makes about the hardware. Processes execute in user ma or kernel mode, where they avail themselves of system services using a well-defin set of system calls. The system design encourages programmers to write sm, programs that do only a few operations but do them well, and then to combine t programs using pipes and I/O redirection to do more sophisticated processing.


The system calls allow processes to do operations that are otherwise forbidden them. In addition to servicing system calls, the kernel does general bookkeeping f the user community, controlling process scheduling, managing the storage al protection of processes in main memory, fielding interrupts, managing files al devices, and taking care of system error conditions. The UNIX system kern purposely omits many functions that are part of other operating systems, providir a small set of system calls that allow processes to do necessary functions at us level. The next chapter gives a more detailed introduction to the kernel, describir its architecture and some basic concepts used in its implementation.





INTRODUCTION


TO THE KERNEL


The last chapter gave a high-level perspective of the UNIX system environment.


This chapter focuses on the kernel, providing an overview of its architecture and outlining basic concepts and structures essential for understanding the rest of the book.


2.1 ARCHITECTURE OF THE UNIX OPERATING SYSTEM


It has been noted (see page 239 of [Christian 83]) that the UNIX system supports the illusions that the file system has "places" and that processes have "lite." The two entities, files and processes, are the two central concepts in the UNIX system model. Figure 2.1 gives a block diagram of the kernel, showing various modules and their relationships to each other. In particular, it shows the file subsystem on the left and the process control subsystem on the right, the two major components of the kernel. The diagram serves as a useful logical view of the kernel, although in practice the kernel deviates from the model because some modules interact with the internal operations of others.


Figure 2.1 shows three levels: user, kernel, and hardware. The system call and library interface represent the border between user programs and the kernel depicted in Figure 1.1. System calls look like ordinary function calls in C


programs, and libraries map these function calls to the primitives needed to enter 19
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Figure 2.1. Block Diagram of the System Kernel


the operating system, as covered in more detail in Chapter 6. Assembly language programs may invoke system calls directly without a system call library, however.


Programs frequently use other libraries such as the standard I/O library to provide a more sophisticated use of the system calls. The libraries are linked with the programs at compile time and are thus part of the user program for purposes of
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this discussion. An example later on will illustrate these points.


The figure partitions the set of system calls into those that interact with the file subsystem and those that interact with the process control subsystem. The file subsystem manages files, allocating file space, administering free space, controlling access to files, and retrieving data for users. Processes interact with the file subsystem via a specific set of system calls, such as open (to open a file for reading or writing), close, read, write, stat (query the attributes of a file), chown (change the record of who owns the file), and chmod (change the access permissions of a file). These and others will be examined in Chapter 5.


The file subsystem accesses file data using a buffering mechanism that regulates data flow between the kernel and secondary storage devices. The buffering mechanism interacts with block I/O device drivers to initiate data transfer to and from the kernel. Device drivers are the kernel modules that control the operatior of peripheral devices. Block I/O devices are random access storage devices alternatively, their device drivers make them appear to be random access storage devices to the rest of the system. For example, a tape driver may allow the kerne.


to treat a tape unit as a random access storage device. The file subsystem alsc interacts directly with "raw" I/O device drivers without the intervention of buffering mechanism. Raw devices, sometimes called character devices, include al devices that are not block devices.


The process control subsystem is responsible for process synchronization interprocess communication, memory management, and process scheduling. The file subsystem and the process control subsystem interact when loading a file int(


memory for execution, as will be seen in Chapter 7: the process subsystem rea& executable files into memory before executing them.


Some of the system calls for controlling processes are fork (create a nevl process), exec (overlay the image of a program onto the running process), exii (finish executing a process), wait (synchronize process execution with the exit of a previously forked process), brk (control the size of memory allocated to a process), and signal (control process response to extraordinary events). Chapter 7 will examine these system calls and others.


The memory management module controls the allocation of memory. If at any time the system does not have enough physical memory for all processes, the kernel moves them between main memory and secondary memory so that all processes get a fair chance to execute. Chapter 9 will describe two policies for managing memory: swapping and demand paging. The swapper process is sometimes called the scheduler, because it "schedules" the allocation of memory for processes and influences the operation of the CPU scheduler. However, this text will refer to it as the swapper to avoid confusion with the CPU scheduler.


The scheduler module allocates the CPU to processes. It schedules them to run in turn until they voluntarily relinquish the CPU while awaiting a resource or until the kernel preempts them when their recent run time exceeds a time quantum. The scheduler then chooses the highest priority eligible process to run; the original process will run again when it is the highest priority eligible process available.
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There are several forms of interprocess communication, ranging from asynchronous signaling of events to synchronous transmission of messages between processes.


Finally, the hardware control is responsible for handling interrupts and for communicating with the machine. Devices such as disks or terminals may interrupt the CPU while a process is executing. If so, the kernel may resume execution of the interrupted process after servicing the interrupt: Interrupts are not serviced by special processes but by special functions in the kernel, called in the context of the currently running process.


2.2 INTRODUCTION TO SYSTEM CONCEPTS


This section gives an overview of some major kernel data structures and describes the function of modules shown in Figure 2.1 in more detail.


2.2.1 An Overview of the File Subsystem


The internal representation of a file is given by an m ode, which contains a description of the disk layout of the file data and other information such as the file owner, access permissions, and access times. The term mode is a contraction of the term index node and is commonly used in literature on the UNIX system. Every file has one mode, but it may have several names, all of which map into the mode.


Each name is called a link. When a process refers to a file by name, the kernel parses the file name one component at a time, checks that the process has permission to search the directories in the path, and eventually retrieves the mode for the file. For example, if a process calls


open("ifs2/mjb/rje/sourcefile", 1);


the kernel retrieves the Mode for "ifs2/mjb/rje/sourcefile". When a process creates a new file, the kernel assigns it an unused mode. Inodes are stored in the file system, as will be seen shortly, but the kernel reads them into an in-core' mode table when manipulating files.


The kernel contains two other data structures, the file table and the user file descriptor tabk. The file table is a global kernel structure, but the user file descriptor table is allocated per process. When a process opens or creats a file, the kernel allocates an entry from each table, corresponding to the file's mode. Entries in the three structures user file descriptor table, file table, and mode table —


maintain the state of the file and the user's access to it. The file table keeps track of the byte offset in the file where the user's next read or write will start, and the 1. The term core refers to primary memory of a machine, not to hardware technology,
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Figure 2.2. File Descriptors, File Table, and blode Table


access rights allowed to the opening process. The user file descriptor table identifies all open files for a process. Figure 2.2 shows the tables and their relationship to each other. The kernel returns a file descriptor for the open and creat system calls, which is an index Mto the user file descriptor table. When executing read and write system calls, the kernel uses the file descriptor to access the user file descriptor table, follows pointers to the file table and mode table entries, and, from the Mode, finds the data in the file. Chapters 4 and 5 describe these data structures in great detail For now, suffice it to say that use of three tables allows various degrees of sharing access to a file.


The UNIX system keeps regular files and directories on block devices such as tapes or disks. Because of the difference in access time between the two, few, if any, UNIX system installations use tapes for their file systems. In coming years, diskless work stations will be common, where files are located on a remote system and accessed via a network (see Chapter 13). For simplicity, however, the ensuing text assumes the use of disks. An installation may have several physical disk units, each containing one or more file systems. Partitioning a disk into several file systems makes it easier for administrators to manage the data stored there. The kernel deals on a logical level with file systems rather than with disks, treating each one as a logica! device identified by a logical 'device number. The conversion between logical device (file system) addresses and physical device (disk) addresses is done by the disk driver. This book will use the term device to mean a logical device unless explicitly stated otherwise.


A file system consists of a sequence of logical blocks, ea.ch containing 512, 1024, 2048, or any convenient multiple of 512 bytes, depending on the system implementation. The size of a logical block is homogeneous within a file system but may vary between different file systems in a system configuration. Using large logical blocks increases the effective data transfer rate between disk and memory,
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because the kernel can transfer more data per disk operation and therefore make fewer time-consuming operations. For example, reading 1K bytes from a disk in one read operation is faster than reading 512 bytes twice. However, if a logical block is too large, effective storage capacity may drop, as will be shown in Chapter 5. For simplicity, this book will use the term "block" to mean a logical block, and it will assume that a logical block contains 1K bytes of data unless explicitly stated otherwise.
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Figure 23. File System Layout


A file system has the following structure (Figure 2.3).


• The boot block occupies the beginning of a file system, typically the first sector, and may contain the bootstrap code that is read into the machine to boot, or initialize, the operating system. Although only one boot block is needed to boot the system, every file system has a (possibly empty) boot block.


• The super block describes the state of a file system — how large it is, how many files it can store, where to find free space on the file system, and other information.


• The Mode list is a list of modes that follows the super block in the file system.


Administrators specify the size of the mode list when configuring a file system.


The kernel references Modes by index into the mode list. One Mode is the root Mode of the file system: it is the mode by which the directory structure of the file system is accessible after execution of the mount system call (Section 5.14).


• The data blocks start at the end of the mode list and contain file data and administrative data. An allocated data block can belong to one and only one file in the file system.


2.2.2 Processes


This section examines the process subsystem more closely. It describes the structure of a process and some process data structures used for memory management. Then it gives a preliminary view of the process state diagram and considers various issues involved in some state transitions.


A process is the execution of a program and consists of a pattern of bytes that the CPU interprets as machine instructions (called "text"), data, and stack. Many processes appear to execute simultaneously as the kernel schedules them for execution, and several processes may be instances of one program. A process
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executes by following a striet sequence of instructions that is self-contained and does not jump to that of another process; it reads and writes its data and stack sections, but it cannot read or write the data and stack of other processes.


Processes communicate with other processes and with the rest of the world via system calls.


In practicatterms, a proc•ss en a UNIX system is the entity that is created by the fork system call. Every process except process 0 is created when another process executes the fork system call. The process that invoked the fork system call is the parent process, and the newly created process is the child process. Every process has one parent process, but a process can have many child processes. The kernel identifies each process by its process number, called the process ID (PID).


Process 0 is a special process that is created "by hand" when the system boots; after forking a child process (process 1), process 0 becomes the swapper process.


Process 1, known as init, is the ancestor of every other process in the system and enjoys a special relationship with them, as explained in Chapter 7.


A user compiles the source code of a program to create an executable file, which consists of several parts:


• a set of "headers" that describe the attributes of the file,


• the program text,


• a machine language representation of data that bas initial values when the program starts execution, and an indication of how much space the kernel should allocate for uninitialized data, called bss2 (the kernel initializes it to 0 at run time),


• other sections, such as symbol table information.


For the program in Figure 1.3, the text of the executable file is the generated code for the functions main and copy, the initialized data is the variable version (put into the program just so that it should have some initialized data), and the uninitialized data is the array buffer.  System V versions of the C compiler create a separate text section by default but support an option that allows inclusion of program instructions in the data section, used in older versions of the system.


The kernel loads an executable file into memory during an exec system call, and the loaded process consists of at kast three parts, called regions: text, data, and the stack. The text and data regions correspond to the text and data-bss sections of the executable file, but the stack region is automatically created and its size is dynamically adjusted by the kernel at run time. The stack consists of logical stack frames that are pushed when calling a function and popped when returning; a special register called the stack pointer  indicates the current stack depth. A stack 2. The name bss comes from an assembly pseudo-operator on the IBM 7090 machine, which stood for


"block started by symbol."
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frame contains the parameters to a function, its local variables, and the data necessary to recover the previous stack frame, including the value of the program counter and stack pointer at the time of the function call. The program code contains instruction sequences that manage stack growth, and the kernel allocates space for the stack, as needed. In the program in Figure 1.3, parameters argc and argv and variables fdold and fdnew in the function main appear on the stack when main is called (once in every program, by convention), and parameters old and new and the variable count in the function copy appear on the stack whenever copy is called.


Because a process in the UNIX system can execute in two modes, kernel or user, it uses a separate stack for each mode. The user stack contains the arguments, local variables, and other data for functions executing in user mode.


The left side of Figure 2.4 shows the user stack for a process when it makes the write system call in the copy program. The process startup procedure (included in a library) had called the function »win with two parameters, pushing frame 1 onto the user stack; frame 1 contains space for the two !mal variables of main. Main then called copy with two parameters, old and new, and pushed frame 2 onto the user stack; frame 2 contains space for the local variable count. Finally, the process invoked the system call write by invoking the library function write. Each system call has an entry point in a system call library; the system call library is encoded in assembly language and contains special trap instructions, which, when executed, cause an "interrupt" that results in a hardware switch to kernel mode. A process calls the library entry point for a particular system call just as it calls any function, creating a stack frame for the library function. When the process executes the special instruction, it switches mode to the kernel, executes kernel code, and uses the kernel stack.


The kernel stack contains the stack frames for functions executing in kernel mode. The function and data entries on the kernel stack refer to functions and data in the kernel, not the user program, but its construction is the same as that of the user stack. The kernel stack of a process is null when the process executes in user mode. The right side of Figure 2.4 depicts the kernel stack representation for a process executing the write system eau in the copy program. The names of the algorithms are described during the detailed discussion of the write system eall in later ehapters.


Every process has an entry in the kernel process tabk, and each process is allocated a u area3 that contains private data manipulated only by the kernel. The process table contains (or points to) a per process region table, whose entries point to entries in a region table. A region is a contiguous area of a process's address The u in u area stands (or "user." Another name for the u area is u block; this book will always refer to it as the u area.
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• a pointer to the process table slot of the currently executing process,


• parameters of the current system call, return values and error codes,


• file descriptors for all open files,


• internal I/O parameters,


• current directory and current root (see Chapter 5),


• process and file size limits.


The kernel can directly access fields of the u area of the executing process but not of the u area of other processes. Internally, the kernel references the structure variable u to access the u area of the currently running process, and when another process executes, the kernel rearranges its virtual address space so that the structure u refers to the u area of the new process. The implementation gives the kernel an easy way to identify the current process by following the pointer from the u area to its process table entry.


2.2.2.1 Context of a process


The context of a process is its state, as defined by its text, the values of its global user variables and data structures, the values of machine registers it uses, the values stored in its process table slot and u area, and the contents of its user and kernel stacks. The text of the operating system and its global data structure,s are shared by all processes but do not constitute part of the context of a process.


When executing a process, the system is said to be executing in the context of the process. When the kernel decides that it should execute another process, it does a context switch, so that the system executes in the context of the other process.


The kernel allows a context switch only under specific conditions, as will be seen.


When doing a context switch, the kernel saves enough information so that it can later switch back to the first process and resume its execution. Similarly, when moving from user to kernel mode, the kernel saves enough information so that it can later return to user mode and continue execution from where it left off.


Moving between user and kernel mode is a change in mode, not a context switch.


Recalling Figure 1.5, the kernel does a context switch when it changes context from process A to process B; it changes execution mode from user to kernel or from kernel to user, stilt executing in the context of one process, such as process A.


The kernel services interrupts in the context of the interrupted process even though it may not have caused the interrupt. The interrupted process may have been executing in user mode or in kernel mode. The kernel saves enough information so that it can later resume execution of the interrupted process and services the interrupt in kernel mode. The kernel does not spawn or schedule a special process to handle interrupts.
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2.2.12 Proceas states


The lifetime of a process can be divided into a set of states, each with certain characteristics that describe the process. Chapter 6 will describe all process states, but it is essential to understand the following states now:


1. The process is currently executing in user mode.


2.


The process is currently executing in kernel mode.


3.


The process is not executing, but it is ready to run as soon as the scheduler chooses it. Many processes may be in this state, and the scheduling


algorithm determines which one will execute next.


4.


The process is sleeping. A process puts itself to sleep when it can no longer continue executing, such as when it is waiting for I/O to com plete.


Because a processor can execute only one process at a time, at most one process may be in states 1 and 2. The two states correspond to the two modes of execution, user and kernel.


2.2.2.3 State traasitions


The process states described above give a statie view of a process, but processes move continuously between the states according to well-defined rules. A state transition diagram is a directed graph whose nodes represent the states a process can enter and whose edges represent the events that cause a process to move from one state to another. State transitions are legal between two states if there exists an edge from the first state to the second. Several transitions may emanate from a state, but a process will follow one and only one transition depending on the system event that occurs. Figure 2.6 shows the state transition diagram for the process states defined above.


Several processes can execute simultaneously in a time-shared marmer, as stated earlier, and they may all run simultaneously in kernel mode. 1f they were allowed to run in kernel mode without constraint, they could corrupt global kernel data structures. By prohibiting arbitrary context switches and controlling the occurrence of interrupts, the kernel protects its consistency.


The kernel allows a context switch only when a process moves from the state


"kernel running" to the state "asleep in memory." Processes running in kernel mode cannot be preempted by other processes; therefore the kernel is sometimes said to be non-preemptive, although the system does preempt processes that are in user mode. The kernel maintains consistency of its data structures because it is non-preemptive, thereby solving the mutual exclusion problem — making sure that critica' sections of code are executed by at most one process at a time.


For instance, consider the sample code in Figure 2.7 to put a data structure, whose address is in the pointer bpl , onto a doubly linked list after the structure whose address is in bp. 1f the system allowed a context switch while the kernel executed the code fragment, the following situation could occur. Suppose the
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kernel executes the code until the comment and then does a context switch. The doubly linked list is in an inconsistent state: the structure bpi is half on and half off the linked list. If a process were to follow the forward pointers, it would find


bpi on the linked list, but if it were to follow the back pointers, it would not find


bpi (Figure 2.8). If other processes were to manipulate the pointers on the linked list before the original process ran again, the structure of the doubly linked list could be permanently destroyed. The UNIX system prevents such situations by disallowing context switches when a process executes in kernel mode. If a process goes to sleep, thereby permitting a context switch, kernel algorithms are encoded to make sure that system data structures are in a safe, consistent state.


A related problem that can cause inconsistency in kernel data is the handling of interrupts, which can change kernel state information. For example, if the kernel was executing the code in Figure 2.7 and received an interrupt when it reached the
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struct queue t
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bp— > forp bp 1 ;
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bp 1 — > forp— > ba ckp bp 1 ;


Figure 2.7. Sample Code Creating Doubly Linked List
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Figure 2.8. Incorrect Linked List because of Context Switch


comment, the interrupt handler could corrupt the links if it manipulates the pointers, as illustrated earlier, To solve this problem, the system could prevent all interrupts while executing in kernel mode, but that would delay servicing of the interrupt, possibly hurting system throughput. Instead, the kernel raises the processor execution level to prevent interrupts when entering criticai regions of code. A section of code is critica' if execution of arbitrary interrupt handlers could result in consistency problems. For example, if a disk interrupt handler manipulates the buffer queues in the figure, the section of code where the kernel manipulates the buffer queues is a critical region of code with respect to the disk interrupt handler. Critica' regions are small and infrequent so that system throughput is largely unaffected by their existence. Other operating systems solve this problem by preventing all interrupts when executing in system states or by using elaborate locking schemes to ensure consistency. Chapter 12 will return to
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this issue for multiprocessor systems, where the solution outlined here is insufficient.


To review, the kernel protects its consistency by allowing a context switch only when a process puts itself to sleep and by preventing one process from changing the state of another process. It also raises the processor execution level around critical regions of code to prevent interrupts that could otherwise cause inconsistencies.


The process scheduler periodically preempts processes executing in user mode so that processes cannot monopolize use of the CPU.


2.2.2.4 Sleep and wakeup


A process executing in kernel mode has great autonomy in deciding what it is going to do in reaction to system events. Processes can communicate with each other and


"suggest" various alternatives, but they make the final decision by themselves. As will be seen, there is a set of rules that processes obey when confronted with various circumstances, but each process ultimately follows these rules under its own initiative. For instance, when a process must temporarily suspend its execution ("go to sleep"), it does so of its own free will. Consequently, an interrupt handler cannot go to sleep, because if it could, the interrupted process would be put to sleep by default.


Processes go to sleep because they are awaiting the occurrence of some event, such as waiting for I/O completion from a peripheral device, waiting for a process to exit, waiting for system resources to become available, and so on. Processes are said to sleep on an event, meaning that they are in the sleep state until the event occurs, at which time they wake up and enter the state "ready to run." Many processes can simultaneously sleep on an event; when an event occurs, all processes sleeping on the event wake up because the event condition is no longer true. When a process wakes up, it follows the state transition from the "sleep" state to the


"ready-to-run" state, where it is eligible for later scheduling; it does not execute i mmediately. Sleeping processes do not consume CPU resources: The kernel does not constantly check to see that a process is still sleeping but waits for the event to occur and awakens the process then.


For example, a process executing in kernel mode must sometimes lock a data structure in case it goes to sleep at a later stage; processes attempting to manipulate the locked structure must check the lock and sleep if another process owns the lock. The kernel implements such locks in the following manner: while (condition is true)


sleep (event: the condition becomes false);


set condition true;


It unlocks the lock and awakens all processes asleep on the lock in the following manner:
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set condition false;


wakeup (event: the condition is false);


Figure 2.9 depicts a scenario where three processes, A, B, and C, contend for a locked buffer. The sleep condition is that the buffer is locked. The processes execute one at a time, find the buffer locked, and sleep on the event that the buffer becomes unlocked. Eventually, the buffer is unlocked, and all processes wake up and enter the state "ready to run." The kernel eventually chooses one process, say B, to execute. Process 13 executes the "while" loop, finds that the buffer is unlocked, sets the buffer lock, and proceeds. If process B later goes to sleep again before unlocking the buffer (waiting for completion of an I/O operation, for example), the kernel can schedule other processes to run. If it chooses process A, process A executes the "while" loop, finds that the buffer is locked, and goes to sleep again; process C may do the same thing. Eventually, process 13 awakens and unlocks the buffer, allowing either process A or C to gain access to the buffer.


Thus, the "while-sleep" loop insures that at most one process can gain access to a resource.


Chapter 6 will present the algorithms for sleep and wakeup in greater detail. In the meantime, they should be considered "atomic": A process enters the sleep state instantaneously and stays there until it wakes up. After it goes to sleep, the kernel schedules another process to run and switches context to it.


2.3 KERNEL DATA STRUCTURES


Most kernel data structures occupy fixed-size tables rather than dynamically allocated space. The advantage of this approach is that the kernel code is simple, but it limits the number of entries for a data structure to the number that was originally configured when generating the system: If, during operation of the system, the kernel should run out of entries for a data structure, it cannot allocate space for new entries dynamically but must report an error to the requesting user.


If, on the other hand, the kernel is configured so that it it is unlikely to run out of table space, the extra table space may be wasted because it cannot be used for other purposes. Nevertheless, the simplieity of the kernel algorithms has generally been considered more important than the need to squeeze out every last byte of main memory. Algorithms typically use simple loops to find free table entries, a method that is easier to understand and sometimes more efficient than more complicated allocation schemes.


2.4 SYSTEM ADMINISTRATION


Administrative processes are loosely classified as those processes that do various functions for the general welfare of the user community. Such functions include disk formatting, creation of new file systems, repair of damaged file systems, kernel debugging, and others. Conceptually, there is no difference between administrative
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processes and user processes: They use the same set of system calls available to the genera' community. They are distinguished from genera" user processes only in the rights and privileges they are allowed. For example, file permission modes may allow administrative processes to manipulate files otherwise off-limits to genera'


users. Internally, the kernel distinguishes a special user called the superuser, endowing it with special privileges, as will be seen. A user may become a superuser by going through a login-password sequence or by executing special programs.


Other uses of superuser privileges will be studied in later chapters. In short, the kernel does not recognize a separate class of administrative processes.


23 SUMMARY AND PREVIEW


This chapter has described the architecture of the kernel; its two major components are the file subsystem and the process subsystem. The file subsystem controls the storage and retrieval of data in user files. Files are organized into file systems, which are treated as logica' devices; a physical device such as a disk can contain several logica' devices (file systems). Each file system has a super block that describes the structure and contents of the file system, and each file in a file system is described by an mode that gives the attributes of the file. System calls that manipulate files do so via inodes.


Processes exist in various states and move between them according to well-defined transition rules. In particular, processes executing in kernel mode can suspend their execution and enter the sleep state, but no process can put another process to sleep. The kernel is non-preemptive, meaning that a process executing in kernel mode will continue to execute until it enters the sleep state or until it returns to execute in user mode. The kernel maintains the consistency of its data structures by enforcing the policy of non-preemption and by blocking interrupts when executing critica' regions of code.


The remainder of this text describes the subsystems shown in Figure 2.1 and their interactions in detail, starting with the file subsystem and continuing with the process subsystem. The next chapter covers the buffer cache and describes buffer allocation algorithms, used in the algorithms presented in Chapters 4, 5, and 7.


Chapter 4 examines internal algorithms of the file system, including the manipulation of inodes, the structure of files, and the conversion of path names to inodes. Chapter 5 explains the system calls that use the algorithms in Chapter 4 to access the file system, such as open, close, read, and write. Chapter 6 deals with the basic ideas of the context of a process and its address space, and Chapter 7


covers system calls that deal with process management and use the algorithms in Chapter 6. Chapter 8 •examines process scheduling, and Chapter 9 discusses memory management algorithms. Chapter 10 covers device drivers, postponed to this point so that the relationship between the terminal driver and process management can be explained. Chapter 11 presents several forms of interprocess communication. Finally, the last two chapters cover advanced topics, including multiprocessor systems and distributed systems.
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2.6 EXEROSES


1. Consider the following sequence of commands:


grep main a.c b.e c.c > grepout &


wc —1 < grepout &


rm grepout &


The ampersand ("&") at the end of each command line informs the shell to run the command in the background, and it can execute each command line in parallel. Why is this not equivalent to the following command line?


grep main a.c b.c e.c wc —1


2.


Consider the sample kernel code in Figure 2.7. Suppose a context switch happens when the code reaches the comment, and suppose another process removes a buffer from the linked list by executing the following code:


remove (qp)


struct queue *qp;


qp—> forp— > backp qp— > backp;


qp—>backp—>forp qp—> forp;


qp— > forp qp— >backp NULL;


1


Consider three cases:


— The proeess removes the structure bpl from the linked list.


— The process removes the structure that currently follows bpl on the linked list.


— The process removes the structure that originally followed bpi before bp was half placed on the linked list.


What is the status of the linked list after the original process completes executing the code after the ~ment?


3.


What should happen if the kernel attempts to awaken all processes sleeping on an event, but no processes are asleep on the event at the time of the wakeup?





THE BUFFER


CACHE


As mentioned in the previous chapter, the kernel maintains files on mass storage devices such as disks, and it allows processes to store new information or to recall previously stored information. When a process wants to access data from a file, the kernel brings the data into main memory where the process can examine it, alter it, and request that the data be saved in the file system again. For example, recall the copy program in Figure 1.3: The kernel reads the data from the first file into memory, and then writes the data into the second file. Just as it must bring file data into memory, the kernel must also bring auxiliary data into memory to manipulate it. For instance, the super block of a file system describes the free space available on the file system, among other things. The kernel reads the super block into memory to access its data and writes it back to the file system when it wishes to save its data. Similarly, the mode describes the layout of a file. The kernel reads an mode into memory when it wants to access data in a file and writes the mode back to the file system when it wants to update the file layout. it manipulates this auxiliary data without the explicit knowledge or request of running processes.


The kernel could read and write directly to and from the disk for all file system accesses, but system response time and throughput would be poor because of the slow disk transfer rate. The kernel therefore attempts to minimize the frequency of disk access by keeping a pool of internal data buffers, called the buffer cache,1
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which contains the data in recently used disk blocks.


Figure 2.1 showed the position of the buffer cache module in the kernel architecture between the file subsystem and (block) device drivers. When reading data from the disk, the kernel attempts to read from the buffer cache. 1f the data is already in the cache, the kernel does not have to read from the disk. 1f the data is not in the cache, the kernel reads the data from the disk and caches it, using an algorithm that tries to save as much good data in the cache as possible. Similarly, data being written to disk is cached so that it will be there if the kernel later tries to read it. The kernel also attempts to minimize the frequency of disk write operations by determining whether the data must really be stored on disk or whether it is transient data that will soon be overwritten. Higher-level kernel algorithms instruct the buffer cache module to pre-cache data or to delay-write data to maximize the caching effect. This chapter describes the algorithms the kernel uses to manipulate buffers in the buffer Cache.


3.1 BUFFER HEADERS


During system initialization, the kernel allocates space for a number of buffers, configurable according to memory size and system performance constraints. A buffer consists of two parts: a memory array that contains data from the disk and a buffer header that identifies the buffer. Because there is a one to one mapping of buffer headers to data arrays, the ensuing text will frequently refer to both parts as a "buffer," and the context should make clear which part is being discussed.


The data in a buffer corresponds to the data in a logical disk block on a file system, and the kernel identifies the buffer contents by examining identifier fields in the buffer header. The buffer is the in-memory copy of the disk block; the contents of the disk block map into the buffer, but the mapping is temporary until the kernel decides to map another disk block into the buffer. A disk block can never map into more than one buffer at a time. 1f two buffers were to contain data for one disk block, the kernel would not know which buffer contained the current data and could write incorrect data back to disk. For example, suppose a disk block maps into two buffers, A and B. 1f the kernel writes data first into buffer A and then into buffer B, the disk block should contain the contents of buffer B if all write operations completely fill the buffer. However, if the kernel reverses the order when it copies the buffers to disk, the disk block will contain incorrect data.


The buffer header (Figure 3.1) contains a device number  field and a block number field that specify the file system and block number of the data on disk and uniquely identify the buffer. The device number is the logica] file system number I. The buffer cache is a software structure that should not be confused with hardware caches that speed memory references.
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device num


ptr to data area


).


block num


ptr to previous buf


on hash queue


status


ptr to next buf


on hash queue


ptr to previous buf


on free list


ptr to next buf


on free list


Figure 3.1. Buffer Header


(see Section 2.2.1), not a physical device (disk) unit number. The buffer header also contains a pointer to a data array for the buffer, whose size must be at least as big as the size of a disk block, and a status field that summarizes the current status of the buffer. The status of a buffer is a combination of the following conditions:


• The buffer is currently locked (the terms "locked" and "busy" will be used interchangeably, as will "free" and "unlocked"),


• The buffer contains valid data,


• The kernel must write the buffer contents to disk before reassigning the buffer; this condition is known as "delayed-write,"


• The kernel is currently reading or writing the contents of the buffer to disk,


• A process is currently waiting for the buffer to become free.


The buffer header also contains two sets of pointers, used by the buffer allocation algorithms to maintain the overall structure of the buffer pool, as explained in the next section.


3.2 STRUCTURE OF THE BUFFER POOL


The kernel caches data in the buffer pool according to a least recently used algorithm: after it allocates a buffer to a disk block, it cannot use the buffer for
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forward ptrs


before


after


forward ptrs


buf 2


buf n


Figure 3.2. Free List of Buffers


another block until all other buffers have been used more recently. The kernel maintains a free list of buffers that preserves the least recently used order. The free list is a doubly linked circular list of buffers with a dummy buffer header that marks its beginning and end (Figure 3.2). Every buffer is put on the free list when the system is booted. The kernel takes a buffer from the head of the free list when it wants any free buffer, but it can take a buffer from the middle of the free list if it identifies a particular block in the buffer pool. In both cases, it removes the buffer from the free list. When the kernel returns a buffer to the buffer pool, it usually attaches the buffer to the tail of the free list, occasionally to the head of the free list (for error cases), but never to the middle. As the kernel removes buffers from the free list, a buffer with valid data moves closer and closer to head of the free list (Figure 3.2). Hence, the buffers that are closer to the head of the free list have not been used as recently as those that are further from the head of the free list.


When the kernel accesses a disk block, it searches for a buffer with the appropriate device-block number combination. Rather than search the entire buffer pool, it organizes the buffers into separate queues, hashed as a function of the device and block number. The kernel links the buffers on a hash queue into a circular, doubly linked list, similar to the structure of the free list. The number of buffers on a hash queue varies during the lifetime of the system, as will be seen.


The kernel must use a hashing function that distributes the buffers uniformly across the set of hash queues, yet the hash function must be simple so that performance does not suffer. System administrators configure the number of hash queues when generating the operating system.
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Figure 3.3. Buffers on the Hash Queues


Figure 3.3 shows buffers on their hash queues: the headers of the hash queues are on the left side of the figure, and the squares on each row are buffers on a hash queue. Thus, squares marked 28, 4, and 64 represent buffers on the hash queue for


"blkno 0 mod 4" (block number 0 modulo 4). The dotted lines between the buffers represent the forward and back pointers for the hash queue; for simplicity, later figures in this chapter will not show these pointers, but their existence is implicit.


Similarly, the figure identifies blocks only by their block number, and it uses a hash function dependent only on a block number; however, i mplementations use the device number, too.


Each buffer always exists on a hash queue, but there is no significance to its position on the queue. As stated above, no two buffers may simultaneously contain the contents of the same disk block; therefore, every disk block in the buffer pool exists on one and only one hash queue and only once on that queue. However, a buffer may be on the free list as well if its status is free. Because a buffer may be simultaneously on a hash queue and on the free list, the kernel has two ways to find it: It searches the hash queue if it is looking for a particular buffer, and it a buffer from the free list if it is looking for


removes


any free buffer. The next section will


show how the kernel finds particular disk blocks in the buffer cache, and how it manipulates buffers on the hash queues and on the free list. To summarize, a buffer is always on a hash queue, but it may or may not be on the free list.


3,3 SCENARIOS FOR RETRIEVAL OF A BUFFER


As seen in Figure 2.1, high-level kernel algorithms in the file subsystem invoke the algorithms for managing the buffer cache, The high-level algorithms determine the








































































































3.3


SCENARIOS FOR RETRIEVAL OF A BUFFER


43


logical device number and block number that they wish to access when they attempt to retrieve a block. For example, if a process wants to read data from a file, the kernel determines which file systern contains the file and which block in the file system contains the data, as will be seen in Chapter 4. When about to read data from a partieular disk block, the kernel checks whether the block is in the buffer pool and, if it is not there, assigns it a free buffer. When about to write data to a particular disk block, the kernel checks whether the block is in the buffer pool, and if not, assigns a free buffer for that block. The algorithms for reading and writing disk blocks use the algorithm getblk (Figure 3.4) to allocate buffers from the pool.


This section describes five typical scenarios the kernel may follow in getblk to allocate a buffer for a disk block.


1. The kernel finds the block on its hash queue, and its buffer is free.


2.


The kernel cannot find the block on the hash queue, so it allocates a buffer from the free list.


3.


The kernel cannot find the block on the hash queue and, in attempting to allocate a buffer from the free list (as in scenario 2), finds a buffer on the free list that has been marked "delayed write." The kernel must write the


"delayed write" buffer to disk and allocate another buffer.


4.


The kernel cannot find the block on the hash queue, and the free list of buffers is empty.


5.


The kernel finds the block on the hash queue, but its buffer is currently busy.


Let us now discuss each scenario in greater detail.


When searching for a block in the buffer pool by its device-block number combination, the kernel finds the hash queue that should contain the block. It searches the hash queue, following the linked list of buffers until (in the first scenario) it finds the buffer whose device and block number match those for which it is searching. The kernel checks that the buffer is free and, if so, marks the buffer "busy" so that other processes 2 cannot access it. The kernel then removes the buffer from the free list, because a buffer cannot be bath busy and on the free list. 1f other processes attempt to access the block while the buffer is busy, they sleep until the buffer is released, as will be seen. Figure 3.5 depicts the first scenario, where the kernel searches for block 4 on the hash queue marked "blkno 0


mod 4." Finding the buffer, the kernel removes it from the free list, leaving blocks 5 and 28 adjacent on the free list.


2. Recall from the last chapter that all kernel operations are done in the context of a process that is executing in kernel mode. Thus, the term "other processes" means that they are also executing in kernel mode. This term will be used when describing the interaction of several processes executing in kernel mode; if there is no interprocess interaction, the term "kernel" wijl be used.
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hash queue headers
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(b) Remove Block 4 from Free List


Figure 3.5. Scenario 1 in Finding a Buffer: Buffer on Hash Queue
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algorithm brelse


input: locked buffer


output: none


wakeup all procs: event, waiting for any buffer to become free;


wakeup all procs: event, waiting for this buffer to become free;


raise processor execution level to block interrupts;


if (buffer contents valid and buffer not old)


enqueue buffer at end of free list


else


enqueue buffer at beginning of free list


lower processor execution level to allow interrupts;


unlock (buffer);


Figure 3.6. Algorithm for Releasing a Buffer


Before continuing to the other scenarios, let us consider what happens to a buffer after it is allocated. The kernel may read data from the disk to the buffel and manipulate it or write data to the buffer and possibly to the disk. The kernel leaves the buffer marked busy; no other process can access it and change ás contents while it is busy, thus preserving the integrity of the data in the buffer.


When the kernel finishes using the buffer, it releases the buffer according to algorithm brelse (Figure 3.6). It wakes up processes that had fallen asleep because the buffer was busy and processes that had fallen asleep because no buffers remained on the free list. In both cases, release of a buffer means that the buffer is available for use by the sleeping processes, although the first process that gets the buffer locks it and prevents the other processes from getting it (recall Section 2.2.2.4), The kernel places the buffer at the end of the free list, unless an error oceurred or unless it specifically marked the buffer "old," as will be seen later in this chapter; in the latter cases, it places the buffer at the beginning of the free list. The buffer is now free for another process to claim it.


Just as the kernel invokes algorithm brelse when a process has no more need for a buffer, it also invokes the algorithm when handling a disk interrupt to release buffers used for asynchronous I/O to and from the disk, as will be seen in Section 3.4, The kernel raises the processor execution level to prevent disk interrupts white manipulating the free list, thereby preventing corruption of the buffer pointers that could result from a nested call to brelse. Similar bad effects could happen if an interrupt handler invoked brelse while a process was executing getblk, so the kernel raises the processor execution level at strategie places in getblk, too. The exercises explore these cases in greater detail.


In the second scenario in algorithm getblk, the kernel searches the hash queue that should contain the block but fails to find it there, Since the block cannot be on another hash queue because it cannot "hash" elsewhere, it is not in the buffer
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(a) Search for Block 18 - Not in Cache


hash queue headers


blkno 0 mod 4 • • -• • • •


blkno 1 mod 4


blkno 2 mod 4


18


blkno 3 mod 4


freelist header


(b) Remove First Block from Free List, Assign to 18


Figure 3.7. Second Scenario for Buffer Allocation
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cache. So the kernel removes the first buffer from the free list instead; that buffer had been allocated to another disk block and is also on a hash queue. 1f the buffer has not been marked for a delayed write (as will be described later), the kernel marks the buffer busy, removes it from the hash queue where it currently resides, reassigns the buffer header's device and block number to that of the disk block for which the process is searching, and places the buffer on the correct hash queue.


The kernel uses the buffer but has no record that the buffer formerly contained data for another disk block. A process searching for the old disk block will not find it in the pool and will have to allocate a new buffer for it from the free list, exactly as outlined here. When the kernel finishes with the buffer, it releases it as described above. In Figure 3.7, for example, the kernel searches for block 18 but does not find it on the hash queue marked "blkno 2 mod 4." It therefore removes the first buffer from the free list (block 3), assigns it to block 18, and places it on the appropriate hash queue.


In the third scenario in algorithm getblk, the kernel also has to allocate a buffer from the free list. However, it discovers that the buffer it removes from the free list has been marked for "delayed write," so it must write the contents of the buffer to disk before using the buffer. The kernel starts an asynchronous write to disk and tries to allocate another buffer from the free list. When the asynchronous write completes, the kornel releases the buffer and places it at the head of the free list.


The buffer had started at the end of the free list and had traveled to the head of the free list. If, after the asynchronous write, the kernel were to place the buffer at the end of the free list, the buffer would get a free trip through the free list, working against the least recently used algorithm. For example, in Figure 3.8, the kernel cannot find block 18, but when it attempts to allocate the first two buffers (one at a time) on the free list, it finds them marked for delayed write. The kernel removes them from the free list, starts write operations to disk for the blocks, and allocates the third buffer on the free list, block 4. It reassigns the buffer's device and block number fields appropriately and places the buffer, now marked block 18, on its new hash queue.


In the fourth scenario (Figure 3.9), the kernel, acting for process A, cannot find the disk block on its hash queue, so it attempts to allocate a new buffer from the free list, as in the second scenario. However, no buffers are available on the free list, so process A goes to sleep until another process executes algorithm brelse, freeing a buffer. When the kernel schedules process A, it must search the hash queue again for the block. It cannot allocate a buffer immediately from the free list, because it is possible that several processes were waiting for a free buffer and that one of them allocated a newly freed buffer for the target block sought by process A. Thus, searching for the block again insures that only one buffer contains the disk block. Figure 3.10 depicts the contention between two processes for a free buffer.


The final scenario (Figure 3.11) is complicated, because it involves complex relationships between several processes. Suppose the kernel, acting for process A, searches for a disk block and allocates a buffer but goes to sleep before freeing the
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Figure 3.8. Third Scenario for Buffer Allocation
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Figure 3.9. Fourth Scenario for Allocating Buffer


buffer. For example, if process A attempts to read a disk block and ailocates a buffer as in scenario 2, then it will sleep white it waits for the I/O transmission from disk to complete. While process A sleeps, suppose the kernel schedules a second process, B, which tries to access the disk block whose buffer was just locked by process A. Process B (going through scenario 5) will find the locked block on the hash queue. Since it is illegal to use a locked buffer and it is illegal to allocate a second buffer for a disk block, process B marks the buffer "in demand" and then sleeps and waits for process A to release the buffer.


Process A will eventually release the buffer and notice that the buffer is in demand. It awakens all processes sleeping on the event "the buffer becomes free,"


including process B. When the kernel again schedules process B, process B must verify that the buffer is free. Another process, C, may have been waiting for the same buffer, and the kernel may have scheduled C to run before process B; process C may have gone to sleep leaving the buffer locked. Hence, process B must check that the block is indeed free.


Process B must also verify that the buffer contains the disk block that it originally requested, because process C may have allocated the buffer to another block, as in scenario 2. When process B executes, it may find that it had been waiting for the wrong buffer, so it must search for the block again: If it were to allocate a buffer automatically from the free list, it wou]d miss the possibility that another process just allocated a buffer for the block.
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Figure 3.10. Race for Free Buffer


In the end, process B will find its block, possibly allocating a new buffer from the free list as in the second scenario. In Figure 3.11, for example, a process searching for block 99 finds it on its hash queue, but the block is marked busy.


The process sleeps until the block becomes free and then restarts the algorithm from the beginning. Figure 3.12 depicts the contention for a locked buffer.


The algorithm for buffer allocation must be safe; processes must not sleep forever, and they must eventually get a buffer. The kernel guarantees that all processes waiting for buffers will wake up, because it allocates buffers during the execution of system calls and frees them before returning. 5 Processes in user mode
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hash queue headers


Search for Block 99, Block Busy


Figure 3.11. Fifth Scenario for Buffer Allocation


do not control the allocation of kernel buffers directly, so they cannot purposely


"hog" buffers. The kernel loses control over a buffer only when it waits for the completion of I/O between the buffer and the disk. It is conceivable that a disk drive is corrupt so that it cannot interrupt the CPU, preventing the kernel from ever releasing the buffer. The disk driver must monitor the hardware for such cases and return an error to the kernel for a bad disk job. In short, the kernel can guarantee that processes sleeping for a buffer will wake up eventually.


It is also possible to imagine cases where a process is starved out of accessing a buffer. In the fourth scenario, for example, if several processes sleep while waiting for a buffer to become free, the kernel does not guarantee that they get a buffer in the order that they requested one. A process could sleep and wake up when a buffer becomes free, only to go to sleep again because another process got control of the buffer first. Theoretically, this could go on forever, but practically, it is not a problem because of the many buffers that are typically configured in the system.


3. The mount system call is an exception, because it allocates a buffer until a later umount call. This exception is not critica', because the total number of buffers far exceeds the number of active mounted file systems.
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Figure 3.12. Race for a Locked Buffer


3.4 READING AND WRMNG DISK BLOCKS


Now that the buffer allocation algorithm has been covered, the procedures for reading and writing disk blocks should be easy to understand. To read a disk block (Figure 3.13), a process uses algorithm getblk to search for it in the buffer cache.


If it is in the cache, the kernel can return it immediately without physically reading the block from the disk. If it is not in the cache, the kernel calls the disk driver to


"schedule" a read request and goes to sleep awaiting the event that the I/O


completes. The disk driver notifies the disk controller hardware that it wants to read data, and the disk controller later transmits the data to the buffer. Finally,
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algorithm bread /* block read


input: file system block number


output: buffer containing data


get buffer for block (algorithm getblk);


if (buffer data valid)


return buffer;


initiate disk read;


sleep(event disk read complete);


return (buffer);


Figure 3.13. Algorithm for Reading a Disk Block


the disk controller interrupts the processor when the I/0 is complete, and the disk interrupt handler awakens the sleeping process; the contents of the disk block are now in the buffer. The modules that requested the particular block now have the data; when they no longer need the buffer they release it so that omber processes can access it.


Chapter 5 shows how higher-level kernel modules (such as the file subsystem) may anticipate the need for a second disk block when a process reads a file sequentially. The modules request the second I/0 asynchronously in the hope that the data will be in memory when needed, improving performance. To do this, the kernel executes the block read-ahead algorithm breada (Figure 3.14): The kernel checks if the first block is in the cache and, if it is not there, invokes the disk driver to read that block. 1f the second block is not in the buffer cache, the kernel instructs the disk driver to read it asynchronously. Then the process goes to sleep awaiting the event that the 1/0 is complete on the first block. When it awakens, it returns the buffer for the first block, and does not care when the I/O for the second block completes. When the 1/0 for the second block does complete, the disk controller interrupts the system; the interrupt handler recognizes that the 1/0 was asynchronous and releases the buffer (algorithm brelse). 1f it would not release the buffer, the buffer would remain locked and, therefore, inaccessible to all processes.


It is impossible to unlock the buffer beforehand, because I/0 to the buffer was active, and hence the buffer contents were not valid. Later, if the process wants to read the second block, it should find it in the buffer cache, the 1/0 having completed in the rneantime. If, at the beginning of breada, the first block was in the buffer cache, the kernel immediately checks if the second block is in the cache and proceeds as just described.


The algorithm for writing the contents of a buffer to a disk block is similar (Figure 3.15). The kernel informs the disk driver that it has a buffer whose contents should be output, and the disk driver schedules the block for I/0. 1f the write is synchronous, the calling process goes to sleep awaiting 1/0 completion and
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algorithm breada


/* block read and read ahead */


input: (1) file system block number for immediate read


(2) file system block number for asynchronous read


output: buffer containing data for immediate read


if (first block not in cache)


get buffer for first block (algorithm getblk);


if (buffer data not valid)


initiate disk read;


if (second block not in cache)


get buffer for second block (algorithm getblk);


if (buffer data valid)


release buffer (algorithm brelse);


else


initiate disk read;


if (first block was originally in cache)


read first block (algorithm bread);


return buffer;


sleep(event first buffer contains valid data);


return buffer;


Figure 3.14. Algorithm for Block Read Ahead


releases the buffer when it awakens. If the write is asynchronous, the kernel starts the disk write but does not wait for the write to complete. The kernel will release the buffer when the I/O completes.


There are occasions, described in the next two chapters, when the kernel does not write data immediately to disk. If it does a "delayed write," it marks the buffer accordingly, releases the buffer using algorithm brelse, and continues without scheduling I/O. The kernel writes the block to disk before another process can reallocate the buffer to another block, as described in scenario 3 of getbik. In the meantime, the kernel hopes that a process accesses the block before the buffer must be written to disk; if that process subsequently changes the contents of the buffer, the kernel saves an extra disk operation.


A delayed write is different from an asynchronous write. When doing an asynchronous write, the kernel starts the disk operation immediately but does not wait for its completion. For a "delayed write," the kernel puts off the physical write to disk as long as possible; then, recalling the third scenario in algorithm
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algorithm bwrite


/* block write */


input: buffer


output: none


initiate disk write;


if (I/0 synchronous)


sleep(event 1/0 complete);


release buffer (algorithm brelse);


1


else if (buffer marked for delayed write)


mark buffer to put at head of free list;


1


Figure 3.15. Algorithm for Writing a Disk Block


getblk, it marks the buffer "old" and writes the block to disk asynchronously. The disk controller later interrupts the system and releases the buffer, using algorithm brelse; the buffer ends up on the head of the free list, because it was "old."


Because of the two asynchronous I/O operations — block read ahead and delayed write — the kernel can invoke brelse from an interrupt handler. Hence, it must prevent interrupts in any procedure that manipulates the buffer free list, because breise places buffers cm the free list.


3.5 ADVANTAGES AND DISADVANTAGES OF THE BUFFER CACHE


Use of the buffer cache has several advantages and, unfortunately, some disadvantages.


• The use of buffers allows uniform disk access, because the kernel does not need to know the reason for the I/O. Instead, it copies data to and from buffers, regardless of whether the data is part of a file, an mode, or a super block. The buffering of disk I/O makes the code more modular, since the parts of the kernel that do the I/O with the disk have one interface for all purposes. In short, system design is simpler.


• The system places no data alignment restrictions on user processes doing I/O, because the kernel aligns data internally. Hardware implementations frequently require a particular alignment of data for disk I/O, such as aligning the data on a two-byte botmdary or on a four-byte boundary in memory. Without a buffer mechanism, programmers would have to make sure that their data buffers were correctly aligned. Many programmer errors would result, and programs would not be portable to UNIX systems running on machines with stricter address alignment propertjes. By copying data from user buffers to system buffers (and vice versa), the kernel eliminates the need for special alignment of user buffers,
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making user programs simpler and more portable.


• Use of the buffer cache can reduce the amount of disk traffic, thereby increasing overall system throughput and decreasing response time. Processes reading from the file system may find data blocks in the cache and avoid the need for disk I/O. The kernel frequently uses "delayed write" to avoid unnecessary disk writes, leaving the block in the buffer cache and hoping for a cache hit on the block. Obviously, the chances of a cache hit are greater for systems with many buffers. However, the number of buffers a system can profitably configure is constrained by the amount of memory that should be kept available for executing processes: if too much memory is used for buffers, the system may slow down because of excessive process swapping or paging.


• The buffer algorithms help insure file system integrity, because they maintain a common, single image of disk blocks contained in the eache. 1f two processes simultaneously attempt to manipulate one disk block, the buffer algorithms (geiblk for example) serialize their access, preventing data corruption.


• Reduction of disk traffic is important for good throughput and response time, but the cache strategy also introduces several disadvantages. Since the kernel does not immediately write data to the disk for a delayed write, the system is vulnerable to crashes that leave disk data in an incorrect state, Although recent system implementations have reduce,d the damage caused by catastrophic events, the basic problem remains: A user issuing a write system call is never sure when the data finally makes its way to disk.4


• Use of the buffer cache requires an extra data copy when reading and writing to and from user processes. A process writing data copies the data into the kernel, and the kernel copies the data to disk; a process reading data has the data read from disk into the kernel and from the kernel to the user process. When transmitting large amounts of data, the extra copy slows down performance, but when transmitting small amounts of data, it improves performance because the kernel buffers the data (using algorithms getblk and delayed write) until it is economical to transmit to or from the disk.


3.6 SUMMARY


This chapter has presented the structure of the buffer cache and the various methods by which the kernel locates blocks in the eache. The buffer algorithms combine several simple ideas to provide a sophisticated caching mechgnism. The kernel uses the least-recently-used replacement algorithm to keep blocks in the 4. The standard I/O package available to C language programs includes an fliush call. This function call flushes data from buffers in the user address space (part of the package) into the kerne'.


However, the user still does not know when the kernel writes the data to the disk.
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buffer cache, assuming that blocks that were recently accessed are likely to be accessed again soon. The order that the buffers appear on the free list specifies the order in which they were last used. Other buffer replacement algorithms, such as first-in-first-out or least-frequently-used, are either more complicated to implement or result in lower cache hit ratios. The hash function and hash queues enable the kernel to find particular blocks quickly, and use of doubly linked lists makes it easy to remove buffers from the lists.


The kernel identifies the block it needs by supplying a logical device number and block number. The algorithm getblk searches the buffer cache for a block and, if the buffer is present and free, locks the buffer and returns it. If the buffer is locked, the requesting process sleeps until it becomes free. The locking mechanism ensures that only one process at a time manipulates a buffer. If the block is not in the cache, the kernel reassigns a free buffer to the block, locks it and returns it.


The algorithm bread allocates a buffer for a block and reads the data into the buffer, if necessary. The algorithm bwrite copies data into a previously allocated buffer. If, in execution of certain higher-level algorithms, the kernel determines that it is not necessary to copy the data immediately to disk, it marks the buffer


"delayed write" to avoid unnecessary I/O. Unfortunately, the "delayed write"


scheme means that a process is never sure when the data is physically on disk. If the kernel writes data synchronously to disk, it invokes the disk driver to write the block to the file system and waits for an I/O completion interrupt.


The kernel uses the buffer cache in many ways. It transmits data between application programs and the file system via the buffer cache, and it transmits auxiliary system data such as modes between higher-level kernel algorithms and the file system. It also uses the buffer cache when reading programs into memory for execution. The following chapters will describe many algorithms that use the procedures described in this chapter. Other algorithms that cache modes and pages of memory also use techniques similar to those described for the buffer cache.


3.7 EXERCISES


I. Consider the hash function in Figure 3.3. The best hash function is one that distributes the blocks uniformly over the set of hash queues. What would be an optimal hashing function? Should a hash function use the logical device number in its calculations?


2. In the algorithm getblk, if the kernel removes a buffer from the free list, it must raise the processor priority level to block out interrupts before checking the free list. Why?


• 3. In algorithm geiblk, the kernel must raise the processor priority level to block out interrupts before checking if a block is busy. (This is not shown in the text.) Why?


4.


In algorithm brelse, the kernel enqueues the buffer at the head of the free list if the buffer contents are invalid. If the contents are invalid, should the buffer appear on a hash queue?


5.


Suppose the kernel does a delayed write of a block. What happens when another process takes that block from its hash queue? From the free list?
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* 6. If several processes contend for a buffer, the kernel guarantees that none of them sleep forever, but it does not guarantee that a process will not be starved out from use of a buffer. Redesign getblk so that a process is guaranteed eventual use of a buffer.


7.


Reclesign the algorithms for getbik and brave such that the kernel does not follow a least-recently-used scheme but a first-in-first-out scheme. Repeat this problem using a least-frequently-used scheme.


8.


Describe a scenario where the buffer data is already valid in algorithm bread.


* 9. Describe the various scenarios that can happen in algorithm breada. What happens on the next invocation of bread or breada when the current read-ahead block will be read? In algorithm breada, if the first or second block are not in the cache, the later test to see if the buffer data is valid implies that the block could be in the buffer pool.


How is this possible?


1 r). Describe an algorithm that asks for and receives any free buffer from the buffer pool.


Compare this algorithm to getblk.


11.


Various system mits such as umount and sync (Chapter 5) require the kernel to fiush to disk all buffers that are "delayed write" for a particular file system. Describe an algorithm that implements a buffer fiush. What happens to the order of buffers on the free list as a result of the fiush operation? How can the kernel be sure that no other process sneaks in and writes a buffer with delayed write to the file system white the fiushing process sleeps waitirig for an I/O completion?


12.


Define system response time as the average time it takes to complete a system call.


Define system throughput as the number of processes the system can execute in a given time period. Describe how the buffer cache can help response time. Does it necessarily help system throughput?


n


e


e
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As observed in Chapter 2, every file on a UNIX system has a unique mode. The Mode contains the information necessary for a process to access a file, such as file ownership, access rights, file size, and location of the file's data in the file system.


Processes access files by a well defined set of system calls and specify a file by a character string that is the path name. Each path name uniquely specifies a file, and the kernel converts the path name to the file's mode.


This chapter describes the internal structure of files in the UNIX system, and the next chapter describes the system call interface to files. Section 4.1 examines the mode and how the kernel manipulates it, and Section 4.2 examines the internal structure of regular files and how the kernel reads and writes their data. Section 4.3 investigates the structure of directories, the files that allow the kernel to organize the file system as a hierarchy of files, and Section 4.4 presents the algorithm for converting user file names to modes. Section 4.5 gives the structure of the super block, and Sections 4.6 and 4.7 present the algorithms for assignment of disk modes and disk blocks to files. Finally, Section 4.8 talks about other file types in the system, namely, pipes and device files.


The algorithms described in this chapter occupy the layer above the buffer cache algorithms explained in the last chapter (Figure 4.1). The algorithm iget returns a previously identified mode, possibly reading it from disk via the buffer cache, and the algorithm 'Put releases the Mode. The algorithm bmap sets kernel parameters for accessing a file. The algorithm namei converts a user-level path 60
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Lower Level File System Algorithms


name'


alloc


free


ialloc ifree


iget


iput


bmap


buffer allocation algorithms


getblk


brelse


bread


breada


bwrite


Figtare 4.1. File System Algorithms


name to an mode, using the algorithms iget, iput, and bmap. Algorithms alloc and free allocate and free disk blocks for files, and algorithms Wim and ifree assign and free inodes for files.


4.1 1NODES


4.1.1 Definition


'nodes exist in a statie form on disk, and the kernel reads them into an in-core m ode to manipulate them. Disk inodes consist of the following fields:


• File owner identifier. Ownership is divided between an individual owner and a


"group" owner and defines the set of users who have access rights to a file. The superuser bas access rights to all files in the system.


• File type. Files may be of type regular, directory, character or block special, or FIFO (pipes).


• File access permissions. The system protects files according to three classes: the owner and the group owner of the file, and other users; each class bas access rights to read, write and execute the file, which can be set individually. Because directories cannot be executed, execution perrnission for a directory gives the right to search the directory for a file name.


• File access times, giving the time the file was last modified, when it was last accessed, and when the mode was last modified.
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• Number of links to the file, representing the number of names the file has in the directory hierarchy. Chapter 5 explains file links in detail.


• Table of contents for the disk addresses of data in a file. Although users treat the data in a file as a logical stream of bytes, the kernel saves the data in discontiguous disk blocks. The Mode identifies the disk blocks that contain the file's data.


• File size. Data in a file is addressable by the number of bytes from the beginning of the file, starting from byte offset 0, and the file size is 1 greater than the highest byte offset of data in the file. For example, if a user creates a file and writes only 1 byte of data at byte offset 1000 in the file, the size of the file is 1001 bytes.


The Mode does not specify the path name(s) that access the file.


owner mjb


group os


type regular file


perms rwxr-xr-x


accessed Oct 23 1984 1:45 P.M.


modified Oct 22 1984 10:30 A.M.


m ode Oct 23 1984 1:30 P.M.


size 6030 bytes


disk addresses


Figure 4.2. Sample Disk Mode


Figure 4.2 shows the disk Mode of a sample file. This mode is that of a regular file owned by "mjb," which contains 6030 bytes. The system permits


"mjb" to read, write, or execute the file; members of the group "os" and all other users can only read or execute the file, not write it. The last time anyone read the file was on October 23, 1984, at 1:45 in the afternoon, and the last time anyone wrote the file was on October 22, 1984, at 10:30 in the morning. The mode was last changed on October 23,. 1984, at 1:30 in the afternoon, although the data in the file was not written at that time. The kernel encodes the above information in the Mode. Note the distinction between writing the contents of an mode to disk and writing the contents of a file to disk. The contents of a file change only when writing it. The contents of an mode change when changing the contents of a file or when changing its owner, permission, or link settings. Changing the contents of a
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file automatically implies a change to the mode, but changing the Mode does not imply that the contents of the file change.


The in-core copy of the mode c.ontains the following fields in addition to the fields of the disk Mode:


• The status of the in-core Mode, indicating whether


— the Mode is locked,


a process is waiting for the Mode to become unlocked,


— the in-core representation of the Mode differs from the disk copy as a result of a change to the data in the mode,


— the in-core representation of the file differs from the disk copy as a result of a change to the file data,


— the file is a mount point (Section 5.15).


• The logica! device number of the file system that contains the file.


• The mode number. Since inodes are stored in a linear array on disk (recall Section 2.2.1), the kernel identifies the number of a disk mode by its position in the array. The disk mode does not need this field.


• Pointers to other in-core inodes. The kernel links inodes on hash queues and on a free list in the same way that it links buffers on buffer hash queues and on the buffer free list. A hash queue is identified according to the inode's logica!


device number and mode number. The kernel can contain at most one in-core copy of a disk mode, but inodes can be simultaneously on a hash queue and on the free list.


• A reference count, indicating the number of instances of the file that are active (such as when opened).


Many fields in the in-core mode are analogous to fields in the buffer header, and the management of inodes is similar to the management of buffers. The Mode lock, when set, prevents other processe.s from accessing the mode; other processes set a flag in the mode when attempting to access it to indicate that they should be awakened when the lock is released. The kernel sets other flags to indicate discrepancies between the disk Mode and the in-core copy. When the kernel needs to record changes to the file or to the Mode, it writes the in-core copy of the Mode to disk after examining these flags.


The most striking difference between an in-core Mode and a buffer header is the in-core reference count, which counts the number of active instances of the file. An Mode is active when a process allocates it, such as when opening a  file. An Mode is on the free list only if its reference count is 0, meaning that the kernel can reallocate the in-core Mode to another disk mode. The free list of inodes thus serves as a cache of inactive inodes: lf a process attempts to access a file whose Mode is not currently in the in-core Mode pool, the kernel reallocates an in-core m ode from the free list for its use. On the other hand, a buffer bas no reference count; it is on the free list if and only if it is unlocked.
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algorithm iget


input: file system Mode number


output: locked Mode


while (not done)


if (Mode in Mode cache)


if (m ode locked)


sleep (event Mode becomes unlocked);


continue;


/* loop back to while */


/* special processing for mount points (Chapter 5) *I


if (Mode on mode free list)


remove from free list;


increment mode reference count;


return (mode);


1* Mode not in Mode cache *I


if (no Modes on free list)


return (error) ;


remove new Mode from free list;


reset Mode number and file system;


remove Mode from old hash queue, place on new one;


read Mode from disk (algorithm bread);


initialize Mode (e.g. reference count to 1);


return (Mode);


Figure 4.3. Algorithm for Allocation of In-Core modes


4.1.2 Accessing modes


The kernel identifies particular modes by their file system and mode number and allocates in-core modes at the request of higher-level algorithms. The algorithm iget allocates an in-core copy of an mode (Figure 4.3); it is almost identical to the algorithm getblk for finding a disk block in the buffer cache. The kernel maps the device number and mode number into a hash queue and searches the queue for the m ode. If it cannot find the inode, it allocates one from the free list and locks it.


The kernel then prepares to read the disk copy of the newly accessed mode into the in-core copy. It already knows the mode number and logical device and computes the logical disk block that contains the mode according to how many disk Modes fit into a disk block. The computation follows the formula
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block num ((Mode number — 1) / number of inodes per block) +


start block of Mode list


where the division operation returns the integer part of the quotient. For example, assuming that block 2 is the beginning of the mode list and that there are 8 inodes per block, then mode number 8 is in disk block 2, and mode number 9 is in disk block 3. 1f there are 16 inodes in a disk block, then mode numbers 8 and 9 are in disk block 2, and Mode number 17 is the first mode in disk block 3.


When the kernel knows the device and disk block number, it reads the block using the algorithm bread (Chapter 2), then uses the following formula to compute the byte offset of the Mode in the block:


((Mode number 1) modulo (number of inodes per block)) * size of disk Mode For example, if each disk mode occupies 64 bytes and there are 8 inodes per disk block, then Mode number 8 starts at byte offset 448 in the disk block. The kernel removes the in-core mode from the free list, places it on the correct hash queue, and sets its in-core reference count to 1. It copies the file type, owner fields, permission settings, link count, file size, and the table of contents from the disk m ode to the in-core mode, and returns a locked mode.


The kernel manipulates the Mode lock and reference count independently. The lock is set during execution of a system call to prevent other processes from accessing the Mode white it is in use (and possibly inconsistent). The kernel releases the lock at the conclusion of the system cal]: an Mode is never locked across system calls. The kernel increments the reference count for every active reference to a file. For example, Section 5.1 will show that it increments the Mode reference count when a process opens a file. It decrements the reference count only when the reference becomes inactive, for example, when a process doses a file.


The reference count thus remains set across multiple system calls. The lock is free between system calls to allow processes to share simultaneous access to a file; the reference count remains set between system calls to prevent the kernel from reallocating an active in-core Mode. Thus, the kerneb can lock and unlock an allocated mode independent of the value of the reference count. System calls other than open allocate and release inodes, as will be seen in Chapter 5.


Returning to algorithm iget, if the kernel attempts to take an Mode from the free list but finds the free list empty, it reports an error. This is different from the philosophy the kernel follows for disk buffers, where a process sleeps until a buffer becomes free: Processes have control over the allocation of inodes at user level via execution of open and close system calls, and consequently the kernel cannot guarantee when an mode will become available. Therefore, a process that goes to sleep waiting for a free Mode to become available may never wake up. Rather than leave such a process "hanging," the kernel kils the system eau. However, processes do not have such control over buffers: Because a process cannot keep a buffer locked across system calls, the kernel can guarante,e that a buffer will become free soon, and a process therefore sleeps until one is available.
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The preceding paragraphs cover the case where the kernel allocated an Mode that was not in the Mode cache. If the mode is in the cache, the process (A) would find it on its hash queue and check if the Mode was currently locked by another process (W. If the mode is locked, process A sleeps, setting a flag in the in-core m ode to indicate that it is waiting for the Mode to become free. When process B


later unlocks the Mode, it awakens all processes (including process A) waiting for the mode to become free. When process A is finally able to use the Mode, it locks the mode so that other processes cannot allocate it. If the reference count was previously 0, the mode also appears on the free list, so the kernel removes it from there: the Mode is no longer free. The kernel increments the mode reference count and returns a locked Mode.


To summarize, the iget algorithm is used toward the beginning of system calls when a process first accesses a file. The algorithm returns a locked mode structure with reference count 1 greater than it had previously been. The in-core mode contains up-to-date information on the state of the file. The kernel unlocks the m ode before returning from the system call so that other system calls can access the mode if they wish. Chapter 5 treats these cases in greater detail.


algorithm iput


/* release (put) access to in —core mode *1


input: pointer to in—core mode


output: none


lock mode if not already locked;


decrement mode reference count;


if (reference count


0)


if (m ode link count


free disk blocks for file (algorithm free, section 4.7);


set file type to 0;


free mode (algorithm ifree, section 4.6);


if (file accessed or mode changed or file changed)


update disk mode;


put mode on free list;


release mode lock;


Figure 4.4. Releasing an mode
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4.1.3 Releasing Inodes


When the kernel releases an mode (algorithm iput, Figure 4.4), it decrements its in-core reference count. If the count drops to 0, the kernel writes the mode to disk if the in-core copy differs from the disk copy. They differ if the file data has changed, if the file access time has changed, or if the file owner or access permissions have changed. The kernel places the blode on the free list of inodes, effectively caching the mode in case it is needed again soon. The kernel may also release all data blocks associated with the file and free the mode if the number of links to the file is 0.


4.2 STRUCTURE OF A REGULAR FILE


As mentioned above, the mode contains the table of contents to locate a file's data on disk. Since each block on a disk is addressable by number, the table of contents consists of a set of disk block numbers. If the data in a file were stored in a contiguous section of the disk (that is, the file occupied a linear sequence of disk blocks), then storing the start block address and the file size in the mode would suffice to accas all the data in the file. However, such an allocation strategy would not allow for simple expansion and contraction of files in the file system without running the risk of fragmenting free storage area on the disk. Furthermore, the kernel would have to allocate and reserve contiguous space in the file system before allowing operations that would increase the file size.
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Figure 4.5. Allocation of Contiguous Files and Fragmentation of Free Space For example, suppose a user creates three files, A, B and C, each consisting of 10 disk blocks of storage, and suppose the system allocated storage for the three files contiguously. If the user then wishes to add 5 blocks of data to the middle file, B, the kernel would have to copy file B to a place in the file system that had room for 15 blocks of storage. Aside from the expense of such an operation, the disk
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blocks previously occupied by file B's data would be unusable except for files smaller than 10 blocks (Figure 4.5). The kernel could minimize fragmentation of storage space by periodically running garbage collection procedures to compact available storage, but that would place an added drain on processing power.


For greater flexibility, the kernel allocates file space one block at a time and allows the data in a file to be spread throughout the file system. But this allocation scheme complicates the task of locating the data. The table of contents could consist of a list of block numbers such that the blocks contain the data belonging to the file, but simple calculations show that a linear list of file blocks in the Mode is difficult to manage. If a logical block contains 1K bytes, then a file consisting of 10K bytes would require an index of 10 block numbers, but a file containing 100K


bytes would require an index of 100 block numbers. Either the size of the mode would vary according to the size of the file, or a relatively low limit would have to be placed on the size of a file.


To keep the Mode structure small yet still allow large files, the table of contents of disk blocks conforms to that shown in Figure 4.6. The System V UNIX system runs with 13 entries in the Mode table of contents, but the principles are independent of the number of entries. The blocks marked "direct" in the figure contain the numbers of disk blocks that contain real data. The block marked


"single indirect" refers to a block that contains a list of direct block numbers. To access the data via the indirect block, the kernel must read the indirect block, find the appropriate direct block entry, and then read the direct block to find the data.


The block marked "double indirect" contains a list of indirect block numbers, and the block marked "triple indirect" contains a list of double indirect block numbers.


In principle, the method could be extended to support "quadruple indirect blocks," "quintuple indirect blocks," and so on, but the current structure has sufficed in practice. Assume that a logical block on the file system holds 1K bytes and that a block number is addressable by a 32 bit (4 byte) integer. Then a block can hold up to 256 block numbers. The maximum number of bytes that could be held in a file is calculated (Figure 4.7) at well over 16 gigabytes, using 10 direct blocks and 1 indirect, 1 double indirect, and 1 triple indirect block in the mode.


Given that the file size field in the mode is 32 bits, the size of a file is effectively li mited to 4 gigabytes (232).


Processes access data in a file by byte offset. They work in terms of byte counts and view a file as a stream of bytes starting at byte address 0 and going up to the size of the file. The kernel converts the user view of bytes into a view of blocks: The file starts at logical block 0 and continues to a logical block number corresponding to the file size. The kernel accesses the mode and converts the logical file block into the appropriate disk block. Figure 4.8 gives the algorithm


&nap for converting a file byte offset into a physical disk block.


Consider the block layout for the file in Figure 4.9 and assume that a disk block contains 1024 bytes. If a process wants to access byte offset 9000, the kernel calculates that the byte is in direct block 8 in the file (counting from 0). It then accesses block number 367; the 808th byte in that block (starting from 0) is byte
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Figure 4.6. Direct and Indirect Blocks in mode
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10 direct blocks with 1K bytes each


10K bytes


indirect block with 256 direct blocks


256K bytes


1 double indirect block with 256 indirect blocks


64M bytes


1 triple indirect block with 256 double indirect blocks


16G bytes


Figure 4.7, Byte Capacity of a File


K Bytes Per Block


algorithm bmap 1* block map of logical file byte offset to file system block *I input: (1) mode


(2) byte offset


output: (1) block number in file system


(2) byte offset into block


(3) bytes of I/0 in block


(4) read ahead block number


calculate logical block number in file from byte offset;


calculate start byte in block for 1/0;


/* output 2 si


calculate number of bytes to copy to user;


/* output 3 */


check if read—ahead applicable, mark mode;


/* output 4 *1


determine level of indirection;


while (not at necessary level of indirection)


calculate index into mode or indirect block from


logica' block number in file;


get disk block number from mode or indirect block;


release buffer from previous disk read, if any (algorithm brelse);


if (no more levels of indirection)


return (block number);


read indirect disk block (algorithm bread);


adjust logica] block number in fik according to level of indirection; Figure 4.8. Conversion of Byte Offset to Block Number in File System 9000 in the file. If a process wants to access byte offset 350,000 in the file, it must access a double indirect block, number 9156 in the figure. Since an indirect block has room for 256 block numbers, the first byte accessed via the double indirect block is byte number 272,384 (256K + 10K); byte number 350,000 in a file is therefore byte number 77,616 of the double indirect block. Since each single indirect block accesses 256K bytes, byte number 350,000 must be in the Oth single indirect block of the double indirect block — block number 331. Since each direct block in a single indirect block contains 1K bytes, byte number 77,616 of a single
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Figure 4.9. Block Layout of a Sample File and its bode


indirect block is in the 75th direct block in the single indirect block block number 3333. Finally, byte number 350,000 in the file is at byte number 816 in block 3333.


Examining Figure 4.9 more closely, several block entries in the mode are 0, meaning that the logical block entries contain no data. This happens if no process ever wrote data into the file at any byte offsets corresponding to those blocks and hence the block numbers remain at their initial value, 0. No disk space is wasted for such blocks. Processes can cause such a block layout in a file by using the Iseek


and write system calls, as described in the next chapter. The next chapter also describes how the kernel takes care of read system calls that access such blocks.


The conversion of a large byte offset, particularly one that is referenced via the triple indirect block, is an arduous procedure that could require the kernel to access three disk blocks in addition to the mode and data block. Even if the kernel finds
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the blocks in the buffer cache, the operation is still expensive, because the kernel must make multiple requests of the buffer cache and may have to sleep awaiting locked buffers. How effective is the algorithm in practice? That depends on how the system is used and whether the user community and job mix are such that the kernel accesses large files or small files more frequently. It bas been observed Nullender 841, however, that most files on UNIX systems contain less than 10K


bytes, and many contain less than 1K bytesl l Since 10K bytes of a file are stored in direct blocks, most file data can be accessed with one disk access. So in spite of the fact that accessing large files is an expensive operation, accessing common-sized files is fast.


Two extensions to the blode structure just described attempt to take advantage of file size Characteristics. A major principle in the 4.2 BSD file system implementation (McKusick 841 is that the more data the kernel can access on the disk in a single operation, the faster file access becomes. That argues for having larger logica! disk blocks, and the Berkeley implementation allows logica! disk blocks of 4K or 8K bytes. But having larger block sizes on disk increases block fragmentation, leaving large portions of disk space unused. For instance, if the logical block size is 8K bytes, then a file of size 12K bytes uses 1 complete block and half of a second block. The other half of the second block (4K bytes) is wasted; no other file can use the space for data storage. If the sizes of files are such that the number of bytes in the last block of a file is uniformly distributed, then the average wasted space is half a block per file; the amount of wasted disk space can be as high as 45% for a file system with logical blocks of size 4K bytes


[ McKusick 841. The Berkeley implementation remedies the situation by allocating a block fragment to contain the last data in a file. One disk block can contain fragments belonging to several files. An exercise in Chapter 5 explores some details of the implementation.


The second extension to the classic mode structure described here is to store file data in the mode (see [Mullender 841). By expanding the mode to occupy an entire disk block, a small portion of the block can be used for the mode structures and the remainder of the block can store the entire file, in many cases, or the end of a file otherwise. The main advantage is that only one disk access is necessary to get the mode and its data if the file fits in the mode block.


1. For a sample of 19,978 files, Mullender and Tannenbaurn say that approximately 85% of the files were smaller than 8K bytes and that 48% were smaller than IK bytes. Although these percentages will vary from one installation to the next, they are representative of rnany UNIX systems.
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4.3 DIRECTORIES


Recall from Chapter 1 that directories are the files that give the file system its hierarchical structure; they play an important role in conversion of a file name to an mode number. A directory is a file whose data is a sequence of entries, each consisting of an mode number and the name of a file contained in the directory. A path name is a null terminated character string divided into separate components by the slash ("/") character. Each component except the last must be the name of a directory, but the last component may be a non-directory file. UNIX System V


restricts component names to a maximum of 14 characters; with a 2 byte entry for the mode number, the size of a directory entry is 16 bytes.


Byte Offset


m ode Number


File Names


in Directory


(2 bytes)


0


83


16


2


..


32


1798


init


48


1276


fsck


64


85


clri


80


1268


motd


96


1799


mount


112


88


mknod


128


2114


passwd


144


1717


umount


160


1851


checklist


176


92


fsdblb


192


84


config


208


1432


getty


224


0


crash


240


95


mkfs


256


188


inittab


Figure 4.10. Directory Layout for /etc


Figure 4.10 depicts the layout of the directory "etc". Every directory contains the file names dot and dot-dot ("." and "..") whose mode numbers are those of the directory and its parent directory, respectively. The m ode number of "." in `Vete is located at offset 0 in the file, and its value is 83. The mode number of ".." is located at offset 16, and its value is 2, Directory entries may be empty, indicated by an mode number of 0. For instance, the entry at address 224 in "/etc" is empty, although it once contained an entry for a file named "crash". The program mkfs initializes a file system so that "." and ".." of the root directory have the root m ode number of the file system.
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The kernel stores data for a directory just as it stores data for an ordinary file, using the Mode structure and levels of direct and indirect blocks. Processes may read directories in the same way they read regular files, but the kernel reserves exclusive right to write a directory, thus insuring its correct structure. The access permissions of a directory have the following meaning: read permission on a directory allows a process to read a directory; write permission allows a process to create new directory entries or remove old ones (via the creat, mknod, link, and unlink system calls), thereby altering the contents of the directory; execute permission allows a process to search the directory for a file name (it is meaningless to execute a directory). Exercise 4.6 explores the difference between reading and searching a directory.


4,4 CON VERSION OF A PATH NAME TO AN INODE


The initial access to a file is by its path name, as in the open, chdir (change directory), or link system calls. Because the kernel works internally with inodes rather than with path names, it converts the path names to inodes to access files.


The algorithm namei parses the path name one component at a time, converting each component into an mode based on its name and the directory being searched, and eventually returns the Mode of the input path name (Figure 4.11).


Recall from Chapter 2 that every process is associated witli (resides in) a current directory; the u area contains a pointer to the current directory mode. The current directory of the first process in the system, process 0, is the root directory.


The current directory of every other process starts out as the current directory of its parent process at the time it was created (see Section 5.10). Processes change their current directory by executing the chdir (change directory) system call. All path name searches start from the current directory of the process unless the path name starts with the slash character, signifying that the search should start from the root directory. In either case, the kernel can easily find the mode where the path name search starts: The current directory is stored in the process u area, and the system root mode is stored in a global variable.2


Namei uses intermediate inodes as it parses a path name; call them working inodes. The mode where the search starts is the first working mode. During each iteration of the namei loop, the kernel makes sure that the working Mode is indeed that of a directory. Otherwise, the system would violate the assertion that nondirectory files can only be leaf nodes of the file system tree. The process must also have permission to search the directory (read permission is insufficient). The user 1D of the process must match the owner or group 1D of the file, and execute 2. A process can execute the chroot system cal! to change its notion of the file system root. The changed root is stored in the u area.
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algorithm namei


/* convert path name to mode */


input: path name


output: locked Mode


if (path name starts from root)


working Mode — root mode (algorithm iget);


else


working mode


current directory mode (algorithm iget):


while (there is more path name)


read next path name component from input;


verify that working Mode is of directory, access permissions OK;


if (working mode is of root and component is "..")


continue;


/* loop back to while */


read directory (working mode) by repeated use of algorithms


bmap, bread and brelse;


if (component matches an entry in directory (working mode))


get Mode number for matched component;


release working Mode (algorithm iput);


working Mode mode of matched component (algorithm iget);


else


/* component not in directory */


return (no mode);


return (working Mode);


Figure 4.11. Algorithm for Conversion of a Path Name to an mode


permission must be granted, or the file must allow search to all users. Otherwise the search fails.


The kernel does a linear search of the directory file associated with the working m ode, trying to match the path name component to a directory entry name.


Starting at byte offset 0, it converts the byte offset in the directory to the appropriate disk block according to algorithm bmap and reads the block using algorithm bread. It searches the block for the path name component, treating the contents of the block as a sequence of directory entries. If it finds a match, it records the mode number of the matched directory entry, releases the block (algorithm brelse) and the old working mode (algorithm tput), and allocates the Mode of the matched component (algorithm iget). The new Mode becomes the working Mode. If the kernel does not match the path name with any names in the block, it releases the block, adjusts the byte offset by the number of bytes in a block, converts the new offset to a disk block number (algorithm bmap), and reads
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the next block. The kernel repeats the procedure until it matches the path name component with a directory entry name, or until it reaches the end of the directory.


For example, suppose a process wants to open the file "ietcipasswd". When the kernel starts parsing the file name, it encounters "I" and gets the system root m ode. Making root its current working Mode, the kernel gathers in the string


"etc". After checking that the current mode is that of a directory ("1") and that the process has the necessary permissions to search it, the kernel searches root for a file whose name is "etc": It accesses the data in the root directory block by block and searches each block one entry at a time until it locates an entry for "etc". On finding the entry, the kernel releases the Mode for root (algorithm Out) and allocates the Mode for "etc" (algorithm iget) according to the mode number of the entry just found. After ascertaining that "etc" is a directory and that it has the requisite search permissions, the kernel searches "etc" block by block for a directory structure entry for the file "passwd". Referring to Figure 4.10, it would find the entry for "passwd" as the ninth entry of the directory. On finding it, the kernel releases the mode for "etc", allocates the mode for "passwd", and — since the path name is exhausted — returns that Mode.


It is natural to question the efficiency of a linear search of a directory for a path name component. Ritchie points out (see page 1968 of [Ritchie 78b1) that a linear search is efficient because it is bounded by the size of the directory. Furthermore, early UNIX system implementations did not run on machines with large memory space, so there was heavy emphasis on simple algorithms such as linear search schemes. More complicated search schemes could require a different, more complex, directory structure, and would probably run more slowly on small directories than the linear search scheme.


43 SUPER BLOCK


So far, this chapter has described the structure of a file, assuming that the mode was previously bound to a file and that the disk blocks containing the data were already assigned. The next sections cover how the kernel assigns inodes and disk blocks. To understand those algorithms, let us examine the structure of the super block.


The super block consists of the following fields:


• the size of the file system,


• the number of free blocks in the file system,


• a list of free blocks available on the file system,


• the index of the next free block in the free block list,


• the size of the mode list,


• the number of free inodes in the file system,


• a list of free inodes in the file system,


• the index of the next free Mode in the free mode list,
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• lock fields for the free block and free mode lists,


• a flag indicating that the super block has been modified,


The remainder of this chapter will explain the use of the arrays, indices and locks.


The kernel periodically writes the super block to disk if it had been modified so that it is consistent with the data in the file system.


4.6 INODE ASSIGNMENT TO A NEW FILE


The kernel uses algorithm iget to allocate a known mode, one whose (file system and) mode number was previously determined. In algorithm namei for instance, the kernel determines the mode number by matching a path name component to a


name in a directory. Another algorithm, ialloc, assigns a disk mode to a newly created file.


The file system contains a linear list of modes, as mentioned in Chapter 2. An Mode is free if its type field is zero. When a process needs a new mode, the kernel could theoretically search the Mode list for a free mode. However, such a search would be expensive, requiring at least one read operation (possibly from disk) for every mode. To improve performance, the file system super block contains an array to cache the numbers of free Modes in the file system.


Figure 4.12 shows the algorithm Woe for assigning new Modes. For reasons cited later, the kernel first verifies that no other processes have locked access to the super block free mode list. If the list of Mode numbers in the super block is not empty, the kernel assigns the next Mode number, allocates a free in-core Mode for the newly assigned disk Mode using algorithm iget (reading the mode from disk if necessary), copies the disk Mode to the in-core copy, initializes the fields in the Mode, and returns the locked mode. It updates the disk Mode to indicate that the m ode is now in use: A non-zero file type field indicates that the disk Mode is assigned. In the simplest case, the kernel has a good mode, but race conditions exist that necessitate more checking, as will be explained shortly. Loosely defined,


a race condition arises when several processes alter common data structures that the resulting c


such


omputations depend on the order in which the processes


executed, even though all processes obeyed the locking protocol. For example, it is implied here that a process could get a used Mode. A race condition is related to the mutual exclusion problem defined in Chapter 2, except that locking schemes solve the mutual exclusion problem there but may not, by themselves, solve all race conditions.


If the super block list of free Modes is empty, the kernel searches the disk and places as many free Mode numbers as possible into the super block. The kernel reads the mode list on disk, block by block, and fills the super block list of Mode numbers to capacity, remembering the highest-numbered


 mode that it finds. Call


that Mode the "remembered" Mode; it is the last one saved in the super block. The next time the kernel searches the disk for free Modes, it uses the remembered Mode as its starting point, thereby assuring that it wastes no time reading disk blocks
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while (not done)


if (super block locked)


sleep (event super block becomes free);


continue;


/* while loop */


1


if (m ode list in super block is empty)


lock super block;


get rernembered Mode for free Mode search;


search disk for free inodes until super block full,


or no more free inodes (algorithrns bread and brelse);


unlock super block;


wake up (event super block becomes free);


if (no free inodes found en disk)


return (no Mode);


set remembered mode for next free Mode search;


1


/* there are inodes in super block mode list *I


get Mode number from super block Mode list;


get Mode (algorithm iget);


if (Mode not free after all)


/* !!! */


write Mode to disk;


release mode (algorithm iput);


continue;


/* while loop */


1


/* mode is free */


initialize Mode;


write mode to disk;


decrement file system free mode count;


return (mnode);


Figure 4.12. Algorithm for Assigning New Inodes
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where no free modes should exist. After gathering a fresh set of free mode numbers, it starts the mode assignment algorithm from the beginning. Whenever the kernel assigns a disk mode, it decrements the free mode count recorded in the super block.


Super Block Free In


1st


_


free modes
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48


empty


.e


Super Block Free mode List


free modes


.e


empty


›..


83


• • • •


(a) Assigning Free mode from Middle of List


Super Block Free mode List


—


..


535


..x......


free modes


476


475


471


,


—


48


49


50


index t


(b) Assigning Free mode - Super Block List Empty


Figure 4.13. Two Arrays of Free bode Numbers
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Consider the two pairs of arrays of free mode numbers in Figure 4.13. If the list of free inodes in the super block looks like the first array in Figure 4.13(a) when the kernel assigns an mode, it decrements the index for the next valid mode number to 18 and takes mode number 48. 1f the list of free inodes in the super block looks like the first array in Figure 4.13(b), it will notice that the array is empty and search the disk for free inodes, starting from mode number 470, the remembered mode. When the kernel fills the super block free list to capacity, it remembers the last blode as the start point for the next search of the disk. The kernel assigns an mode it just took from the disk (number 471 in the figure) and continues whatever it was doing.


algorithm ifree


1* mode free */


input: file system mode number


output: none


increment file system free mode count;


if (super block locked)


return;


if anode list fulp


if (Mode number less than remembered mode for search)


set remembered mode for search input mode number;


else


store mode number in mode list;


return;


Figure 4.14. Algorithm for Freeing mode


The algorithm for freeing an mode is much simpler. After incrementing the total number of available inodes in the file system, the kernel checks the lock on the super block. If locked, it avoids race conditions by returning immediately: The m ode number is not put into the super block, but it can be found on disk and is available for reassignment. 1f the list is not locked, the kernel checks if it /las room for more mode numbers and, if it does, places the mode number in the list and returns. 1f the list is full, the kernel may not save the newly freed mode there: It compares the number of the freed mode with that of the remembered mode. If the freed mode number is less than the remembered mode number, it "remembers" the newly freed mode number, discarding the old remembered mode number from the super block. The mode is not lost, because the kernel can find it by searching the m ode list on disk. The kernel maintains the super block list such that the last mode it dispenses from the list is the remembered mode. Ideally, there should never be free inodes whose mode number is less than the remembered mode number, but WIM
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Figure 4.15. Placing Free bode Numbers into the Super Block


exceptions are possible.


Consider two examples of freeing modes. If the super block list of free Modes has room for more free mode numbers as in Figure 4.13(a), the kernel places the Mode number on the list, increments the index to the next free mode, and proceeds.


But if the list of free Modes is full as in Figure 4.15, the kernel compares the Mode number it has freed to the remembered Mode number that will start the next disk search. Starting with the free Mode list in Figure 4.15(a), if the kernel frees mode 499, it makes 499 the remembered Mode and evicts number 535 from the free list.


If the kernel then frees Mode number 601, it does not change the contents of the free list. When it later uses up the Modes in the super block free list, it will search the disk for free Modes starting from mode number 499, and find Modes 535 and 601 again.
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Assigns mode I


from super block





•••


Sleeps while


reading mode (a)


Tries to assign mode


from super block


Super block empty (b)


Search for free


inodes on disk,


puts blode I


in super block (c)


m ode 1 in core


Does usual activity


Completes search,


assigns another mode (d)


Assigns mode


from super block


I is in use!


W Time


Assign another mode (e)


Figure 4.16. Race Condition in Assigning Inodes


The preceding paragraph described the simple cases of the algorithms. Now consider the case where the kernel assigns a new mode and then allocates an in-core copy for the mode. The algorithm implies that the kernel could find that the mode had already been assigned. Although rare, the following scenario shows such a case (refer to Figures 4.16 and 4.17). Consider three processes, A, 13, and C, and suppose that the kernel, acting on behalf of process A, 3 assigns mode I but goes to sleep before it copies the disk mode into the in-core copy. Algorithms iget (invoked 3. As in the last chapter, the term "process" here wili mean "the kernel, acting on behalf of a process."
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Time


(a)


(b)


Figure 4.17. Race Condition in Assigning modes (continued)


by ialloc) and bread (invoked by iget) give process A ample opportunity to go to sleep. While process A is asleep, suppose process B attempts to assign a new mode but discovers that the super block list of free modes is empty. Process B searches the disk for free modes, and suppose it starts its search for free modes at an mode number lower than that of the mode that A is assigning. It is possible for process B to find mode I free on the disk since process A is still asleep, and the kernel does not know that the mode is about to be assigned. Process B, not realizing the danger, completes its search of the disk, fills up the super block with (supposedly) free modes, assigns an mode, and departs from the scene. However, mode I is in the super block free list of mode numbers. When process A wakes up, it completes the assignment of mode I. Now suppose process C later requests an mode and happens to pick mode I from the super block free list. When it gets the in-core copy of the mode, it will find its file type set, implying that the mode was already assigned. The kernel checks for this condition and, finding that the mode has been assigned, tries to assign a new one. Writing the updated mode to disk immediately after its assignment in iallac makes the chance of the race smaller, because the file type field will mark the mode in use.
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Locking the super block list of inodes white reading in a new set from disk prevents other race conditions. 1f the super block list were not locked, a process could find it empty and try to populate it from disk, occasionally sleeping while waiting for I/O completion. Suppose a second process also tried to assign a new blode and found the list empty. It, too, would try to populate the list from disk.


At best, the two processes are duplicating their efforts and wasting CPU power. At worst, race conditions of the type described in the previous paragraph would be more frequent. Similarly, if a process freeing an mode did not check that the list is locked, it could overwrite Mode numbers already in the free list while another process was populating it from disk. Again, the race conditions described above would be more frequent. Although the kernel handles them satisfactorily, system performance would suffer. Use of the lock on the super block free list prevents such race conditions.


4.7 ALLOCATION OF DISK BLOCKS


When a process writes data to a file, the kernel must allocate disk blocks from the file system for direct data blocks and, sometimes, for indirect blocks. The file system super block contains an array that is used to cache the numbers of free disk blocks in the file system. The utility program mkf's (make file system) organizes the data blocks of a file system in a linked list, such that each link of the list is a disk block that contains an array of free disk block numbers, and one array entry is the number of the next block of the linked list. Figure 4.18 shows an example of the linked list, where the first block is the super block free list and later blocks on the linked list contain more free block numbers.


When the kernel wants to allocate a block from a file system (algorithm alloc, Figure 4.19), it allocates the next available block in the super block list. Once allocated, the block cannot be reallocated until it becomes free. If the allocated block is the last available block in the super block cache, the kernel treats it as a pointer to a block that contains a list of free blocks. It reads the block, populates the super block array with the new list of block numbers, and then proceeds to use the original block number. It allocates a buffer for the block and clears the buffer's data (zeros it). The disk block bas now been assigned, and the kernel bas a buffer to work with. 1f the file system contains no free blocks, the calling process receives an error.


1f a process writes a lot of data to a file, it repeatedly asks the system for blocks to store the data, but the kernel assigns only one block at a time. The program rnIcfs tries to organize the original linked list of free block numbers so that block numbers dispensed to a file are near each other. This helps performance, because it reduces disk seek time and latency when a process reads a file sequentially. Figure 4.18 depicts block numbers in a regular pattern, presumably based on the disk rotation speed. Unfortunately, the order of block numbers on the free block linked lists breaks down with heavy use as processes write files and remove them, because block numbers enter and leave the free list at random. The kernel makes no
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Figure 4.18. Linked List of Free Disk Block Numbers
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attempt to sort block numbers on the free list.


The algorithm free for freeing a block is the reverse of the one for allocating a


.ce


block. If the super block list is not full, the block number of the newly freed block ed


is placed on the super block list. If, however, the super block list is full, the newly a


freed block becomes a link block; the kernel writes the super block list into the Les


block and writes the block to disk. It then places the block number of the newly Lse


freed block in the super block list: That block number is the only member of the list.


Fer


Figure 4.20 shows a sequence of alloc and free operations, starting with one


res


entry on the super block free list. The kernel frees block 949 and places the block number on the free list. It then allocates a block and removes block number 949


:ks


from the free list. Finally, it allocates a block and removes block number 109 from IIM


the free list. Because the super block free list is now empty, the kernel replenishes ck


the list by copying in the contents of block 109, the next link on the linked list.


it


Figure 4.20(d) shows the full super block list and the next link block, block 211.


re


The algorithms for assigning and freeing modes and disk blocks are similar in isk


that the kernel uses the super block as a cache containing indices of free resources,


:ed


block numbers, and mode numbers. It maintains a linked list of block numbers Ise


such that every free block number in the file system appears in some element of the no


linked list, but it maintains no such list of free modes. There are three reasons for
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algorithm alloc


1* file system block allocation */


input: file system number


output; buffer for new block


while (super block locked)


sleep (event super block not locked);


remove block from super block free list;


if (removed last block from free list)


lock super block;


read block just taken from free list (algorithm bread);


copy block numbers in block into super block;


release block buffer (algorithm brelse);


unlock super block;


wake up processes (event super block not locked);


1


get buffer for block removecl from super block list (algorithm getblk); zero buffer contents;


decrement total count of free blocks;


mark super block modified;


return buffer;


Figure 4.19. Algorithm for Allocating Disk Block


the different treatment.


1.


The kernel can determine whether an mode is free by inspection: 1f the file type field is clear, the mode is free. The kernel needs no other mechanism to describe free inodes. However, it cannot determine whether a block is free just by looking at it. It could not distinguish between a bit pattern that indicates the block is free and data that happened to have that bit pattern.


Hence, the kernel requires an external method to identify free blocks, and traditional implementations have used a linked list.


2.


Disk blocks lend themselves to the use of linked lists: A disk block easily holds large lists of free block numbers. But inodes have no convenient place for bulk storage of large lists of free mode numbers.


3.


Users tend to consume disk block resources more quickly than they consume inodes, so the apparent lag in performance when searching the disk for free inodes is not as critical as it would be for searching for free disk blocks.
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Figure 4.20. Requesting and Freeing Disk Blocks
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4.8 OTHER FILE TYPES


The UNIX system supports two other file types: pipes and special files. A pip, sometimes called a fifb (for "first-in-first-out"), differs from a regular file in that its data is transient: Once data is read from a pipe, it cannot be read again. Also, the data is read in the order that it was written to the pipe, and the system allows no deviation from that order. The kernel stores data in a pipe the same way it stores data in an ordinary file, except that it uses only the direct blocks, not the indirect blocks. The next chapter will examine the implementation of pipes.


The last file types in the UNIX system are special files, including block device special files and character device special files. Both types specify devices, and therefore the file inodes do not reference any data. Instead, the mode contains two numbers known as the major and minor device numbers. The major number indicates a device type suil as terminal or disk, and the minor number indicates the unit number of the device. Chapter 10 examines special devices in detail.


4.9 SUMMARY


The mode is the data structure that describes the attributes of a file, including the layout of ijs data on disk. There are two versions of the mode: the disk copy that stores the mode information when the file is not in use and the in-core copy that records information about active files. Algorithms ialloc and ifree control assignment of a disk mode to a file during the creat, mknod, pipe, and unlink system calls (next chapter), and the algorithms iget and iput control the allocation of in-core inodes when a process accesses a file. Algorithm bmap locates the disk blocks of a file, according to a previously supplied byte offset in the file. Directories are files that correlate file name components to mode numbers. Algorithm namei converts file names manipulated by processes to inodes, used internally by the kernel. Finally, the kernel controls assignment of new disk blocks to a file using algorithms alloc and free.


The data structures discussed in this chapter consist of linked lists, hash queues, and linear arrays, and the algorithms that manipulate the data structures are therefore simple. Complications arise due to race conditions caused by the interaction of the algorithms, and the text has indicated some of these timing problems. Nevertheless, the algorithms are not elaborate and illustrate the simplicity of the system design.


The structures and algorithms explained here are internal to the kernel and are not visible to the user. Referring to the overall system architecture (Figure 2.1), the algorithms described in this chapter occupy the lower half of the file subsystem.


The next chapter examines the system calls that provide the user interface to the file system, and it describes the upper half of the file subsystem that invokes the internal algorithms described here.
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4.10 EXERCISES


I. The C language convention counts array indices from 0. Why do mode numbers start from 1 and not 0?


2.


If a process sleeps in algorithm iget when it finds the mode locked in the cache, why must it start the loop again from the beginning after waking up?


3.


Describe an algorithm that takes an in-core mode as input and updates the corresponding disk mode.


4.


The algorithms iget and iput do not require the processor execution level to be raised to block out interrupts. What does this imply?


5.


How efficiently can the loop for indirect blocks in bmap be encoded?


mkdir junk


for i in 1 2 3 4 5


do


echo hello > junk/Si


done


Is —Id junk


Is —I junk


chmod —r junk


Is —Id junk


Is junk


Is —I junk


cd junk


pwd


Is —I


ecbo *


cd


chmod 4-r junk


chmod —x junk


Is junk


Is —I junk


cd junk


chmod +x junk


Figure 4.21. Difference between Read and Search Permission on Directories 6.


Execute the shell command script in Figure 4.21. It creates a directory "junk" and creates five files in the directory. After doing some control Is commands, the chmod


command turns off read permission for the directory. What happens when the various Is commands are executed now? What happens after changing directory into "junk"?


After restoring read permission but removing execute (search) permission from "junk", repeat the experiment. What happens? What is happening in the kernel to cause this behavior?


7.


Given the current structure of a directory entry on a System V system, what is the maximum number of files a file system can contain?
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8.


UNIX System V allows a maximum of 14 characters for a path name component.


Namei truncates extra characters in a component. How should the file system and respective algorithms be redesigned to allow arbitrary length component names?


9.


Suppose a user has a private version of the UNIX system but changes it so that a path Ir


name component can consist of 30 characters; the private version of the operating system stores the directory entries the same way that the standard operating system 1


does, except that the directory entries are 32 bytes long instead of 16. If the user mounts the private file system on a standard system, what would happen in algorithm name! when a process accesses a file on the private file system?


* 10. Consider the algorithm name! for converting a path name into an mode. As the search progresses, the kernel checks that the current working mode is that of a directory. Is it possible for another process to remove (unlink) the directory? How can the kernel prevent this? The next chapter will come back to this problem.


* 11. Design a directory structure that improves the efficiency of searching for path names by avoiding the linear search. Consider two techniques: hashing and n-ary trees.


* 12. Design a scheme that reduces the number of directory souches for file names by caching frequently used names.


* 13. Ideally, a file system should never contain a free mode whose mode number is less than the "remembered" mode used by ialloe. How is it possible for this assertion to be fake?


14. The super block is a disk block and contains other information besides the free block list, as described in this chapter. Therefore, the super block free list cannot contain as many free block numbers as can be potentially stored in a disk block on the linked list of free disk blocks. What is the optima! number of free block numbers that should be stom] in a block on the linked list?


* 15. Discuss a system implementation that keeps track of free disk blocks with a bit map instead of a linked list of blocks. What are the advantages and disadvantages of this scheme?





SYSTEM CALLS


FOR THE FILE SYSTEM


The last chapter described the internal data structures for the file system and the algorithms that manipulate them. This chapter deals with system calls for the file system, using the concepts explored in the previous chapter. It starts with system calls for accessing existing files, such as open, read, write, lseek, and close, then presents system calls to create new files, namely, creat and mknod, and then examines the system calls that manipulate the Mode or that maneuver through the file system: chdir, chroot, chown, chrrtod, slat, and fstat. It investigates more advanced system calls: pipe and dup are important for the implementation of pipes in the shell; mount and umount extend the file system tree visible to users; link and unlink change the structure of the file system hierarchy. Then, it presents the notion of file system abstractions, allowing the support of various file systems as long as they conform to standard interfaces. The last section in the chapter covers file system maintenance. The chapter introduces three kernel data structures: the file table, with one entry allocated for every opened file in the system, the user file descriptor table, with one entry allocated for every file descriptor known to a process, and the mount table, containing information for every active file system.


Figure 5.1 shows the relationship between the system calls and the algorithms described previously. It classifies the system calls into several categories, although some system calls appear in more than one category:
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Figure 5.1. File System Calls and Relation to Other Algorithms


• System calls that return file descriptors for use in other system calls;


• System calls that use the namei algorithm to parse a path name;


• System calls that assign and free inodes, using algorithms ialloc and ifree;


• System calls that set or change the attributes of a file;


• System calls that do I/O to and from a process, using algorithms alloc, free, and the buffer allocation algorithms;


• System calls that change the structure of the file system;


• System calls that allow a process to change its view of the file system tree.


5.1 OPEN


The open system call is the first step a process must take to access the data in a file. The syntax for the open system call is


fd open(pathname, flags, modes);


where pathname  is a file name, flags indicate the type of open (such as for reading or writing), and modes give the file permissions if the file is being created. The open system cal] returns an integer' called the user file descriptor. Other file
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operations, such as reading, writing, seeking, duplicating the file descriptor, setting file I/O parameters, determining file status, and closing the file, use the file descriptor that the open system call returns.


The kernel searches the file system for the file name parameter using algorithm nantei (see Figure 5.2). It checks permissions for opening the file after it finds the in-core mode and allocates an entry in the file table for the open file. The file table entry contains a pointer to the mode of the open file and a field that indicates the byte offset in the file where the kernel expects the next read or write to begin. The kernel initializes the offset to 0 during the open call, meaning that the initial read or write starts at the beginning of a file by default. Alternatively, a process can open a file in write-append mode, in which case the kernel initializes the offset to the size of the file. The kernel allocates an entry in a private table in the process u area, called the user file descriptor table, and notes the index of this entry. The index is the file descriptor that is returned to the user. The entry in the user file table points to the entry in the global file table.


algorithm open


inputs: file name


type of open


file permissions (for creation type of open)


output: file descriptor


convert file name to mode (algorithm namei);


if (file does not exist or not permitted access)


return (error);


allocate file table entry for mode, initialize count, offset;


allocate user file descriptor entry, set pointer to file table entry; if (type of open specifies truncate file)


free all file blocks (algorithm free);


unlock (inode);


/* locked above in namei */


return (user file descriptor);


Figure 5.2. Algorithm for Opening a File


Suppose a process executes the following code, opening the file "fetc/passwd"


twice, once read-only and once write-only, and the file "local" once, for reading and writing.2


1. All system calls return the value — 1 if they fail. The return value will not be explicitly


mentioned when discussing the syntax of the system calls.


2. The definition of the open system call specifies three parameters (the third is used for the create


mode of open), but programmers usually use only the first two. The C compiler does not chock that the number of parameters is correct. System implementations typically pass the first two parameters and a third "garbage" parameter (whatever happens to be on the stack) to the kernel. The kernel





94


SYSTEM CALLS FOR THE FILE SYSTEM
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Figure 5.3. Data Structures after Open


fd 1 open("/etcipasswd", O_RDONLY);


fd2 open ("local", 0 RDWR);


fd3 open(Vetc/passwd", O_WRONLY);


Figure 5.3 shows the relationship between the mode table, file table, and user file descriptor data structures. Each open returns a file descriptor to the process, and the corresponding entry in the user file descriptor table points to a unique entry in does not check the third parameter unless the second parameter indicates that it must, aliowing programmers to encode only two parameters.
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Figure 5.4. Data Structures after Two Processes Open Files





96


SYS'TEM CALLS FOR THE FILE SYSTEM


the kernel file table even though one file ("/etc/passwd") is opened twice. The file table entries of all instances of an open file point to one entry in the in-core Mode table. The process can read or write the file "/etc/passwd" but only through file descriptors 3 and 5 in the figure. The kernel notes the capability to read or write the file in the file table entry allocated during the open call. Suppose a second process executes the following code.


fdl open (letc/passwd", O_RDONLY);


fd2 open ("private", O_RDONLY);


Figure 5.4 shows the relationship between the appropriate data structures while both processes (and no others) have the files open. Again, each open call results in allocation of a unique entry in the user file descriptor table and in the kernel file table, but the kernel contains at most one entry per file in the in-core mode table.


The user file descriptor table entry could conceivably contain the file offset for the position of the next 1/0 operation and point directly to the in-core mode entry for the file, eliminating the need for a separate kernel file table. The examples above show a one-to-one relationship between user file descriptor entries and kernel file table entries. Thompson notes, however, that he implemented the file table as a separate structure to allow sharing of the offset pointer between several user file descriptors (see page 1943 of [Thompson 78]). The dup and fork system calls, explained in Sections 5.13 and 7.1, manipulate the data structures to allow such sharing.


The first three user file descriptors (0, 1, and 2) are called the standard input, standard output, and standard error file descriptors. Processes on UNIX systems conventionally use the standard input descriptor to read input data, the standard output descriptor to write output data, and the standard error descriptor to write error data (messages). Nothing in the operating system assumes that these file descriptors are special. A group of users could adopt the convention that file descriptors 4, 6, and 11 are special file descriptors, but counting from 0 (in C) is much more natural. Adoption of the convention by all user programs makes it easy for them to communicate via pipes, as will be seen in Chapter 7. Normally, the control terminal (see Chapter 10) serves as standard input, standard output and standard error.


5.2 READ


The syntax of the read system eau is


number read(fd, buffer, count)


where fd is the file descriptor returned by open, buffer is the address of a data structure in the user process that will contain the read data on successful completion of the call, count is the number of bytes the user wants to read, and number is the number of bytes actually read. Figure 5.5 depicts the algorithm read for reading a regular file. The kernel gets the file table entry that corresponds to
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algorithm read


input: user file descriptor


address of buffer in user process


number of bytes to read


output: count of bytes copied into user space


get file table entry from user file descriptor;


check file accessibility;


set parameters in u area for user address, byte count, I/O to user;


get mode from file table;


lock mode;


set byte offset in u area from file table offset;


while (count not satisfied)


convert file offset to disk block (algorithm bmap);


calculate offset into block, number of bytes to read;


if (number of bytes to read is 0)


/* trying to read end of file */


break;


/* out of loop */


read block (algorithm breada if with read ahead, algorithm


bread otherwise);


copy data from system buffer to user address;


update u area fields for file byte offset, read count,


address to write into user space;


release buffer;


/* locked in bread 'V


unlock mode;


update file table offset for next read;


return (total number of bytes read);


IL


Figure 5.5. Algorithm for Reading a File


the user file descriptor, following the pointer in Figure 5.3. It now sets several I/O


parameters in the u area (Figure 5.6), eliminating the need to pass them as function parameters. Specifically, it sets the I/O mode to indicate that a read is being done, a flag to indicate that the I/O will go to user address space, a count field to indicate the number of bytes to read, the target address of the user data buffer, and finally, an offset field (from the file table) to indicate the byte offset into the file where the I/O should begin. After the kernel sets the I/O parameters in the u area, it follows the pointer from the file table entry to the Mode, locking the mode before it reads the file.


The algorithm now goes into a loop until the read is satisfied. The kernel converts the file byte offset into a block number, using algorithm bmap, and it notes the byte offset in the block where the I/O should begin and how many bytes





98


SYSTEM CALLS FOR THE FILE SYSTEM


mode


indicates read or write


count


count of bytes to read or write


offset


byte offset in file


address target address to copy data, in user or kernel memory flag


indicates if address is in user or kernel memory


Figure 5.6. I/O Parameters Saved in U Area


in the block it should read. After reading the block into a buffer, possibly using block read ahead (algorithms bread and breada) as will be described, it copies the data from the block to the target address in the user process. It updates the I/0


parameters in the u area according to the number of bytes it read, incrementing the file byte offset and the address in the user process where the next data should be delivered, and decrementing the count of bytes it needs to read to satisfy the user read request. 1f the user request is not satisfied, the kernel repeats the entire cycle, converting the file byte offset to a block number, reading the block from disk to a system buffer, copying data from the buffer to the user process, releasing the buffer, and updating I/O parameters in the u area. The cycle completes either when the kernel completely satisfies the user request, when the file contains no more data, or if the kernel encounters an error in reading the data from disk or in copying the data to user space. The kernel updates the offset in the file table according to the number of bytes it actually read; consequently, successive reads of a file deliver the file data in sequence. The keek system call (Section 5.6) adjusts the value of the file table offset and changes the order in which a process reads or writes a file.


#include <fcritl.h>


main()


int fd;


char


bigbuf[1024];


fd open(letc/passwd", O_RDONLY);


read(fd, Iiibuf, 20);


read(fd, bigbuf, 1024);


read (fd, lilbuf, 20);


Figure 5.7. Sample Program for Reading a File


Consider the program in Figure 5.7. The open returns a file descriptor that the user assigns to the variable fd and uses in the subsequent read calls. In the read system call, the kernel verifies that the file descriptor parameter is legal, and that
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the process had previously opened the file for reading. It stores the values lilbuf, 20, and 0 in the u area, corresponding to the address of the user buffer, the byte count, and the starting byte offset in the file. It calculates that byte offset 0 is in the 0th block of the file and retrieves the entry for the 0th block in the mode.


Assuming such a block exists, the kernel reads the entire block of 1024 bytes into a buffer but copies only 20 bytes to the user address Iiibuf. It increments the u area byte offset to 20 and decrements the count of data to read to 0. Since the read has been satisfied, the kernel resets the file table offset to 20, so that subsequent reads on the file descriptor will begin at byte 20 in the file, and the system call returns the number of bytes actually read, 20.


For the second read call, the kernel again verifies that the descriptor is legal and that the process had opened the file for reading, because it has no way of knowing that the user read request is for the same file that was determined to be legal during the last read, It stores in the u area the user address bigbuf, the number of bytes the process wants to read, 1024, and the starting offset in the file, 20, taken from the file table, It converts the file byte offset to the correct disk block, as above, and reads the block. If the time between read calls is small, chances are good that the block will be in the buffer cache. But the kernel cannot satisfy the read request entirely from the buffer, because only 1004 out of the 1024


bytes for this request are in the buffer. So it copies the last 1004 bytes from the buffer into the user data structure bigbuf and updates the parameters in the u area to indicate that the next iteration of the read loop starts at byte 1024 in the file, that the data should be copied to byte position 1004 in bigbuf, and that the number of bytes to to satisfy the read request is 20.


The kernel now cycles to the beginning of the loop in the read algorithm. It converts byte offset 1024 to logical block offset 1, looks up the second direct block number in the mode, and finds the correct disk block to read. It reads the block from the buffer cache, reading the block from disk if it is not in the cache. Finally, it copies 20 bytes from the buffer to the correct address in the user process. Before leaving the system call, the kernel sets the offset field in the file table entry to 1044, the byte offset that should be accessed next. For the last read call in the example, the kernel proceeds as in the first read call, except that it starts reading at byte 1044 in the file, finding that value in the offset field in the file table entry for the descriptor.


The example shows how advantageous it is for I/O requests to start on file system block boundaries and to be multiples of the block size. Doing so allows the kernel to avoid an extra iteration in the read algorithm loop, with the consequent expense of accessing the Mode to find the correct block number for the data and competing with other processes for access to the buffer pool. The standard I/O


library was written to hide knowledge of the kernel buffer size from users; its use avoids the performance penalties inherent in processes that nibble at the file system inefficiently (see exercise 5.4).


As the kernel goes through the read loop, it determines whether a file is subject to read-ahead: if a process reads two blocks sequentially, the kernel assumes that
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all subsequent reads will be sequential until proven otherwise. During each iteration through the loop, the kernel saves the next logical block number in the in-core mode and, during the next iteration, compares the current logical block number to the value previously saved. If they are equal, the kernel calculates the physical block number for read-ahead and saves its value in the u area for use in the breada algorithm. Of course, if a process does not read to the end of a block, the kernel does not invoke read-ahead for the next block.


Recall from Figure 4.9 that it is possible for some block numbers in an mode or in indirect blocks to have the value 0, even though later blocks have nonzero value.


1f a process attempts to read data from such a block, the kernel satisfies the request by allocating an arbitrary buffer in the read loop, clearing its contents to 0, and copying it to the user address. This case is different from the case where a process encounters the end of a file, meaning that no data was ever written to any location beyond the current point. When encountering end of file, the kernel returns no data to the process (see exercise 5.1).


When a process invokes the read system call, the kernel locks the mode for the duration of the call. Afterwards, it could go to sleep reading a buffer associated with data or with indirect blocks of the mode. If another process were allowed to change the file while the first process was sleeping, read could return inconsistent data. For example, a process may read several blocks of a file; if it slept while reading the first block and a second process were to write the other blocks, the returned data would contain a mixture of old and new data. Hence, the mode is left locked for the duration of the read eau, affording the process a consistent view of the file as it existed at the start of the call.


The kernel can preempt a reading process between system calls in user mode and schedule other processes to run. Since the mode is unlocked at the end of a system call, nothing prevents other processes from accessing the file and changing its contents. k would be unfair for the system to keep an mode locked from the time a process opened the file until it closed the file, because one process could keep a file open and thus prevent other processes from ever accessing it. 1f the file was "ietcfpasswd", used by the login process to check a user's password, then one malicious (or, perhaps, just errant) user could prevent all other users from logging in. To avoid such problems, the kernel unlocks the mode at the end of each system call that uses it. If another process changes the file between the two read system calls by the first process, the first process may read unexpected data, but the kernel data structures are consistent.


For example, suppose the kernel executes the two processes in Figure 5.8


concurrently. Assuming both processes complete their open calls before either one starts its read or write calls, the kernel could execute the read and write calls in any of six sequences: readl, read2, writel, write2, or readl, write], read2, write2, or readl, writel, write2, read2, and so on. The data that process A reads depends on the order that the system executes the system calls of the two processes; the system does not guarantee that the data in the file remains the same after opening the file. Use of the file and record locking feature (Section 5.4) allows a process to
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#inctude <fenti.h>


1* process A */


main()


int fd;


char but1512);


Id open(Vetc/casswd", ORDONLY);


read(fd, buf, sizeof(buf));


/* readl */


read(fd, buf, sizeof(buf));


I* read2 */


/* process B */


main()


Figure 5.8. A Reader and a Writer Process


guarantee file consistency while it has a file open.


Finally, the program in Figure 5.9 shows how a process can open a file more than once and read it via different file descriptors. The kernel manipulates the file table offsets associated with the two file descriptors independently, and hence, the arrays bufl and buf2 should be identical when the process completes, assuming no other process writes "ietcipasswd" in the meantime.


5.3 WRITE


The syntax for the write system call is


number write(fd, buffer, count);


where the meaning of the variables fd, buffer, count, and number are the same as they are for the read system call. The algorithm for writing a regular file is similar to that for reading a regular file. However, if the file does not contain a block that corresponds to the byte offset to be written, the kernel allocates a new block using algorithm alloc and assigns the block number to the correct position in the mode's table of contents. If the byte offset is that of an indirect block, the kernel may
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#include <fenti.h>


main()


int fdl, fd2;


char bufii512], buf2[512];


fdl open("ietc/passwd", O_RDONLY);


fd2 open( tietc/passwd", 03DONLY);


read ad 1 , bufl, sizeof (buf I ));


read(fd2, buf2, sizeof(buf2));


Figure 5.9. Reading a File via Two File Descriptors


have to allocate several blocks for use as indirect blocks and data blocks. The m ode is locked for the duration of the write, because the kernel may change the m ode when allocating new blocks; allowing other processes access to the file could corrupt the mode if several processes allocate blocks simultaneously for the same byte offsets. When the write is complete, the kernel updates the file size entry in the mode if the file has grown larger.


For example, suppose a process writes byte number 10,240 to a file, the highest-numbered byte yet written to the file. When accessing the byte in the file using algorithm bmap, the kernel will find not only that the file does not contain a block for that byte but also that it does not contain the necessary indirect block. It assigns a disk block for the indirect block and writes the block number in the in-core mode. Then it assigns a disk block for the data block and writes its block number into the first position in the newly assigned indirect block.


The kernel goes through an internal loop, as in the read algorithm, writing one block to disk during each iteration. During each iteration, it determines whether it will write the entire block or only part of it. If it writes only part of a block, it must first read the block from disk so as not to overwrite the parts that will remain the same, but if it writes the whole block, it need not read the block, since it will overwrite its previous contents anyway. The write proceeds block by block, but the kernel uses a delayed write (Section 3.4) to write the data to disk, caching it in case another process should read or write it soon and avoiding extra disk operations.


Delayed write is probably most effective for pipes, because another process is reading the pipe and removing its data (Section 5.12). But even for regular files, delayed write is effective if the file is created temporarily and will be read soon.


For example, many programs, such as editors and mail, create temporary files in the directory "Amp" and quickly remove them. Use of delayed write can reduce





5.3


WRITE


103


the number of disk writes for temporary files.


5.4 FILE AND RECORD LOCKING


The original UNIX system developed by Thompson and Ritchie did not have an internal mechanism by which a process could insure exclusive access to a file. A locking mechanism was considered unnecessary because, as Ritchie notes, "we are not faced with large, single-file databases maintained by independent processes"


(see [Ritchie 811). To make the UNIX system more attractive to commercial users with database applications, System V now contains file and record locking mechanisms. File locking is the capability to prevent other processes from reading or writing any part of an entire file, and record locking is the capability to prevent other processes from reading or writing particular records (parts of a file between particular byte °nets). Exercise 5.9 explores the implementation of file and record locking.


5.5 ADJUSTING THE POSITION OF FILE I/O LSEEK


The ordinary use of read and write system calls provides sequential access to a file, but processes can use the keek system call to position the I/O and allow random access to a file. The syntax for the system call is


position


Iseek(fd, offset, reference);


where fd is the file descriptor identifying the file, offset is a byte offset, and reference indicates whether offset should be considered from the beginning of the file, from the current position of the read/write offset, or from the end of the file.


The return value, position, is the byte offset where the next read or write will start.


In the program in Figure 5.10, for example, a process opens a file, reads a byte, then invokes lseek to advance the file table offset value by 1023 (with reference 1), and loops. Thus, the program reads every 1024th byte of the file. If the value of reference is 0, the kernel seeks from the beginning of the file, and if its value is 2, the kernel seeks beyond the end of the file. The lseek system call has nothing to do with the seek operation that positions a disk arm over a particular disk sector. To implement Iseek, the kernel simply adjusts the offset value in the file table; subsequent read or write system calls use the file table offset as their starting byte offset.


5.6 CLOSE


A process doses an open file when it no longer wants to access it. The syntax for the close system call is
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#include <fentl.h>


main(argc, argv)


int argc;


char *argv[];


int fd, skval;


char c;


if (argc


exit();


fd open(argv(11, O_RDONLY);


if (fd


—I)


exit();


while ((slcval


read(fd, &c, 1))


1)


printf('char %c\n", c);


skval


Iseek(fd, 1023L, 1);


printf( lnew seek val Tod\n", skval);


Figure 5.10. Program with Lseek System Call


close (fd) ;


where fd is the file descriptor for the open file. The kernel does the close operation by manipulating the file descriptor and the corresponding file table and mode table entries. If the reference count of the file table entry is greater than 1 because of dup or fork calls, then other user file descriptors reference the file table entry, as will be seen; the kernel decrements the count and the close completes. If the file table reference count is 1, the kernel frees the entry and releases the in-core mode originally allocated in the open system call (algorithm iput). If other processes still reference the mode, the kernel decrements the inode reference count but leaves it allocated; otherwise, the mode is free for reallocation because its reference count is 0. When the close system call completes, the user file descriptor table entry is empty. Attempts by the process to use that file descriptor result in an error until the file descriptor is reassigned as a result of another system call. When a process exits, the kernel examines its active user file descriptors and internally closes each one. Hence, no process can keep a file open after it terminates.


For example, Figure 5.11 shows the relevant table entries of Figure 5.4, after the second process closes its files. The entries for file descriptors 3 and 4 in the user file descriptor table are empty. The count fields of the file table entries are now 0, and the entries are empty. The mode reference count for the files


"fetcipasswd" and "private" are also decremented. The mode entry for "private"


is on the free list because its reference count is 0, but its entry is not empty. If
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Figure 5.11. Tables after Closing a File


another process accesses the file "private" while the Mode is stil on the free list, the kernel will reclaim the mode, as explained in Section 4.1.2.


5.7 FILE CREATION


The open system call gives a process access to an existing file, but the crew system call creates a new file in the system. The syntax for the erwt system call is fd ,•• creat(pathname, modes);
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where the variables pathname, modes, and fd mean the same as they do in the open system call. If no such file previously existed, the kernel creates a new file with the specified name and permission modes; if the file already existed, the kernel truncates the file (releases all existing data blocks and sets the file size to 0) subject to suitable file access permissions. 3 Figure 5.12 shows the algorithm for file creation.


algorithm creat


input: file name


permission settings


output: file descriptor


get Mode for file name (algorithm namei);


if (file already exists)


if (not permitted access)


release Mode (algorithm iput);


return (error);


else


/* file does not exist yet */


assign free mode from file system (algorithm ialloc);


create new directory entry in parent directory: include


new file name and newly assigned mode number;


allocate file table entry for mode, initialize count;


if (file did exist at time of create)


free all file blocks (algorithm free);


unlock (Mode);


return(user file descriptor);


Figure 5.12. Algorithm for Creating a File


The kernel parses the path name using algorithm name!, following the algorithm literally while parsing directory names. However, when it arrives at the last component of the path name, namely, the file name that it will create, namei 3. The open system call specifies two flags, O_CREAT (create) and QTRUNC (truncate): If a process specifies the 0 CREAT flag on an open and the file does not exist, the kernel will create the file. If the file already exists, it will not be truncated unless the O_TRUNC flag is also set.
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notes the byte offset of the first empty directory slot in the directory and saves the offset in the u area. If the kernel does not find the path name component in the directory, it will eventually write the name into the empty slot just found. 1f the directory has no empty slots, the kernel remembers the offset of the end of the directory and creates a new slot there. It also remembers the mode of the directory being searched in its u area and keeps the inode locked; the directory will become the parent directory of the new file. The kernel does not write the new file name into the directory yet, so that it has less to undo in event of later errors. It checks that the directory allows the process write permission: Because a process will write the directory as a result of the creat call, write permission for a directory means that processes are allowed to create files in the directory.


Assuming no file by the given name previously existed, the kernel assigns an m ode for the new file, using algorithm ialloc (Section 4.6). It then writes the new file name component and the mode number of the newly allocated Mode in the parent directory, at the byte offset saved in the u area. Afterwards, it releases the m ode of the parent directory, having held it from the time it searched the directory for the file name. The parent directory now contains the name of the new file and its m ode number. The kernel writes the newly allocated mode to disk (algorithm bwrite) before it writes the directory with the new name to disk. 1f the system crashes between the write operations for the mode and the directory, there will be an allocated Mode that is not referenced by any path name in the system but the system will function normally. If, on the other hand, the directory were written before the newly allocated Mode and the system crashed in the middle, the file system would contain a path name that referred to a bad mode. (See Section 5.16.1 for more detail.)


1f the given file already existed before the creat, the kernel finds its inode while searching for the file name. The old file must allow write permission for a process to create a "new" file by the same name, because the kernel changes the file contents during the crew cal': It truncates the file, freeing all its data blocks using algorithm free, so that the file looks like a newly created file. However, the owner and permission modes of the file are the same as they were for the original file: The kernel does not reassign ownership to the owner of the process, and it ignores the permission modes specified by the process. Finally, the kernel does not check that the parent directory of the existing file allows write permission, because it will not change the directory contents.


The creat system call proceeds accor-ding to the same algorithm as the open system eau. The kernel allocates an entry in the file table for the created file so that the process can write the file, allocates an entry in the user file descriptor table, and eventually returns the index to the latter entry as the user file descriptor.


5.8 CREATION OF SPECIAL FILES


The system call mknod creates special files in the system, including named pipes, device files, and directories. It is similar to creat in that the kernel allocates an
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Mode for the file. The syntax of the mknod system call is mknod(pathname, type and permissions, dev)


where pathname is the name of the node to be created, type and permissions give the node type (directory, for example) and access permissions for the new file to be created, and dev specifies the major and minor device numbers for block and character special files (Chapter ID). Figure 5.13 depicts the algorithm mknod for making a new node.


algorithm make new node


inputs: node (file name)


file type


permissions


major, minor device number (for block, character special files)


output: none


if (new node not named pipe and user not super user)


return (error);


get mode of parent of new node (algorithm namei);


if (new node already exists)


release parent Mode (algorithm iput);


return (error);


assign free Mode from file system for new node (algorithm ialloc);


create new directory entry in parent directory: include new node


name and newly assigned mode number;


release parent directory mode (algorithm iput);


if (new node is block or character special file)


write major, minor numbers into mode structure;


release new node Mode (algorithm iput);


Figure 5.13. Algorithm for Making New Node


The kernel searches the file system for the file name it is about to create. If the file does not yet exist, the kernel assigns a new mode on the disk and writes the new file name and mode number into the parent directory. It sets the file type field in the mode to indicate that the file type is a pipe, directory or special file. Finally, if the file is a character special or block special device file, it writes the major and minor device numbers into the mode. If the mknod call is creating a directory node, the node will exist after the system call completes but its contents will be in the wrong format (there are no directory entries for "." and ".."). Exercise 5.33


considers the other steps needed to put a directory into the correct format.
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algorithrn change directory


input: new directory name


output: none


get Mode for new directory name (algorithm namei);


if anode not that of directory or process not permitted access to file) release Mode (algorithm iput);


return (error);


unlock Mode;


release "old" current directory mode (algorithm iput);


place new Mode into current directory slot in u area;


Figure 5.14. Algorithm for Changing Current Directory


5.9 CHANGE DIRECTORY AND CHANGE ROOT


When the system is first booted, process 0 makes the file system root its current directory during initialization. It executes the algorithm iget on the root Mode, saves ft in the u area as its current directory, and releases the Mode lock. When a new process is created via the fork system call, the new prét,cess inherits the current directory of the old process in its u area, and the kernél increments the Mode reference count accordingly.


The algorithm chdir (Figure 5.14) changes the current directory of a process.


The syntax for the chdir system call is


chdir (pathname);


where pathname is the directory that becomes the new current directory of the process. The kernel parses the name of the target directory using algorithm namei and checks that the target file is a directory and that the process owner has access permission to the directory. It releases the lock to the new Mode but keeps the m ode allocated and its reference count incremented, releases the Mode of the old current directory (algorithm Out) stored in the u area, and stores the new Mode in the u area. After a process changes its current directory, algorithm namei uses the m ode for the start directory to search for all path names that do not begin from root. After execution of the chdir system call, the inode reference count of the new directory is at least one, and the Mode reference count of the previous current directory may be 0. In this respect, chdir is similar to the open system eau, because both system calls access a file and leave its Mode allocated. The Mode allocated during the chdir system call is released only when the process executes another chdir can or when it exits.
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A process usually uses the global file system root for all path names starting with "/". The kernel contains a global variable that points to the mode of the global root, allocated by (get when the system is booted. Processes can change their notion of the file system root via the chroot system call This is useful if a user wants to simulate the usual file system hierarchy and run processes there. Its syntax is


chroot (pathname) ;


where pathname  is the directory that the kernel subsequently treats as the process's root directory. When executing the chroot system call, the kernel follows the same algorithm as for changing the current directory. It stores the new root mode in the process u area, unlocking the Mode on completion of the system call. However, since the default root for the kernel is stored in a global variable, it does not release the mode of the old root automatically, but only if it or an ancestor process had executed the chroot system call. The new mode is now the logical root of the file system for the process (and all its children), meaning that all path name searches in algorithm namei that start from root ("/") start from this Mode, and that all attempts to use ".." over the root will leave the working directory of the process in the new root. A process bestows new child processes with its changed root, just as it bestows them with its current directory.


5.10 CHANGE OWNER AND CHANGE MODE


Changing the owner or mode (access permissions) of a file are operations on the Mode, not on the file per se. The syntax of the calls is


chown(pathname, owner, group)


ch mod (path name, mode)


To change the owner of a file, the kernel converts the file name to an mode using algorithm namei. The process owner must be superuser or match that of the file owner (a process cannot give away something that does not belong to it). The kernel then assigns the new owner and group to the file, clears the set user and set group flags (see Section 7.5), and releases the mode via algorithm (put. After the change of ownership, the old owner loses "owner" access rights to the file. To change the mode of a file, the kernel follows a similar procedure, changing the mode flags in the mode instead of the owner numbers.


5.11 STAT AND FSTAT


The system calls stat and fstat allow processes to query the status of files, returning information such as the file type, file owner, access permissions, file size, number of links, m ode number, and file access times. The syntax for the system calls is





5.11


Stat and Fstat


111


stat(pathname, statbuffer);


fstat (fd, statbuffer);


where pathname is a file name, fd is a file descriptor returned by a previous open call, and statbuffer is the address of a data structure in the user process that will contain the status information of the file on completion of the call. The system calls simply write the fields of the mode into statbuffer. The program in Figure 5.33 will illustrate the use of stat and fstat.


Calls pipe


Cannot share pipe


Proc A


Proc C


Proc D


Proc E


-


Share pipe


Figure 5.15. Process Tree and Sharing Pipes


5.12 PIPES


Pipes allow transfer of data between processes in a first-in-first-out manner (FIFO), and they also allow synchronization of process execution. Their implementation allows processes to communicate even though they do not know what processes are on the other end of the pipe. The traditional implementation of pipes uses the file system for data storage. There are two kinds of pipes: named pipes and, for lack of a better term, unnamed pipes, which are identical except for the way that a process initially accesses them. Processes use the open system call for named pipes, but the pipe system call to create an unnamed pipe. Afterwards, processes use the regular system calls for files, such as read, write, and close when manipulating pipes. Only related processes, descendants of a process that issued the pipe call, can share access to unnamed pipes. In Figure 5.15 for example, if process B


creates a pipe and then spawns processes D and E, the three processes share access to the pipe, but processes A and C do not. However, all processes can access a named pipe regardless of their relationship, subject to the usual file permissions.
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Because unnamed pipes are more common, they will be presented first.


5.12.1 The Pipe System Cali


The syntax for creation of a pipe is


pipe (fdptr);


where fdptr is the pointer to an integer array that will contain the two file descriptors for reading and writing the pipe. Because the kernel implements pipes in the file system and because a pipe does not exist before its use, the kernel must assign an mode for it on creation. It also allocates a pair of user file descriptors and corresponding file table entries for the pipe: one file descriptor for reading from the pipe and the other for writing to the pipe. It uses the file table so that the interface for the read, write and other system calls is consistent with the interface for regular files. As a result, processes do not have to know whether they are reading or writing a regular file or a pipe.


algorithm pipe


input: none


output; read file descriptor


write file descriptor


assign new mode from pipe device (algorithm ialloc);


allocate file table entry for reading, another for writing;


initialize file table entries to point to new mode;


allocate user file descriptor for reading, another for writing,


initialize to point to respective file talie entries;


set m ode reference count to 2;


initialize count of mode readers, writers to 1;


Figure 5.16. Algorithm for Creation of (Unnamed) Pipes


Figure 5.16 shows the algorithm for creating unnamed pipes. The kernel assigns an mode for a pipe from a file system designated the pipe device using algorithm ia/loc. A pipe device is just a file system from which the kernel can assign inodes and data blocks for pipes. System administrators specify a pipe device during system configuration, and it may be identical to another file system.


While a pipe is active, the kernel cannot reassign the pipe mode and data blocks to another file.


The kernel then allocates two file table entries for the read and write descriptors, respectively, and updates the bookkeeping information in the in-core m ode. Each file table entry records how many instances of the pipe are open for reading or writing, initially 1 for each file table entry, and the mode reference
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count indicates how many times the pipe was "opened," initially two — one for each file table entry. Finally, the mode records byte offsets in the pipe where the next read or write of the pipe will start. Maintaining the byte offsets in the mode allows convenient FIFO access to the pipe data and differs from regular files where the offset is maintained in the file table. Processes cannot adjust them via the lseek


system call and so random access I/O to a pipe is not possible.


5.12.2 Opening a Named Pipe


A named pipe is a file whose semantics are the same as those of an unnamed pipe, except that it has a directory entry and is accessed by a path name. Processes open named pipes in the same way that they open regular files and, hence, processes that are not closely related can communicate. Named pipes permanently exist in the file system hierarchy (subject to their removal by the unlink system call), but unnamed pipes are transient: When all processes finish using the pipe, the kernel reclaims its i node.


The algorithm for opening a named pipe is identical to the algorithm for opening a regular file. However, before completing the system call, the kernel increments the read or write counts in the mode, indicating the number of processes that have the named pipe open for reading or writing. A process that opens the named pipe for reading will sleep until another process opens the named pipe for writing, and vice versa. It makes no sense for a pipe to be open for reading if there is no hope for it to receive data; the same is true for writing. Depending on whether the process opens  the named pipe for reading or writing, the kernel awakens other processes that were asleep, waiting for a writer or reader process (respectively) on the named pipe.


If a process opens a named pipe for reading and a writing process exists, the open call completes. Or if a process opens a named pipe with the no delay option, the open returns immediately, even if there are no writing processes. But if neither condition is true, the process sleeps until a writer process opens the pipe. Similar rules hold for a process that opens a pipe for writing.


5.12.3 Reading and Writing Pipes


A pipe should be viewed as if processes write into one end of the pipe and read from the other end. As mentioned above, processes access data from a pipe in FIFO manner, meaning that the order that data is written into a pipe is the order that it is read from the pipe. The number of processes reading  from a pipe do not necessarily equal the number of processes writing the pipe; if the number of readers or writers is greater than 1, they must coordinate use of the pipe with other mechanisms. The kernel accesses the data for a pipe exactly as it accesses data for a regular file: It stores data on the pipe device and assigns blocks to the pipe as needed during write calls. The difference between storage allocation for a pipe and
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Figure 5.17. Logica! View of Reading and Writing a Pipe


a reguiar file is that a pipe uses only the direct blocks of the mode for greater efficiency, although this places a limit on how much data a pipe can hold at a time.


The kernel manipulates the direct blocks of the mode as a circular queue, maintaining read and write pointers internally to preserve the FIFO order (Figure 5. 1 7) .


Consider four cases for reading and writing pipes: writing a pipe that has room for the data being written, reading from a pipe that contains enough data to satisfy the read, reading from a pipe that does not contain enough data to satisfy the read, and finally, writing a pipe that does not have room for the data being written.


Consider first the case that a process is writing a pipe and assume that the pipe has room for the data being written: The sum of the number of bytes being written and the number of bytes already in the pipe is fess than or equal to the pipe's capacity. The kernel follows the algorithm for writing a regular file, except that it increments the pipe size automatically after every write, since by definition the amount of data in the pipe grows with every write. This differs from the growth of a regular file where the process increments the file size only when it writes data beyond the current end of file. 1f the next byte offset in the pipe were to require use of an indirect block, the kernel adjusts the file offset value in the u area to point to the beginning of the pipe (byte offset 0). The kernel never overwrites data in the pipe; it can reset the byte offset to 0 because it has already determined that the data will not overflow the pipe's capacity. When the writer process bas written all its data into the pipe, the kernel updates the pipe's (mode) write pointer so that the next process to write the pipe will proceed from where the last write stopped.


The kernel then awakens all other processes that fell asleep waiting to read data from the pipe.


When a process reads a pipe, it checks if the pipe is empty or not. 1f the pipe contains data, the kernel reads the data from the pipe as if the pipe were a regular file, following the regular algorithm for read. However, its initial offset is the pipe
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read pointer stored in the Mode, indicating the extent of the previous read. After reading each block, the kernel decrements the size of the pipe according to the number of bytes it read, and it adjusts the u area offset value to wrap around to the beginning of the pipe, if necessary. When the read system call completes, the kernel awakens all sleeping writer processes and saves the current read offset in the m ode (not in the file table entry).


If a process attempts to read more data than is in the pipe, the read will complete successfully after returning all data currently in the pipe, even though it does not satisfy the user count. If the pipe is empty, the process will typically sleep until another process writes data into the pipe, at which time all sleeping processes that were waiting for data wake up and race to read the pipe. If, however, a process opens a named pipe with the no delay option, it will return immediately from a read if the pipe contains no data. The semantics of reading and writing pipes are similar to the semantics of reading and writing terminal devices (Chapter 10), allowing programs to ignore the type of file they are dealing with.


If a process writes a pipe and the pipe cannot hold all the data, the kernel marks the mode and goes to sleep waiting for data to drain from the pipe. When another process subsequently reads from the pipe, the kernel will notice that processes are asleep waiting for data to drain from the pipe, and it will awaken them, as explained above. The exception to this statement is when a process writes an amount of data greater than the pipe capacity (that is, the amount of data that can be stored in the Mode direct blocks); here, the kernel writes as much data as possible to the pipe and puts the process to sleep until more room becomes y.


available. Thus, it is possible that written data will not be contiguous in the pipe if other processes write their data to the pipe before this process resumes its write.


1.


Analyzing the implementation of pipes, the process interface is consistent with


:n


that of regular files, but the implementation differs because the kernel stores the read and write offsets in the mode instead of in the file table. The kernel must it


store the offsets in the mode for named pipes so that processes can share their he


values: They cannot share values stored in file table entries because a process gets a new file table entry for each


of


open call. However, the sharing of read and write


,ta


offsets in the mode predates the implementation of named pipes. Processes with LTC


access to unnamed pipes share access to the pipe through common file table entries, to


so they could conceivably store the read and write offsets in the file table entry, as ita


is done for regular files. This was not done, because the low-level routines in the at


kernel no longer have access to the file table entry: The code is simpler because the processes share offsets stored in the Mode.


at


a


5.12.4 Closing Pipes


When closing a pipe, a process follows the same procedure it would follow for closing a regular file, except that the kernel does special processing before releasing the pipe's Mode. The kernel decrements the number of pipe readers or writers, according to the type of the file descriptor. If the count of writer processes drops to
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0 and there are processes asleep waiting to read data from the pipe, the kernel awakens them, and they return from their read calls without reading any data. If the count of reader processes drops to 0 and there are processes asleep waiting to write data to the pipe, the kernel awakens them and sends them a signa' (Chapter 7) to ' indicate an error condition. In both cases, it makes no sense to allow the processes to continue sleeping when there is no hope that the state of the pipe will ever change. For example, if a process is waiting to read an unnamed pipe and there are no more writer processes, there win never be a writer process. Although it is possible to get new reader or writer processes for named pipes, the kernel treats them consistently with unnamed pipes. 1f no reader or writer processes access the pipe, the kernel frees all its data blocks and adjusts the mode to indicate that the pipe is empty. When it releases the mode of an ordinary pipe, it frees the disk copy for reassignment.


char string()


"hello";


main°


char buf110241;


char s cpl, *cp2;


int fds(21;


cpi


string;


cp2 buf;


while (*epl)


scp2++ *cp1++;


pipe(fds);


for (;;)


write (fds(1), buf, 6);


read(fds(0), buf, 6);


Figure 5.18. Reading and Writing a Pipe


5.12.5 Examples


The program in Figure 5.18 illustrates an artificial use of pipes. The process creates a pipe and goes int° an infinite loop, writing the string "hello" to the pipe and reading it from the pipe. The kernel does not know nor does it care that the process that writes the pipe is the same process that reads the pipe.


A process executing the program in Figure 5.19 creates a named pipe node called "fifo". If invoked with a second (dummy) argument, it continually writes
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#include <fentl.h>


char stringii


"hello";


main(argc, argv)


int argc;


char *are[];


int fd;


char buf[2561;


/* create named pipe with read/write permission for all users 'V


mknod("fifo", 010777, 0);


if (argc


2)


fd open("fifo", O_WRONLY);


else


fd open("fifo", O_RDONLY);


for (;;)


if (argc


2)


write(fd, string, 6);


else


read(fd, buf, 6);


Figure 5.19. Reading and Writing a Named Pipe


the string "hello" into the pipe; if invoked without a second argument, it reads the named pipe. The two processes are invocations of the identical program and have secretly agreed to communicate through the named pipe "fifo", but they need not be related. Other users could execute the program and participate in (or interfere with) the conversation.


5.13 DUP


The dup system call copies a file descriptor into the first free slot of the user file descriptor table, returning the new file descriptor to the user. It works for all file types. The syntax of the system call is


newfd dup(fd);


where fd is the file descriptor being duped and newfd is the new file descriptor that references the file. Because dup duplicates the file descriptor, it increments the count of the corresponding file table entry, which now has one more file descriptor entry that points to it. For example, examination of the data structures depicted in Figure 5.20 indicates that the process did the following sequence of system calls: It opened the file "ietc/passwd" (file descriptor 3), then opened the file "local" (file descriptor 4), opened the file letcipasswd" again (file descriptor 5), and finally,
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user file


descriptor table


file table


Mode table
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Figure 5.20. Data Structures after Dup


duped file descriptor 3, returning file descriptor 6.


Dup is perhaps an inelegant system call, because it assumes that the user knows that the system will return the lowest-numbered free entry in the user file descriptor table. However, it serves an important purpose in building sophisticated programs from simpler, building-block programs, as exemplified in the construction of shell pipelines (Chapter 7).


Consider the program in Figure 5.21. The variable t contains the file descriptor that the system returns as a result of opening the file "etcfpasswd," and the variable j contains the file descriptor that the system returns as a result of duping the file descriptor i. In the u area of the process, the two user file descriptor entries represented by the user variables i and j point to one file table entry and therefore use the same file offset. The first two reads in the process thus read the data in sequence, and the two buffers, bult and bu.f2, do not contain the same data.
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#include <fcntl.h>


main()


int i, j;


char buflf5121, buf2[512];


open("/etcipasswd", O_RDONLY);


j


dup(i);


read(i, buf1, sizeof(buf1));


read(j, buf2, sizeof(buf2));


close(i);


read(j, buf2, sizeof(buf2));


Figure 5.21. C Program Illustrating Dup


This differs from the case where a process opens the same file twice and reads the same data twice (Section 5.2). A process can close either file descriptor if it wants, but I/O continues normally on the other file descriptor, as illustrated in the example. In particular, a process can close its standard output file descriptor (file descriptor 1), dup another file descriptor so that it becomes file descriptor 1, then treat the file as its standard output. Chapter 7 presents a more realistic example of the use of pipe and dup when it describes the implementation of the shell.


5.14 MOUNTING AND UNMOUNTING FILE SYSTEMS


A physical disk unit consists of several logical sections, partitioned by the disk driver, and each section has a device file name. Processes can access data in a section by opening the appropriate device file name and then reading and writing the "file," treating it as a sequence of disk blocks. Chapter 10 gives details on this interface. A section of a disk may contain a logical file system, consisting of a boot block, super block, Mode list, and data blocks, as described in Chapter 2. The


mount  system call connects the file system in a specified section of a disk to the existing file system hierarchy, and the umount  system call disconnects a file system from the hierarchy. The mount system call thus allows users to access data in a disk section as a file system instead of a sequence of disk blocks.


The syntax for the mount  system call is


mount(special pathname, directory pathname, options);


where special pathname  is the name of the device special file of the disk section containing the file system to be mounted, directory pathname is the directory in the existing hierarchy where the file system will be mounted (called the mount point), and options indicate whether the file system should be mounted "read-only"
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Figure 5.22. File System Tree Before and After Mount


(system calls such as write and creat that write the file system will fail). For example, if a process issues the system call


mount ("idevidskl", "/usr", 0);


the kernel attaches the file system contained in the portion of the disk called


"idev/dskl" to directory "itisr" in the existing file system tree (see Figure 5.22).


The file "ftlev/dskl" is a block special file, meaning that it is the name of a block device, typically a portion of a disk. The kernel assumes that the indicated portion of the disk contains a file system with a super block, mode list, and root mode.


After completion of the mount system call, the root of the mounted file system is accessed by the name "/usr". Processes can access files on the mounted file system and ignore the fact that it is detachable. Only the link system cal' checks the file system of a file, because System V does not allow file links to span multiple file systems (see Section 5.15).


The kernel has a mount table with entries for every mounted file system. Each mount table entry contains


• a device number that identifies the mounted file system (this is the logica! file system number mentioned previously);


• a pointer to a buffer containing the file system super block;


• a pointer to the root Mode of the mounted file system ("1" of the "idev/dskl"


file system in Figure 5.22);


• a pointer to the mode of the directory that is the mount point ("usr" of the root file system in Figure 5.22).
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Association of the mount point mode and the root mode of the mounted file system, set up during the mount system call, allows the kernel to traverse the file system hierarchy gracefully, without special user knowledge.


algorithm mount


inputs: file name of block special file


directory name of mount point


options (read only)


output: none


if (not super user)


return (error)


get mode for block special file (algorithm namei);


make legality checks;


get mode for "mounted on" directory name (algorithm namei); if (not directory, or reference count > 1)


release modes (algorithm iput);


return(error);


find empty slot in mount table;


invoke block device driver open routine;


get free buffer from buffer cache;


read super block into free buffer;


initialize super block fields;


get root mode of mounted device (algorithm iget), save in mount table; mark mode of "mounted on" directory as mount point;


release special file mode (algorithm iput);


unlock mode of mount point directory;


Figure 5.23. Algorithm for Mounting a File System


Figure 5.23 depicts the algorithm for mounting a file system. The kernel only allows processes owned by a superuser to mount or umount file systems. Yielding permission for mount and mount to the entire user community would allow malicious (or not so malicious) users to wreak havoc on the file system. Superusers should wreak havoc only by accident.


The kernel finds the mode of the special file that represents the file system to be mounted, extracts the major and minor numbers that identify the appropriate disk section, and finds the Mode of the directory on which the file system will be mounted. The reference count of the directory mode must not be greater than 1 (it must be at least I — why?), because of potentially dangerous side effects (see exercise 5.27). The kernel then allocates a free slot in the mount table, marks the slot in use, and assigns the device number field in the mount table. The above
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assignments are done immediately because the calling process could go to sleep in the ensuing device open procedure or in reading the file system super block, and another process could attempt to mount a file system. By having marked the mount table entry in use, the kernel prevents two mounts from using the same entry. By noting the device number of the attempted mount, the kernel can prevent other processes from mounting the same file system again, because strange things could happen if a double mount were allowed (see exercise 5.26).


The kernel calls the open procedure for the block device containing the file system in the same way it invokes the procedure when opening the block device directly (Chapter 10). The device open procedure typically checks that the device is legal, sometimes initializing driver data structures and sending initialization commands to the hardware. The kernel then allocates a free buffer from the buffer pool (a variation of algorithm getbik) to hold the super block of the mounted file system and reads the super block using a variation of algorithm read. The kernel stores a pointer to the mode of the mounted-on directory of the original file tree to allow file path names containing ".." to traverse the mount point, as will be seen.


It finds the root mode of the mounted file system and stores a pointer to the mode in the mount table. To the user, the mounted-on directory and the root of the mounted file system are logically equivalent, and the kernel establishes their equivalence by their coexistence in the mount table entry. Processes can no longer access the mode of the mounted-on directory.


The kernel initializes fields in the file system super block, clearing the lock fields for the free block list and free Mode list and setting the number of free inodes in the super block to 0. The purpose of the initializations is to minimize the danger of file system corruption when mounting the file system after a system crash: Making the kernel think that there are no free inodes in the super block forces algorithm ialloc to search the disk for free inodes. Unfortunately, if the linked list of free disk blocks is corrupt, the kernel does not fix the list internally (see Section 5.17 for file system maintenance). lf the user mounts the file system read-only to disallow all write operations to the file system, the kernel sets a flag in the super block.


Finally, the kernel marks the mounted-on mode as a mount point, so other processes can later identify it. Figure 5.24 depicts the various data structures at the conclusion of the mount call.


5.14.1 Crossing Mount Points in File Path Names


Let us reconsider algorithms namei and iget for the cases where a path name crosses a mount point. The two cases for crossing a mount point are: crossing from the mounted-on file system to the mounted file system (in the direction from the global system root towards a leaf node) and crossing from the mounted file system to the mounted-on file system. The following sequence of shell commands illustrates the two cases.
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m ode Table


Mount Table


Mounted on mode •..


Buffer


Marked as mount point


Reference cnt 1


Super block


Mounted on mode


Root mode


Device mode


Not in use


Reference cnt 0


Root mode of


mounted file system


Reference cnt I


Figure 5.24. Data Structures after Mount


mount idevidsk I iusr


cd /usr/srchts


cd ../.. ..


The mount command invokes the mount system call after doing some consistency checks and mounts the file system in the disk section identified by "klev/dskl" onto the directory "iusr". The first ed (change directory) command causes the shell to execute the chdir system call, and the kernel parses the path name, crossing the mount point at "iusr". The second ed command results in the kernel parsing the path name and crossing the mount point at the third ".." in the path name.


For the case of crossing the mount point from the mounted-on file system to the mounted file system, consider the revised algorithm for iget in Figure 5.25, which is identical to that of Figure 4.3, except that it checks if the Mode is a mount point: If the Mode is marked "mounted-on," the kernel knows that it is a mount point. It finds the mount table entry whose mounted-on m ode is the one just accessed and notes the device number of the mounted file system. Using the device number and the mode number for root, which is common to all file systems, it then accesses the
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algorithm iget


input: file system mode number


output: locked mode


while (not done)


if (inode in mode cache)


if (m ode locked)


sleep (event blode becomes unlocked);


continue;


/* loop */


1


/* special processing for mount points----*/


if (m ode a mount point)


find mount table entry for mount point;


get new file system number from mount table;


use root mode number in search;


continue;


/* loop again */


if (m ode on mode free list)


remove from free list;


increment mode reference count;


return (mode);


/* mode not in mode cache *1


remove new mode from free list;


reset mode number and file system;


remove mode from old hash queue, place on new one;


read mode from disk (algorithm bread):


initialize mode (e.g. reference count to 1);


return mode;


Figure 5,25. Revised Algorithm for Accessing an mode


root mode of the mounted device and returns that mode. In the first change directory example above, the kernel first accesses the mode for "iusr" in the mounted-on file system, finds that the mode is marked "mounted-on," finds the root m ode of the mounted file system in the mount table, and accesses the root mode of the mounted file system.
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algorithm namei


1* convert path name to mode */


input: path name


output: locked Mode


if (path name starts from root)


working mode root mode (algorithm iget);


else


working Mode current directory mode (algorithm iget);


while (there is more path name)


read next path name component from input;


verify that mode is of directory, permissions;


if (Mode is of changed root and component is "..")


continue;


/* loop */


component search:


read mode (directory) (algorithms bmap, bread, brelse);


if (component matches a directory entry)


get Mode number for matched component;


if (found mode of root and working mode is root and


and component name is "..")


/* crossing mount point */


get mount table entry for working Mode;


release working mode (algorithm iput);


working mode — mounted on mode;


lock mounted on mode;


increment reference count of working mode;


go to component search (for "..");


release working mode (algorithm iput);


working Mode mode for new mode number (algorithm iget);


else


/* component not in directory */


return (no Mode);


return (working mode);


Figure 5.26. Revised Algorithm for Parsing a File Name


For the second case of crossing the mount point from the mounted file system to the mounted-on file system, consider the revised algorithm for namei  in Figure 5.26.


It is similar to that of Figure 4.11. However, after finding the Mode number for a path name component in a directory, the kernel checks if the mode number is the root mode of a file system. If it is, and if the mode of the current working Mode is
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also root, and the path name component is dot-dot (".."), the kernel identifies the m ode as a mount point. It finds the mount table entry whose device number equals the device number of the last found mode, gets the mode of the mounted-on directory, and continues its search for dot-dot ("..") using the mounted-on mode as the working mode. At the root of the file system, however, ".." is the root.


In the example above (cd "../../.."), assume the starting current directory of the process is "/usrisrciuts". When parsing the path name in namei, the starting working mode is the current directory. The kernel changes the working mode to that of "/usrisrc" as a result of parsing the first ".." in the path name. Then, it parses the second ".." in the path name, finds the root mode of the (previously) mounted file system, "usr", and makes it the working mode in namei. Finaliy, it parses the third ".." in the path name: It finds that the mode number for ".." is the root mode number, its working mode is the root mode, and ".." is the current path name component. The kernel finds the mount table entry for the "usr" mount point, releases the current working mode (the root of the "usr" file system), and allocates the mounted-on mode (the mode for directory "usr" in the root file system) as the new working mode. It then searches the directory structures in the mounted-on "lust" for ".." and finds the mode number for the root of the file system ("1"). The chdir system call then completes as usual; the calling process is oblivious to the fact that it crossed a mount point.


5.14.2 Unmoun mg a File Systern


The syntax for the umount system call is


umount (special filename) ;


where special filename indicates the file system to be unmounted. When unmounting a file system (Figure 5.27), the kernel accesses the mode of the device to be unmounted, retrieves the device number for the special file, releases the mode (algorithm iput), and finds the mount table entry whose device number equals that of the special file. Before the kernel actually unmounts a file system, it makes sure that no files on that file system are still in use by searching the mode table for all files whose device number equals that of the file system being unmounted. Active files have a positive reference count and include files that are the current directory of some process, files with shared text that are currently being executed (Chapter 7), and open files that have not been closed. If any files from the file system are active, the umount call fails: if it were to succeed, the active files would be inaccessible.


The buffer pool may stil' contain "delayed write" blocks that were not wntten to disk, so the kernel flushes them from the buffer pool. The kernel removes shared text entries that are in the region table but not operational (see Chapter 7 for detail), writes out all recently modified super blocks to disk, and updates the disk copy of all inodes that need updating. k would suffice for the kernel to update the disk blocks, super block, and inodes for the unmounting file system only, but for
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algorithm umount


input: special file name of file system to be unmounted


output: none


if (not super user)


return (error);


get mode of special file (algorithm namei);


extract major, minor number of device being unmounted;


get mount table entry, based on major, minor number.


for unmounting file system;


release Mode of special file (algorithm iput);


remove shared text entries from region table for files


belonging to file system; I* chap 7xxx */


update super block, modes, flush buffers;


if (files from file system still in use)


return (error);


get root mode of mounted file system from mount table;


lock mode;


release mode (algorithm iput); /* iget was in mount *I


invoke close routine for special device;


invalidate buffers in pool from unmounted file system;


get Mode of mount point from mount table;


Lock Mode;


clear flag marking it as mount point;


release Mode (algorithm iput);


/* iget in mount */


free buffer used for super block;


free mount table slot;


Figure 5.27. Algorithm for Unmounting a File System


historical reasons it does so for all file systems. The kernel then releases the root m ode of the mounted file system, held since its original access during the mount system call, and invokes the driver of the device that contains the file system to close the device. Afterwards, it goes through the buffers in the buffer cache and invalidates buffers for blocks on the now unmounted file system; there is no need to cache data in those blocks any longer. When invalidating the buffers, it moves the buffers to the beginning of the buffer free list, so that valid blocks remain in the buffer cache longer. It clears the "mounted-on" flag in the mounted-on mode set during the mount call and releases the mode. After marking the mount table entry free for general use, the umount call completes.
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Figure 5.28. Linked Fiks in File System Tree


5.15 LINK


The link system call links a file to a new name in the file system directory structure, creating a new directory entry for an existing mode. The syntax for the link system call is


link(source file name, target file name);


where wurm file name is the name of an existing file and target file name is the new (additional) name the file will have after completion of the link cal'. The file system contains a path name for each link the file has, and processes can access the file by any of the path names. The kernel does not know which name was the original file name, so no file name is treated specially. For example, after executing the system calls


link ("iusr/srciuts/sys", "/usr/include/sys");


link (lusr/include/realfile.h", "/usr/src/uts/sysitestfile.h"); the following three path names refer to the same file: "/usr/src/uts/sys/testfile.h",


"/usr/include/sys/testfile.h", and lusr/include/realfile" (see Figure 5.28).


The kernel allows only a superuser to link directories, simplifying the mling of programs that traverse the file system tree. 1f arbitrary users could link directories, programs designed to traverse the file hierarchy would have to worry about getting into an infinite loop if a user were to link a directory to a node name below it in the hierarchy, Super users are presumably more careful about making such links.


The capability to link directories had to be supported on early versions of the
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system, because the implementation of the mkdir command, which creates a new directory, relies on the capability to link directories. Inclusion of the mkdir systetn call eliminates the need to link directories.


algorithm link


input: existing file name


new file name


output: none


get Mode for existing file name (algorithm namei);


if (too many links on file or linking directory without super user permission) release Mode (algorithm iput);


return (error);


1


increment link count on Mode;


update disk copy of mode;


unlock mode;


get parent mode for directory to contain new file name (algorithm namei); if (new file name already exists or existing file, new file on


different file systems)


undo update done above;


return (error);


ry


create new directory entry in patent directory of new file name:


he


include new file name, mode number of existing file name;


release patent directory mode (algorithm iput);


release Mode of existing file (algorithm iput);


Figure 5.29. Algorithm for Linking Files


Figure 5.29 shows the algorithm for link. The kernel first locates the Mode for the source file using algorithm namei, increments its link count, updates the disk copy of the Mode (for consistency, as will be seen), and unlocks the Mode. It then searches for the target file; if the file is present, the link call (ais, and the kernel decrements the link count incremented earlier. Otherwise, it notes the location of an empty slot in the parent directory of the target file, writes the target file name and the source file inode number into that slot, and releases the Mode of the target file parent directory via algorithm iput. Since the target file did not originally exist, there is no other Mode to release. The•kernel concludes by releasing the source file Mode: Its link count is 1 greater than it was at the beginning of the eau, and another name in the file system allows access to it. The link count keeps count of the directory entries that refer to the file and is thus distinct from the Mode
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reference count. If no other processes access the file at the conclusion of the link call, the mode reference count of the file is 0, and the link count of the file is at least 2.


For example, when executing


link ("source", "diritarget");


the kernel locates the mode for file "source", increments its link count, remembers its m ode number, say 74, and unlocks the mode. It locates the mode of "dir", the parent directory of "target", finds an empty directory slot in "dir", and writes the file name "target" and the mode number 74 into the empty directory slot. Finally, it releases the mode for "source" via algorithm iput. If the link count of "source"


had been 1, it is now 2.


Two deadlock possibilities are worthy of note, both concerning the reason the process unlocks the source file mode after incrementing its link count. If the kernel did not unlock the mode, two processes could deadlock by executing the following system calls simultaneously,


process A:


link("a/b/c/d", "c/fig");


process B:


link("e/f", "a/b/c/d/ee");


Suppose process A finds the mode for file "a/b/c/d" at the same time that process B finds the mode for "e/f". The phrase at the same time means that the system arrives at a state where each process has allocated its mode. Figure 5.30 illustrates an execution scenario. When process A now attempts to find the mode for directory "elf", it would sleep awaiting the event that the mode for "1" becomes free. But when process B attempts to find the mode for directory "a/b/c/d", it would sleep awaiting the event that the mode for "d" becomes free. Process A would be holding a locked mode that process B wants, and process B would be holding a locked mode that process A wants. The kernel avoids this classic example of deadlock by releasing the source file's mode after incrementing its link count. Since the first resource (mode) is free when accessing the next resource, no deadlock can occur.


The last example showed how two processes could deadlock each other if the m ode lock were not released. A single process could also deadlock itself. If it executed


link ("a/b/c", "a/b/c/d");


it would allocate the mode for file "c" in the first part of the algorithm; if the kernel did not release the mode lock, it would deadlock when encountering the m ode "c" in searching for the file "d". If two processes, or even one process, could not continue executing because of deadlock, what would be the effect on the system? Since modes are finitely allocatable resources, receipt of a signal cannot awaken the process from its sleep (Chapter 7). Hence, the system could not break the deadlock without rebooting. If no other processes accessed the files over which the processes deadlock, no other processes in the system would be affected.
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Figure 5.30. Deadlock Scenario for Link
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However, any processes that accessed those files (or attempted to access other files via the locked directory) would deadlock. Thus, if the file were "Thin" or


"/usribin" (typical depositories for commands) or "Thinish" (the shell) the effect on the system would be disastrous.


5.16 UNLINK


The unlink system call removes a directory entry for a file. The syntax for the unlink call is


unlink(pathname);


where pathname identifies the name of the file to be unlinked from the directory hierarchy. If a process unlinks a given file, no file is accessible by that name until another directory entry with that name is created. In the following code fragment, for example,


unlink("myfile");


fd open("myfile", O_RDONLY);


the open call should fail, because the current directory no longer contains a file called myfile. If the file being unlinked is the last link of the file, the kernel eventually frees its data blocks. However, if the file had several links, it is still accessible by its other names.


Figure 5.31 gives the algorithm for unlinking a file. The kernel first uses a variation of algorithm namei to find the file that it must unlink, but instead of returning its mode, it returns the mode of the parent directory. It accesses the in-core mode of the file to be unlinked, using algorithm iget. (The special case for unlinking the file "." is covered in an exercise.) After checking error conditions and, for executable files, removing inactive shared text entries from the region table (Chapter 7), the kernel clears the file name from the parent directory: Writing a 0


for the value of the mode number suffices to clear the slot in the directory. The kernel then does a synchronous write of the directory to disk to ensure that the file is inaccessible by its old name, decrements the link count, and releases the in-core m odes of the parent directory and the unlinked file via algorithm ipui.


When releasing the in-core mode of the unlinked file in iput, if the reference count drops to 0, and if the link count is 0, the kernel reclaims the disk blocks occupied by the file. No file names refer to the mode any longer and the mode is not active. To reclaim the disk blocks, the kernel loops through the mode table of contents, freeing all direct blocks immediately (according to algorithm free). For the indirect blocks, it recursively frees all blocks that appear in the various levels of indirection, freeing the more direct blocks first. It zeroes out the block numbers in the mode table of contents and sets the file size in the mode to 0. It then clears the m ode file type field to indicate that the mode is free and frees the mode with algorithm ifree. It updates the disk since the disk copy of the mode still indicated that the mode was in use; the mode is now free for assignment to other files.
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algorithin unlink


input: file name


output: none


get parent Mode of file to be unlinked (algorithm namei);


/* if unlinking the current directory... */


if (last component of file name is ".")


increment mode reference count;


else


get mode of file to be unlinked (algorithm iget);


if (file is directory but user is not super user)


release inodes (algorithm iput);


return (error);


1


if (shared text file and link count currently 1)


remove from region table;


write parent directory: zero mode number of unlinked file;


release mode parent directory (algoritlun iput);


decrement file link munt;


release file blode (algorithm iput);


/* iput checks if link count is 0: if so,


* releases file blocks (algorithm free) and


* frees Mode (algorithm ifree);


al


Figure 5.31. Algorithm for Unlinking a File


5.16.1 File Systenrb Consistency


The kernel orders its writes to disk to minimize file system corruption in event of system failure. For instance, when it removes a file name from its parent directory, it writes the directory synchronously to the disk — before it destroys the contents of the file and frees the mode. If the system were to crash before the file contents were removed, damage to the file system would be minimal: There would be an m ode that would have a link count 1 greater than the number of directory entries that access it, but all other paths to the file would stil be legal. 1f the directory write were not synchronous, it would be possible for the directory entry on disk to point to a free (or reallocated!) mode after a system crash. Thus there would be more directory entries in the file system that refer to the mode than the Mode would have link counts. In particular, if the file name was that of the last link to the file, it would refer to an unallocated mode. System damage is clearly less severe and easier to correct in the first case (see Section 5.18).
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For example, suppose a file has two links with path names "a" and "b", and suppose a process unlinks "a". If the kernel orders the disk write operations, then it zeros the directory entry for "a" and writes it to disk. If the system crashes after the write to disk completes, file "b" has link count of 2, but file "a" does not exist because its old entry had been zeroed before the system crash. File "b" has an extra link count, but the system functions properly when rebooted.


Now suppose the kernel ordered the disk write operations in the reverse order and the system crashes: That is, it decrements the link count for the file "b" to 1, writes the Mode to disk, and crashes before it could zero the directory entry for file


"a". When the system is rebooted, entries for files "a" and "b" exist in their respective directories, but the link count for the file they reference is 1. If a process then unlinks file "a", the file link count drops to 0 even though file "b" still references the mode. If the kernel were later to reassign the mode as the result of a crew system call, the new file would have link count 1 but two path names that reference it. The system cannot rectify the situation except via maintenance programs (fsck, described in Section 5.18) that access the file system through the block or raw interface.


The kernel also frees Modes and disk blocks in a specific order to minimize corruption in event of system failure. When removing the contents of a file and clearing its mode, it is possible to free the blocks containing the file data first, or it is possible to free and write out the mode first. The result is usually identical for both cases, but it differs if the system crashes in the middle. Suppose the kernel first frees the disk blocks of a file and crashes. When the system is rebooted, the Mode still contains references to the old disk blocks, which may no longer contain data relevant to the file. The kernel would see an apparently good file, but a user accessing the file would notice corruption. It is also possible that other files were assigned those disk blocks. The effort to clean the file system with the fsek program would be great. However, if the system first writes the mode to disk and the system crashes, a user would not notice anything wrong with the file system when the system is rebooted. The data blocks that previously belonged to the file would be inaccessible to the system, but users would notice no apparent corruption.


The fsck program also finds the task of reclaiming unlinked disk blocks easier than the clean-up it would have to do for the first sequence of events.


5.16.2 Race Conditions


Race conditions abound in the unlink system call, particularly when unlinking directories. The rmdir command removes a directory after verifying that the directory contains no files (it reads the directory and c-hecks -that all directory entries have mode value 0). But since rmdir runs at user level, the actions of verifying that a directory is empty and removing the directory are not atomic; the system could do a context switch between execution of the read and unlink system calls. Hence, another process could crew a file in the directory after rmdir determined that the directory was empty. Users can prevent this situation only by
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use of file and record locking. Once a process begins execution of the unlink eau, however, no other process can access the file being unlinked since the inodes of the parent directory and the file are locked.


Recall the algorithm for the link system call and how the kernel unlocks the m ode before completion of the eau. 1f another process should unlink the file while the mode lock is free, it would only-decrement the link count; since the link count had been incremented before unlinking the mode, the count would stilt be greater than 0. Hence, the file cannot be removed, and the system is safe. The condition is equivalent to the case where the unlink happens immediately after the link call completes.


Another race condition exists in the case where one process is converting a file path name to an mode using algorithn-i namei and another process is remming a directory in that path. Suppose process A is parsing the path name "a/b/c/d" and goes to sleep while allocating the in-core mode for "c". It could go to sleep while trying to lock the Mode or while trying to access the disk block in which the mode resides (see algorithms iget and bread). 1f process 13 wants to unlink the directory


"c", it may go to sleep, possibly for the same reasons that process A is sleeping.


Suppose the kernel later schedules process B to run before process A. Process B


would run to completion, unlinking directory "c" and removing it and its contents (for the last link) before process A runs again. Later, process A would try to access an illegal in-core Mode that had been removed. Algorithm namei therefore checks that the link count is not 0 before proceeding, reporting an error otherwise.


The check is not sufficient, however, because another process could conceivably create a new directory somewhere in the file system and allocate the mode that had previously been used for "c". Process A is tricked Mto thinking that it accessed the correct mode (see Figure 5.32). Nevertheless, the system maintains its integrity; the worst that could happen is that the wrong file is accessed — a possible security breach — but the race condition is rare in practice.


A process can unlink a file while another process has the file open. (The unlinking process could even be the process that did the open). Since the kernel unlocks the mode at the end of the open eau, the unlink call will succeed. The kernel will follow the unlink algorithm as if the file were not open, and it will remove the directory entry for the file. No other processes will be able to access the now unlinked file. However, since the open system call had incremented the Mode reference count, the kernel does not clea.r the file contents when executing the (put algorithm at the conclusion of the unlink eau. So the opening process can do all the normal file operations with lis file descriptor, including reading and writing the file. But when it doses the file, the mode reference count drops to 0 in (put, and the kernel clears the contents of the file. In short, the process that had open cd the file proceeds as if the unlink did not occur, and the unlink happens as if the file were not open. Other system calls wilt continue to work for the opening process, too.


In Figure 5.33 for example, a process opens a file supplied as a parameter and then unlinks the file it just open cd. The stat call fails because the original path
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Figure 5.32. Unlink Race Condition
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5.17 FILE SYSTEM ABSTRACTIONS


Weinberger introduced file system types to support his network file system (see ( Killian 841 for a brief description of this mechanism), and the latest release of System V supports a derivation of his scheme. File system types allow the kernel to support multiple file systems simultaneously, such as network file systems (Chapter 13) or even file systems of other operating systems. Processes use the usual UNIX


system calls to access files, and the kernel maps a generic set of file operations Mto operations specific to each file system type.


File System
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System V
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'nodes


File System mode


System V


open


close


read
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Remote


ropen


rclose


rread


Remote


rwrite


node


•


Figure 5.34. Inodes for File System Types


The mode is the interface between the abstract file system and the specific file system. A generic in-core mode contains data that is independent of particular file systems, and points to a file-system-specific mode that contains file-system-specific data. The file-system-specific mode contains information such as access permissions and block layout, but the generic mode contains the device number, Mode number, file type, size, owner, and reference count. Other data that is file-system-specific includes the super block and directory structures. Figure 5,34 depicts the generic in-core mode table and two tables of file-system-specific inodes-, one for System V


file system structures and the other for a remote (network) mode. The 'atter mode presumably contains enough information to identify a file on a remote system. A file system may not have an mode-like structure; but the file-system-specific code manufactures an object that satisfies UNIX file system semantics and allocates its


"mode" when the kernel allocates a generic mode.
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Each file system type has a structure that contains the addresses of functions that perform abstract operations. When the kernel wants to access a file, it makes an indirect function call, based on the file system type and the operation (see Figure 5.34). Some abstract operations are to open a file, close it, read or write data, return an mode for a file name component (like namei and iget), release an m ode (like iput), update an mode, check access permissions, set file attributes (permissions), and mount and unmount file systems. Chapter 13 will illustrate the use of file system abstractions in the description of a distributed file system.


5.18 FILE SYSTEM MAINTENANCE


The kernel maintains consistency of the file system during normal operation.


However, extraordinary circumstances such as a power failure may cause a system crash that leaves a file system in an inconsistent state: most of the data in the file system is acceptable for use, but some inconsistencies exist. The command fsck checks for such inconsistencies and repairs the file system if necessary. It accesses the file system by its block or raw interface (Chapter 10) and bypasses the regular file access methods. This section describes several inconsistencies checked by fsck .


A disk block may belong to more than one mode or to the list of free blocks and an mode. When a file system is originally set up, all disk blocks are on the free list.


When a disk block is assigned for use, the kernel removes it from the free list and assigns it to an mode. The kernel may not reassign the disk block to another Mode until the disk block has been returned to the free list. Therefore, a disk block is either on the free list or assigned to a single mode. Consider the possibilities if the kernel freed a disk block in a file, returning the block number to the in-core copy of the super block, and allocated the disk block to a new file. If the kernel wrote the m ode and blocks of the new file to disk but crashed before updating the mode of the old file to disk, the two modes would address the same disk block number.


Similarly, if the kernel wrote the super block and its free list to disk and crashed before writing the old mode out, the disk block would appear on the free list and in the old mode.


If a block number is not on the free list of blocks nor contained in a file, the file system is inconsistent because, as mentioned above, all blocks must appear somewhere. This situation could happen if a block was removed from a file and placed on the super block free list. If the old file was written to disk and the system crashed before the super block was written to disk, the block would not appear on any lists stored on disk.


An Mode may have a non-0 link count, but its mode number may not exist in any directories in the file system. All files except (unnamed) pipes must exist in the file system tree. If the system crashes after creating a pipe or after creating a file but before creating its directory entry, the mode will have its link field set even though it does not appear to be in the file system. The problem could also arise if a directory were unlinked before making sure that all files contained in the directory were unlinked.
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If the format of an Mode is incorrect (for instance, if the file type field has an undefined value), something is wrong. This could happen if an administrator mounted an improperly formatted file system. The kernel accesses disk blocks that it thinks contain Modes but in reality contain data.


If an Mode number appears in a directory entry but the mode is free, the file system is inconsistent because an Mode number that appears in a directory entry should be that of an allocated Mode. This could happen if the kernel was creating a new file and wrote the directory entry to disk but did not write the Mode to disk before the crash. It could also occur if a process unlinked a file and wrote the freed mode to disk, but did not write the directory element to disk before it crashed. These situations are avoided by ordering the write operations properly.


If the number of free blocks or free modes recorded in the super block does not conform to the number that exist on disk, the file system is inconsistent. The summary information in the super block must always be consistent with the state of the file system.


5.19 SUMMARY


This chapter concludes the first part of the book, the explanation of the file system.


It introduced three kernel tables: the user file descriptor table, the system file table, and the mount table. It described the algorithms for many system calls relating to the file system and their interaction. It introduced file system abstractions, which allow the UNIX system to support varied file system types.


Finally, it described how fsck checks the consistency of the file system.


5.20 EXERCISES


1. Consider the program in Figure 5.35. What is the return value for all the reads and what is the contents of the buffer? Describe what is happening in the kernel during each read


2.


Reconsider the program in Figure 5.35 but suppose the statement


iseek(fd, 9000L, 0);


is placed before the first read. What does the process see and what happens inside the kernel?


3. A process can open a file in write-append mode, meaning that every write operations starts at the byte offset marking the current end of file. Therefore, two processes can open a file in write-append mode and write the file without overwriting data. What happens if a process opens a file in write-append mode and seeks to the beginning of the file?


4.


The standard I/O library makes user reading and writing more efficient by buffering the data in the library and thus potentially saving the number of system calls a user has to make. How would you implement the library functions fread and fwrite?


What should the library functions fopen and felose do?
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#include <fentl.h>


main()


fd ois+en("junk", 0 RDONLY);


read(fd, buf, 1024);


/* read zero's */


read(fd, buf, 1024);


/* catch something *1


read(fd, buf, 1024);


Figure 5.35. Reading Os and End of File


5. 1f a process is reading data consecutively from a file, the kernel notes the value of the read-ahead block in the in-core mode. What happens if severai processes simultaneously read data conseeutively from the same file?


#include <fenti.h>


main()


int fd;


char buf[256];


fd open("/ete/passwd", ORDONLY);


if (read(fd, buf, 1024) < 0)


printf(`read fails\n");


Figure 5.36. A Big Read in a Liftte Buffer


6. Consider the program in Figure 5.36. What happens when the program is executed?


Why? What would happen if the deciaration of buf were sandwiched betwe,en the declaration of two other arrays of size 1024? How does the kernel recognize that the read is too big for the buffer?


* 7. The BSD file system allows fragmentation of the tast block of a file as needed, according to the following tules:


• Structures similar to the super block keep track of free fragments;


• The kernel does not keep a preallocated pool of free fragments but breaks a free block into fragments when nece,ssary;
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• The kernel can assign block fragments only for the last block of a file;


• If a block is partitioned into several fragments, the kernel can assign them to different files;


• The number of fragments in a block is fixed per file system;


• The kernel allocates fragments during the write system eau.


Design an algorithm that allocates block fragments to a file. What changes must be made to the mode to allow for fragments? How advantageous is it from a performance standpoint to USC fragments for files that use indirect blocks? Would it be more advantageous to allocate fragments during a close call instead of during a write call?


* 8. Recall the discussion in Chapter 4 for placing data in a file's mode. If the size of the m ode is that of a disk block, design an algorithm such that the last data of a file is written in the mode block if it fits. Compare this method with that described in the previous problem.


* 9. System V uses the fenti system call to implement file and record locking; fcntl(fd, cmd, arg);


where fd is the file descriptor, cmd specifies the type of locking operation, and arg specifies various parameters, such as lock type (read or write) and byte offsets (see the appendix). The locking operations include


• Test for locks belonging to other processes and return immediately, indicating whether other locks were found,


• Set a lock and sleep until successful,


• Set a lock but return immediately if unsuccessful.


The kernel autornatically releases locks set by a process when it closes the file.


Describe an algorithm that implements file and record boeking. If the locks are mandatory, other processes should be prevented from accessing the file. What changes must be made to read and write?


* 10. If a process goes to sleep white waiting for a file lock to become free, the possibility for deadlock exists: process A may lock file "one" and attempt to lock file "two," and process B may lock file "two" and attempt to lock file "one." Both processes are in a state where they cannot continue. Extend the algorithm of the previous problem so that the kernel detects the deadlock situation as it is about to occur and fails the system call. Is the kernel the right place to check for deadlocks?


11. Before the existence of a file locking system call, users could get cooperating processes to implement a locking rnechanism by executing system calls that exhibited atomic features. What system calls described in this chapter could be used? What are the dangers inherent in using such rnethods?


12. Ritchie claims (see [Ritchie 81]) that file locking is not sufficient to prevent the confusion caused by programs such as editors that make a copy of a file while editing and then write the original file when done. Explain what he meant and comment.


13. Consider another method for locking files to prevent destructive update: Suppose the m ode contains a new permission setting such that it allows only one process at a time to open the file for writing, but many processes can open the file for reading. Describe an implementation.


* 14. Consider the program in Figure 5.37 that creates a directory node in the wrong format (there are no directory entries for "." and ".."). Try a few commands on the new directory such as Is —I, Is — Id, or cd. What is happening?
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main(argc, argv)


int argc;


char *argv[i;


if (argc


2)


printf("try: command directory nam n");


exit 0;


/* modes indicate: directory (04) rwx permission for all */


I* only super user can do this */


if (mknod(argv[ 040777,


-- —1)


printf("mknod fails\n");


Figure 5.37. A Half-Baked Directory


15. Write a program that prints the owner, file type, access permissions, and access times of files supplied as parameters. If a file (parameter) is a directory, the program should read the directory and print the above information for all files in the directory.


16. Suppose a directory has read permission for a user but not execute permission. What happens when the directory is used as a parameter to Is with the "—i" option? What about the "-1" option? Explain the answers. Repeat the problem for the case that the directory has execute permission but not read permission.


17. Compare the permissions a process must have for the following operations and comment.


• Creating a new file requires write permission in a directory.


• Creating an existing file requires write permission on the file.


• Unlinking a file requires write permission in the directory, not on the file.


* 18. Write a program that visits every directory, starting with the current directory. How should it handle loops in the directory hierarchy?


19. Execute the program in Figure 5.38 and describe what happens in the kernel. (Hint: Execute pwd when the program completes.)


20.


Write a program that changes its root to a particular directory, and investigate the directory tree accessible to that program.


21.


Why can't a process undo a previous chroot system call? Change the implementation so that it can change its root back to a previous root. What are the advantages and disadvantages of such a feature?


22.


Consider the simple pipe example in Figure 5.19, where a process writes the string


"hello" in the pipe then reads the string. What would happen if the count of data written to the pipe were 1024 instead of 6 (but the count of read data stays at 6)?


What would happen if the order of the read and write system calls were reversed?


23.


In the program illustrating the use of named pipes (Figure 5.19), what happens if rnknod discovers that the named pipe already exists? How does the kernel implement this? What would happen if many reader and writer processes all attempted to
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main(arge, argv)


int argc;


char *argvil;


if (argc


printf("need 1 dir arg\n");


exit();


if (chdir(argy(li)


—I)


printf("%s not a directory\n", argv[11);


Figure 5.38. Sample Program with Chdir System Cali


communicate through the named pipe instead of the one reader and one writer implieit in the text? How could the proce,sses ensure that only one reader and one writer process were communicating?


24.


When opening a named pipe for reading, a process sleeps in the open until another process opens the pipe for writing. Why? Couldn't the process return successfully from the open, continue processing until it tried to read from the pipe, and sleep in the read?


25.


How would you implement the dup2 (from Version 7) system call with syntax dup2(oldfd, newfd);


where oldfd is the file descriptor to be duped to file descriptor number newfd? What should happen if newfd already refers to an open file?


* 26. What strange things could happen if the kernel would allow two processes to mount the same file system simultaneously at two mount points?


27.


Suppose a process changes its current directory to "/Innt/a/b/c" and a second process then mounts a file system onto "imnt". Should the mouw succeed? What happens if the first process executes pwd? The kernel does not ailow the mount to succeed if the m ode reference count of "kimt" is greater than I. Comment.


28.


In the algorithm for crossing a mount point on recognition of ".." in the file path name, the kernel checks three conditions to see if it is at a mount point: that the found mode bas the root Mode number, that the working mode is root of the file system, and that the path name component is "..". Why must it check all three conditions? Show that checking any two conditions is insufficient to allow the process to cross the mount point.


29.


If a user mounts a file system "read-only," the kernel sets a flag in the super block.


How should it prevent write operations during the write, ereat, link, unlink, chown, and ehmod system calls? What write operations do all the above system calls do to the file system?


* 30. Suppose a process attempts to umount a file system and another process is simultaneously attempting to ereat a new file on that file system. Only one system call can succeed. Explore the race condition.
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* 31. When the umount system call checks that no more files are active on a file system, it has a problem with the file system root mode, allocated via iget during the mount system call and hence having reference count greater than 0. How can mount be sure there are no active files and take account for the file system root? Consider two cases:


• umount releases the root Mode with the iput algorithm before checking for active m odes. (How does it recover if there were active files after all?)


• umount checks for active files before releasing the root mode but permits the root m ode to remain active. (How active can the root mode get?)


32.


When executing the command Is — Id on a directory, note that the number of links to the directory is never 1. Why?


33.


How does the command mkdir (make a new directory) work? (Hint: When mkdir completes, what are the mode numbers for "." and ".."?)


* 34. Symbolic links refer to the capability to link files that exist on different file systems.


A new type indicator specifies a symbolic link file; the data of the file is the path name of the file to which it is linked. Describe an implementation of symbolic links.


* 35. What happens when a process executes


unlink(".");


What is the current directory of the process? Assume superuser permissions.


36.


Design a system call that truncates an existing file to arbitrary sizes, supplied as an argument, and describe an implementation. Implement a system call that allows a user to remove a file segment between specified byte offsets, compressing the file size.


Without such system calls, encode a program that provides this functionality.


37.


Describe all conditions where the reference count of an mode can be greater than 1.


38.


In file system abstractions, should each file system type support a private lock operation to be called from the generic code, or does a generic lock operation suffice?
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OF PROCESSES


Chapter 2 formulated the high-level characteristics of processes. This chapter presents the ideas more formally, defining the context of a process and showing how the kernel identifies and locates a process. Section 6.1 defines the process state model for the UNIX system and the set of state transitions. The kernel contains a process table with an entry that describes the state of every active process in the system. The u area contains additional information that controls the operation of a process. The process table entry and the u area are part of the context of a process. The aspect of the process context that most visibly distinguishes it from the context of another process is, of course, the contents of its address space.


Section 6.2 describes the principles of memory management for processes and for the kernel and how the operating system and the hardware cooperate to do virtual memory address translation. Section 6.3 examines the components of the context of a process, and the rest of the chapter describes the low-level algorithms that manipulate the process context. Section 6.4 shows how the kernel saves the context of a process during an interrupt, system eau, or context switch and how it later resumes execution of the suspended process. Section 6.5 gives various algorithms, used by the system calls described in the next chapter, that manipulate the process address space. Finally, Section 6.6 covers the algorithms for putting a process to sleep and for waking it up.
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Figure 6,1 Process State Transition Diagram.
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when it is about to return to user mode. Consequently, the kernel could swap a process from the state "preempted" if necessary. Eventually, the scheduler will choose the process to execute, and it returns to the state "user running," executing in user mode again.


When a process executes a system call, it leaves the state "user running" and enters the state "kernel running." Suppose the system call requires I/O from the disk, and the process must wait for the I/O to complete. It enters the state "asleep in memory," putting itself to sleep until it is notified that the I/O has completed.


When the I/O later completes, the hardware interrupts the CPU, and the interrupt handler awakens the process, causing it to enter the state "ready to run in memory."


Suppose the system is executing many processes that do not fit simultaneously into main memory, and the swapper (process 0) swaps out the process to make room for another process that is in the state "ready to run swapped." When evicted from main memory, the process enters the state "ready to run swapped."


Eventually, the swapper chooses the process as the most suitable to swap into main memory, and the process reenters the state "ready to run in memory." The scheduler will eventually choose to run the process, and it enters the state "kernel running" and proceeds. When a process completes, it invokes the exit system eau, thus entering the states "kernel running" and, finally, the "zombie" state.


The process has control over some state transitions at user-level. First, a process can create another process. However, the state transitions the process takes from the "created" state (that is, to the states "ready to run in memory" or "ready to run swapped") depend on the kernel: The process has no control over those state transitions. Second, a process can make system calls to move from state "user running" to state "kernel running" and enter the kernel of its own volition.


However, the process has no control over when it will return from the kernel; events may dictate that it never returns but enters the zombie state (see Section 7.2 on signals). Finally, a process can exit of its own volition, but as indicated before, external events may dictate that it exits  without explicitly invoking the exit system eau. All other state transitions follow a rigid model encoded in the kernel, reacting to events in a predictable way according to rules formulated in this and later chapters. Some rules have already been cited: No process can preempt another process executing in the kernel, for example.


Two kernel data structures describe the state of a process: the process table entry and the u area. The process table contains fields that must always be accessible to the kernel, but the u area contains fields that need to be accessible only to the running process. Therefore, the kernel allocates space for the u area only when creating a process: It does not need u areas for process table entries that do not have processes.


The fields in the process table are the following.


• The state field identifies the process state.


• The process table entry contains fields that allow the kernel to locate the process and its u area in main memory or in secondary storage. The kernel uses the
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information to do a context switch to the process when the process moves from state "ready to run in memory" to the state "kernel running" or from the state


"preempted" to the state "user running." In addition, it uses this information when swapping (or paging) processes to and from main memory (between the two "in memory" states and the two "swapped" states). The process table entry also contains a field that gives the process size, so that the kernel knows how much space to allocate for the process.


• Several user identifiers (user IDs or UIDs) determine various process privileges.


For example, the user ID fields delineate the sets of processes that can send signals to each other, as will be explained in the next chapter.


• Process identifiers (process IDs or PIDs) specify the relationship of processes to each other. These ID fields are set up when the process enters the state


"created" in the fork system call.


• The process table entry contains an event descriptor when the process is in the


"sleep" state. This chapter will examine its use in the algorithms for sleep and wakeup.


• Scheduling parameters allow the kernel to determine the order in which processes move to the states "kernel running" and "user running."


• A signal field enumerates the signals sent to a process but not yet handled (Section 7.2).


• Various timers give process execution time and kernel resource utilization, used for process accounting and for the calculation of process scheduling priority.


One field is a user-set timer used to send an alarm signal to a process (Section 8.3).


The u area contains the following fields that further characterize the process states. Previous chapters have described the last seven fields, which are briefly described again for completeness.


• A pointer to the process table identifies the entry that corresponds to the u area.


• The real and effective user IDs determine various privileges allowed the process, such as file access rights (see Section 7.6).


• Timer fields record the time the process (and its descendants) spent executing in user mode and in kernel mode.


• An array indicates how the process wishes to react to signals.


• The control terminal field identifies the "login terminal" associated with the process, if one exists,


• An error field records errors encountered during a system call.


• A return value field contains the result of system calls.


• I/O parameters describe the amount of data to transfer, the address of the source (or target) data array in user space, file offsets for I/0, and so on.


• The current directory and current root describe the file system environment of the process.


• The user file descriptor table records the files the process has open.
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• Limit fields restrict the size of a process and the size of a file it can write.


• A permission modes field masks mode settings on files the process creats.


This section has described the process state transitions on a logical level. Each state has physical characteristics managed by the kernel, particularly the virtual address space of the process. The next section describes a model for memory management; later sections describe the states and state transitions at a physical level, focusing on the states "user running," "kernel running," "preempted," and


"sleep (in memory)." The next chapter describes the states "created" and


"zombie," and Chapter 8 describes the state "ready to run in memory." Chapter 9


discusses the two "swap" states and demand paging.


6.2 LAYOUT OF SYSTEM MEMORY


Assume that the physical memory of a machine is addressable, starting at byte offset 0 and going up to a byte offset equal to the amount of memory on the machine. As outlined in Chapter 2, a process on the UNIX system consists of three logica! sections: text, data, and stack. (Shared memory, discussed in Chapter 11, should be considered part of the data section for purposes of this discussion.) The text section contains the set of instructions the machine executes for the process; addresses in the text section include text addresses (for branch instructions or subroutine calls), data addresses (for access to global data variables), or stack addresses (for access to data structures local to a subroutine).


If the machine were to treat the generated addresses as address locations in physical memory, it would be impossible for two processes to execute concurrently if their set of generated addresses overlapped. The compiler could generate addresses that did not overlap between programs, but such a procedure is i mpractical for general-purpose computers because the amount of memory en a machine is finite and the set of all programs that could be compiled is infinite.


Even if the compiler used heuristics to try to avoid unnecessary overlap of generated addresses, the implementation would be inflexible and therefore undesirable.


The compiler therefore generates addresses for a virtual address space with a given address range, and the machines memory management unit translates the virtual addresses generated by the compiler into address locations in physical memory. The compiler does not have to know where in memory the kernel will later bad the program for execution. In fact, several copies of a program can coexist in memory: All execute using the same virtual addresses but reference different physical addresses. The subsystems of the kernel and the hardware that cooperate to translate virtual to physical addresses comprise the memory


management  subsystem.
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6.2.1 Regions


The System V kernel divides the virtual address space of a process into logical regions. A region is a contiguous area of the virtual address space of a process that can be treated as a distinct object to be shared or protected. Thus text, data, and stack usually form separate regions of a process. Several processes can share a region. For instance, several processes may execute the same program, and it is natural that they share one copy of the text region. Similarly, several processes may cooperate to share a common shared-memory region.


The kernel contains a region table and allocates an entry from the table for each active region in the system. Section 6.5 will describe the fields of the region table and region operations in greater detail, but for now, assume the region table contains the information to determine where its contents are located in physical memory. Each process contains a private per process region table, called a pregion for short. Pregion entries may exist in the process table, the u area, or in a separately allocated area of memory, dependent on the implementation, but for simplicity, assume that they are part of the process table entry. Each pregion entry points to a region table entry and contains the starting virtual address of the region in the process. Shared regions may have different virtual addresses in each process.


The pregion entry also contains a permission field that indicates the type of access allowed the process: read-only, read-write, or read-execute. The pregion and the region structure are analogous to the file table and the mode structure in the file system: Several processes can share parts of their address space via a region, much as they can share access to a file via an mode; each process accesses the region via a private pregion entry, much as it accesses the mode via private entries in its user file descriptor table and the kernel file table.


Figure 6.2 depicts two processes, A and B, showing their regions, pregions, and the virtual addresses where the regions are connected. The processes share text region 'a' at virtual addresses 8K and 4K, respectively. If process A reads memory location 8K and process B reads memory location 4K, they read the identical memory location in region 'a'. The data regions and stack regions of the two processes are private.


The concept of the region is independent of the memory management policies implemented by the operating system. Memory management policy refers to the actions the kernel takes to insure that processes share main memory fairly. For example, the two memory management policies considered in Chapter 9 are process swapping and demand paging. The concept of the region is also independent of the memory management implementation: whether memory is divided into pages or segments, for example. To lay the foundation for the description of demand paging algorithms in Chapter 9, the discussion., here assumes a memory architecture based on pages, but it does not assume that the memory management policy is based on demand paging algorithms.
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Figure 6.2. Processes and Regions


6.2.2 Pages and Page Tantes


This section defines the memory model that will be used throughout this book, but it is not specific to the UNIX system. In a memory management architecture based on pages, the memory management hardware divides physical memory Mto a set of equal-sized blocks called pages. Typical page sizes range from 512 bytes to 4K bytes and are defined by the hardware. Every addressable location in memory is contained in a page and, consequently, every memory location can be addressed by a


(page number, byte offset in page)


pair. For example, if a machine has 2 32 bytes of physical memory and a page size of 1K bytes, it has 2 22 pages of physical memory; every 32-bit address can be treated as a pair consisting of a 22-bit page number and a 10-bit offset into the page (Figure 6.3).


When the kernel assigns physical pages of memory to a region, it need not assign the pages contiguously or in a particular order. The purpose of paged memory is to allow greater flexibility in assigning physical memory, analogous to the assignment of disk blocks to files in a file system. Just as the kernel assigns blocks to a file to increase fiexibility and to reduce the amount of unused space caused by block fragmentation, so it assigns pages of memory to a region.
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Hexadecimal Address


58432


Binary


0101 1000 0100 0011 0010


Page Number, Page Offset 01 0110 0001


00 0011 0010


In Hexadecimal


161


32


Figure 6.3. Addressing Physical Memory as Pages
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Figure 6.4. Mapping of Logical to Physical Page Numbers


The kernel correlates the virtual addresses of a region to their physical machine addresses by mapping the logical page numbers in the region to physical page numbers on the machine, as shown in Figure 6.4. Since a region is a contiguous range of virtual addresses in a program, the logical page number is the index into an array of physical page numbers. The region table entry contains a pointer to a table of physical page numbers called a page table. Page table entries may also contain machine-dependent information such as permission bits to allow reading or writing of the page. The kernel stores page tables in memory and accesses them like all other kernel data structures.


Figure 6.5 shows a sample mapping of a process into physical memory. Assume that the size of a page is 1K bytes, and suppose the process wants to access virtual memory address 68,432. The pregion entries show that the virtual address is in the stack region starting at virtual address 64K (65,536 in decimal), assuming the direction of stack growth is towards higher addresses. Subtracting, address 68,432


is at byte offset 2896 in the region. Since each page consists of 1K bytes, the address is contained at byte offset 848 in page 2 (counting from 0) of the region, located at physical address 986K. Section 6.5.5 (loading a region) discusses the meaning of the page table entry marked "empty."


Modern machines use a variety of hardware registers and caches to speed up the address translation procedure just described, because the memory references and address calculations would otherwise be too slow. When resuming the execution of a process, the kernel therefore informs the memory management
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Figure 6.5. Mapping Virtual Addresses to Physical Addresses


hardware where the page tables and physical memory of the process reside by loading the appropriate registers. Since such operations are machine dependent and vary from one implementation to another, this text will not discuss them. The exercises at the end of the chapter cite specific machine architectures.


Let us use the following simple memory model in discussing memory


management. Memory is organized in pages of 1K bytes, accessed via page tables as described earlier. The system contains a set of memory management register triples (assume a large supply), such that the first register in the triple contains the address of a page table in physical memory, the second register contains the first virtual address mapped via the triple, and the third register contains control information such as the number of pages in the page table and page access permissions (read-only, read-write). This model corresponds to the region model, just described. When the kernel prepares a process for execution, it loads the set of memory management register triples with the corresponding data stored in the pregion entries.
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If a process addresses memory locations outside its virtual address space, the hardware causes an exception condition. For example, if the size of the text region in Figure 6.5 is 16K bytes and a process accesses virtual address 26K, the hardware will cause an exception that the operating system handles. Similarly, if a process tries to access memory without proper permissions, such as writing an address in its write-protected text region, the hardware will cause an exception. In both these examples, the process would normally exit; the next chapter provides more detail.


6.2.3 Layout of the Kernel


Although the kernel executes in the context of a process, the virtual memory mapping associated with the kernel is independent of all processes. The code and data for the kernel reside in the system permanently, and all processes share it.


When the system is brought into service (booted), it loads the kernel code into memory and sets up the necessary tables and registers to map its virtual addresses into physical memory addresses. The kernel page tables are analogous to the page tables associated with a process, and the mechanisms used to map kernel virtual addresses are similar to those used for user addresses. In many machines, the virtual address space of a process is divided into several classes, including system and user, and each class has its own page tables. When executing in kernel mode, the system permits access to kernel addresses, but it prohibits such access when executing in user mode. Thus, when changing mode from user to kernel as a result of an interrupt or system call, the operating system collaborates with the hardware to permit kernel address references, and when changing mode back to user, the operating system and hardware prohibit such references. Other machines change the virtual address translation by loading special registers when executing in kernel mode.


Figure 6.6 gives an example of the virtual addresses of the kernel and a process, where kernel virtual addresses range from 0 to 4M-1 and user virtual addresses range from 4M up. There are two sets of memory management triples, one for kernel addresses and one for user addresses, and each triple points to a page table that contains the physical page numbers corresponding to the virtual page addresses. The system allows address references via the kernel register triples only when in kernel mode; hence, switching mode between kernel and user requires only that the system permit or deny address references via the kernel register triples.


Some system implementations load the kernel into memory such that most kernel virtual addresses are identical to their physical addresses and the virtual to physical memory map of those addresses is the identity function. However, the treatment of the u area requires-virtual to physical address mapping in the kernel-.
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Figure 6.6. Changing Mode from User to Kernel


6.2.4 The U Area


Every process has a private u area, yet the kernel accesses it as if there were only one u area in the system, that of the running process. The kernel changes its virtual address translation map according to the executing process to access the correct u area. When compiling the operating system, the loader assigns the variable u, the name of the u area, a fixed virtual address. The value of the u area


virtual address is known to other parts of the kernel, in particular, the module that does the context switch (Section 6.4.3). The kernel knows where in its memory management tables the virtual address translation for the u area is done, and it can dynamically change the address mapping of the u area to another physical address.


The two physical addresses represent the u areas of two processes, but the kernel
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accesses them via the same virtual address.


A process can access its u area when it executes in kernel mode but not when it executes in user mode. Because the kernel can access only one u area at a time by its virtual address, the u area partially defines the context of the process that is running on the system. When the kernel schedules a process for execution, it finds the corresponding u area in physical memory and makes it accessible by its virtual address.
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Figure 6.7. Memory Map of U Area in the Kernel


For example, suppose the u area is 4K bytes long and resides at kernel virtual address 2M. Figure 6.7 shows a sample memory layout, where the first two register triples refer to kernel text and data (the addresses and pointers are not shown), and the third triple refers to the u area for process D. If the kernel wants to access the u area of process A, it copies the appropriate page table information for the u area into the third register triple. At any instant, the third kernel register triple refers to the u area of the currently running process, but the kernel can refer to the u area of another process by overwriting the entries for the u area page table address with a new address. The entries for register triples I and 2 do not change for the kernel, because all processes share kernel text and data.
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6.3 THE CONTEXT OF A PROCESS


The context of a process consists of the contents of its (user) address space and the contents of hardware registers and kernei data structures that relate to the process.


Formally, the context of a process is the union of its user-level context, register context, and system-level context) The user-level context consists of the process text, data, user stack, and shared memory that occupy the virtual address space of the process. Parts of the virtual address space of a process that periodically do not reside in main memory because of swapping or paging stilt constitute a part of the user-ievel context.


The register context consists of the following components.


• The program counter specifies the address of the next instruction the CPU will execute; the address is a virtual address in kernel or in user memory space.


• The processor status register (PS) specifies the hardware status of the machine as it relates to the process. For example, the PS usually contains subfields to indicate that the result of a recent computation resulted in a zero, positive or negative result, or that a register overfiowed and a carry bit is set, and so on.


The operations that caused the PS to be set were done for a particular process, hence the PS contains the hardware status of the machine as it relates to the process. Other important subfields typically found in the PS are those that indicate the current processor execution level (for interrupts) and the current and most recent modes of execution (such as kernel, user). The subfield that shows the current execution mode determines whether a process can execute privilegecl instructions and whether it can access kernel address space.


• The stack pointer contains the current address of' the next entry in the kernel or user stack, determined by the mode of execution. Machine architectures dictate whether the stack pointer points to the next free entry on the stack or to the last used entry. Similarly, the machine dictates the direction of stack growth toward numerically higher or lower addresses, but such issues are immaterial for purposes of this discussion.


• The general-purpose registers contain data generated by the process during its execution. To simplify the following discussion, let us distinguish two general purpose registers, register 0 and register 1, for additional use in transmitting information between processes and the kernel.


The system-level context of a process has a "statie part" (first three items of the following list) and a "dynamic part" (last two items). A process has one statie part of the system-level context throughout its lifetime, but it can have a variable number of dynamic parts. The dynamic part of the system-level context should be 1. The terms user-level context, register context, system-kvel context, and context layers used in this section are the author's terminology.
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viewed as a stack of context layers that the kernel pushes and pops on occurrence of various events. The system-level context consists of the following components.


• The process table entry of a process defines the state of a process, as described in Section 6.1, and contains control information that is always accessible to the kernel.


• The u area of a process contains process control information that need be accessed only in the context of the process. General control parameters such as the process priority are stored in the process table because they must be accessed outside the process context.


• Pregion entries, region tables and page tables, define the mapping from virtual to physical addresses and therefore define the text, data, stack, and other regions of a process. If several processes share common regions, the regions are considered part of the context of each process, because each process manipulates the regions independently. Part of the memory management task is to indicate which parts of the virtual address space of a process are not memory resident.


• The kernel stack contains the stack frames of kernel procedures as a process executes in kernel mode. Although all processes execute the identical kernel code, they have a private copy of the kernel stack that specifies their particular invocation of the kernel functions. For instance, one process may invoke the creat system call and go to sleep waiting for the kernel to assign a new mode, and another process may invoke the read system call and go to sleep awaiting the transfer of data from disk to memory. Both processes execute kernel functions, but they have separate stacks that contain their private function call sequence. The kernel must be able to recover the contents of the kernel stack and the position of the stack pointer to resume execution of a process in kernel mode. System implementations frequently place the kernel stack in the process u area, but it is logically independent and can exist in an independently allocated area of memory. The kernel stack is empty when the process executes in user mode.


• The dynamic part of the system-level context of a process consists of a set of layers, visualized as a last-in-first-out stack. Each system-level context layer contains the necessary information to recover the previous layer, including the register context of the previous level.


The kernel pushes a context layer when an interrupt occurs, when a process makes a system call, or when a process does a context switch. It pops a context layer when the kernel returns from handling an interrupt, when a process returns to user mode after the kernel completes execution of a system call, or when a process does a context switch. The context switch thus entails a push and a pop of a system-level context layer: The kernel pushes the context layer of the old process and pops the context layer of the new process. The process table entry stores the necessary information to recover the current context layer.


Figure 6.8 depicts the components that form the context of a process. The left side of the figure shows the static portion of the context. It consists of the user-
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Figure 6.8. Components of the Context of a Process


level context, containing the process text (instructions), data, stack, and shared memory (if the process bas any), and the statie part of the system-level context, containing the process table entry, the u area, and the pregion entries (the virtual address mapping information for the user-level context). The right side of the figure shows the dynamic portion of the context. It consists of several stack frames, where e-ach frame contains the saved register context of the previous layer, and the kernel stack as the kernel executes in that layer. System context layer 0 is a dummy layer that represents the user-level context; growth of the stack here is in the user address space, and the kornel stack is null, The arrow pointing from the static part of the system-level context to the top layer of the dynamic portion of the context represents the logica! information stored in the process table entry to enable the kernel to recover the current context layer of the process.


A process runs within its context or, more precisely, within its current 'Context layer, The number of context layers is bounded by the number of interrupt levels the machine supports. For instance, if a machine supports different interrupt levels for software interrupts, terminals, disks, all other peripherals, and the clock, it
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supports 5 interrupt levels, and hence, a process can contain at most 7 context layers: 1 for each interrupt level, I for system calls, and 1 for user-level. The 7


layers are sufficient to hold all context layers even if interrupts occur in the "worst"


possible sequence, because an interrupt of a given level is blocked (that is, the CPU


defers it) while the kernel handles interrupts of that level or higher.


Although the kernel always executes in the context of some process, the logical function that it executes does not necessarily pertain to that process. For instance, if a disk drive interrupts the machine because it has returned data, it interrupts the running process and the kernel executes the interrupt handler in a new system-level context layer of the executing process, even though the data belongs to another process. Interrupt handlers do not generally access or modify the static parts of the process context, since those parts have nothing to do with the interrupt.


6.4 SAVING THE CONTEXT OF A PROCESS


As observed in previous sections, the kernel saves the context of a process whenever it pushes a new system context layer. In particular, this happens when the system receives an interrupt, when a process executes a system call, or when the kernel does a context switch. This section considers each case in detail.


6.4.1 Interrupts and Exceptions


The system is responsible for handling interrupts, whether they result from hardware (such as from the clock or from peripheral devices), from a programmed interrupt (execution of instructions designed to cause "software interrupts"), or from exceptions (such as page faults). If the CPU is executing at a lower processor execution level than the level of the interrupt, it accepts the interrupt before decoding the next instruction and raises the processor execution level, so that no other interrupts of that level (or lower) can happen while it handles the current interrupt, preserving the integrity of kernel data structures (see Section 2.2.2). The kernel handles the interrupt with the following sequence of operations: 1.


It saves the current register context of the executing process and creates (pushes) a new context layer.


2.


It determines the "source" or cause of the interrupt, identifying the type of interrupt (such as clock or disk) and the unit number of the interrupt, if applicable (such as which disk drive caused the interrupt). When the system receives an interrupt, it gets a number from the machine that it uses as an offset into a table, commonly called an interrupt vector. The contents of interrupt vectors vary from machine to machine, but they usually contain the address of the interrupt handler for the corresponding interrupt source and a way of finding a parameter for the interrupt handler. For example, consider the table of interrupt handlers in Figure 6.9. If a terminal interrupts the system, the kernel gets interrupt number 2 from the hardware and invokes the
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Figure 6.9. Sample Interrupt Vector


terminal interrupt handler ttyintr.


3.


The kernel invokes the interrupt handler. The kernel stack for the new context layer is logically distinct from the kernel stack of the previous context layer. Some implementations use the kernel stack of the executing process to store the interrupt handler stack frames, and other implementations use a global interrupt stack to store the frames for interrupt handlers that are guaranteed to return without switching context.


4.


The interrupt handler completes it work and returns. The kernel executes a machine-specific sequence of instructions that restores the register context and kernel stack of the previous context layer as they existed at the time of the interrupt and then resumes execution of the restored context layer. The behavior of the process may be affected by the interrupt handler, since the interrupt handler may have altered global kernel data structures and awakened sleeping processes. Usually, however, the process continues execution as if the interrupt had never happened.


Figure 6.10 summarizes how the kernel handles interrupts. Some machines do part of the sequence of operations in hardware or microcode to get better performance than if all operations were done by software, but there are tradeoffs,
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based on how much of the context layer must be saved and the speed of the hardware instructions doing the save. The specific operations required in a UNIX


system implementation are therefore machine dependent.
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Figure 6.11. Example of Interrupts


Figure 6.11 shows an example where a process issues a system call (see the next section) and receives a disk interrupt while executing the system call. While executing the disk interrupt handler, the system receives a clock interrupt and
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executes the clock interrupt handler. Every time the system receives an interrupt (or makes a system call), it creates a new context layer and saves the register context of the previous layer.


6.4.2 System Cali Interface


The system call interface to the kernel has been described in previous chapters as though it were a normal function eau. Obviously, the usual calling sequence cannot change the mode of a process from user to kernel. The C compiler uses a predefined library of functions (the C library) that have the names of the system calls, thus resolving the system call references in the user program to what would otherwise be undefined names. The library functions typically invoke an instruction that changes the process execution mode to kernel mode and causes the kernel to start executing code for system calls. The ensuing discussion refers to the instruction as an operating system trap. The library routines execute in user mode, but the system call interface is, in short, a special case of an interrupt handler.


The library functions pass the kernel a unique number per system eau in a machine-dependent way — either as a parameter to the operating system trap, in a particular register, or on the stack — and the kernel thus determines the specific system call the user is invoking.


algorithm syscall


/* algorithm for invocation of system call */


input: system call number


output: result of system call


find entry in system call table corresponding to system call number; determine number of parameters to system call;


copy parameters from user address space to u area;


save current context for abortive return (described in section 6.4.4); invoke system call code in kernel;


if (error during execution of system call)


set register 0 in user saved register context to error number;


turn on carry bit in PS register in user saved register context;


1


else


set registers 0, 1 in user saved register context


to return values from system eau;


Figure 6.12. Aigorithm for System Calls
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In handling the operating system trap, the kernel looks up the system call number in a table to find the address of the appropriate kernel routine that is the entry point for the system call and to find the number of parameters the system call expects (Figure 6.12). The kernel calculates the (user) address of the first parameter to the system call by adding (or subtracting, depending on the direction of stack growth) an offset to the user stack pointer, corresponding to the number of parameters to the system call. Finally, it copies the user parameters to the u area and calls the appropriate system call routine. After executing the code for the system call, the kernel determines whether there was error. If so, it adjusts register locations in the saved user register context, typically setting the "carry" bit for the PS register and copying the error number into the register 0 location. If there were no errors in the execution of the system call, the kernel clears the "carry" bit in the PS register and copies the appropriate return values from the system call into the locations for registers 0 and 1 in the saved user register context. When the kernel returns from the operating system trap to user mode, it returns to the library instruction after the trap. The library interprets the return values from the kernel and returns a value to the user program.


For example, consider the program that creates a file with read and write permission for all users (mode 0666) in the first part of Figure 6.13. The second part of the figure shows an edited portion of the generated output for the program, as compiled and disassembled on a Motorola 68000 system. Figure 6.14 depicts the stack configurations during the system call. The compiler generates code to push the two parameters onto the user stack, where the first parameter pushed is the permission mode setting, 0666, and the second parameter pushed is the variable narne. 2 The process then calls the library function for the creat system call (address 7a) from address 64. The return address from the function call is 6a, and the process pushes this number onto the stack. The library function for creat moves the constant 8 into register 0 and executes a trap instruction that causes the process to change from user mode to kernel mode and handle the system call. The kernel recognizes that the user is making a system call and recovers the number 8 from register 0 to determine that the system call is creat. Looking up an internal table, the kernel finds that the creat system call takes two parameters; recovering the stack register of the previous context layer, it copies the parameters from user space into the u area. Kernel routines that need the parameters can find them in predictable locations in the u area. When the kernel completes executing the code for creat, it returns to the system call handler, which checks if the u area error field is set (meaning there was some error in the system call); if so, the handler sets the carry bit in the PS register, places the error code into register 0, and returns.


If there is no error, the kernel places the system return code into registers 0 and 1.


2. The order that the compiler evaluates and pushes function parameters is implementation dependent.
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char name[l — "file";


main()


int Id;


fd creat(name, 0666);


Portions of Generated Motorola 68000 Assembler Code


Addr


Instruction


# code for main


58:


mov


&Ox1b6,(%sp)


# move 0666 onto stack


Se:


mov


&Ox204,—(%sp)


# move stack ptr


# and move variable "name" onto stack


64:


Ox7a


# call C library for creat


# library code for creat


7a:


movq


&Ox8,%d0


# move data value 8 into data register 0


7e:


trap


&Ox0


# operating system trap


7e:


bcc


&0x6 <86>


# branch to addr 86 if carry bit clear


80:


jmp


Ox13c


# jump to addr 13c


86:


rts


# return from subroutine


# library code for errors in system call


13c:


mov


%d0,&0x20e


# move data reg 0 to location 20e (errno)


142:


movq


& —Oxl,%d0


# move constant — 1 into data register 0


144:


mova


Tod0,%a0


146:


rts


# return from subroutine


Figure 6.13. Creat System Call and Generated Code for Motorola 68000


When returning from the system call handler to user mode, the C library checks the carry bit in the PS register at address 7e: If it is set, the process jumps to address 13c, takes the error code from register 0 and places it into the global variable errno at address 20e, places a — 1 in register 0, and returns to the next instruction after the call at address 64. The return code for the function is —1, signifying an error in the system call. If, when returning from kernel mode to user mode, the carry bit in the PS register is clear, the process jumps from address 7e to address 86 and returns to the caller (address 64): Register 0 contains the return value from the system call.
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Figure 6.14. Stack Configuration for Creat System Call


Several library functions can map into one system call entry point. The system call entry point deflnes the true syntax and semantics for every system call, but the libraries frequently provide a more convenient interface. For example, there are several flavors of the exec system call, such as execl and execle, which provide slightly different interfaces for one system eau. The libraries for these calls rrianipulate their parameters to implement the advertised features, but eventually, map into one kernel entry point.


6.4.3 Context Switch


Referring to the process state diagram in Figure 6.1, we see that the kernel permits a context switch ander four circumstances: when a process puts itself to sleep, when it exits, when it returns from a system call to user mode but is not the most eligible process to run, or when it returns to user mode after the kernel completes handling an interrupt but is not the most eligible process to run. The kernel ensures integrity and consistency of internal data structures by prohibiting arbitrary context switches, as explained in Chapter 2. It makes sure that the state of its data structures is consistent before it does a context switch: that-is, that all appropriate updates are done, that queues are properly linked, that appropriate locks are set to prevent intrusion by other processes, that no data structures are left unnecessarily locked, and so on. For example, if the kernel allocates a buffer, reads a block in a file, and goes to sleep waiting for I/O transmission from the disk to complete, it keeps the buffer locked so that no other process can tamper with the buffer. Bat if
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a process executes the link system call, the kernel releases the lock of the first mode before locking the second mode to avoid deadlocks.


The kernel must do a context switch at the conclusion of the exit system call, because there is nothing else for it to do. Similarly, the kernel allows a context switch when a process enters the sleep state, since a considerable amount of time may elapse until the process wakes up, and other processes can meanwhile execute.


The kernel allows a context switch when a process is not the most eligible to run to permit fairer process scheduling: If a process completes a system call or returns from an interrupt and there is another process with higher priority waiting to run, it would be unfair to keep the high-priority process waiting.


The procedure for a context switch is similar to the procedures for handling interrupts and system calls, except that the kernel restores the context layer of a different process instead of the previous context layer of the same process. The reasons for the context switch are irrelevant. Similarly, the choice of which process to schedule next is a policy decision that does not affect the mechanics of the context switch.


Decide whether to do a context switch,


and whether a context switch is permissible now.


2.


Save the context of the "old" process.


3.


Find the "best" process to schedule for execution,


using the process scheduling algorithm in Chapter 8.


4,


Restore its context.


Figure 635. Steps for a Context Switch


The code that implements the context switch on UNIX systems is usually the most difficult to understand in the operating system, because function calls give the appearance of not returning on some occasions and materializing from nowhere on others. This is because the kernel, in many implementations, saves the process context at one point in the code but proceeds to execute the context switch and ts


scheduling algorithms in the context of the "old" process. When it later restores p,


the context of the process, it resumes execution according to the previously saved st


context. To differentiate between the case where the kernel resumes the context of


.tts


a new process and the case where it continues to execute in the old context after el


having saved it, the return values of critical functions may vary, or the program


-y


counter where the kernel executes may be set artificially.


La


Figure 6.16 shows a scenario for doing a context switch. The function te


save context saves information about the context of the running process and returns to


the value 1. Among other pieces of information, the kernel saves the value of the ly


current program counter (in the function save context)  and the value 0, to be used a


later as the return value in register 0 from save context. The kernel continues to it


execute in the context of the old process (A), picking another process (8) to run if
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if (save context())


1* save context of executing process *1


/* pick another process to run */


resume_context(new_process);


1* never gets here ! */


/* resuming process executes from here */


Figure 6.16. Pseudo-Code for Context Switch


and calling resume_context to restore the new context (of B). After the new context is restored, the system is executing process B; the old process (A) is no longer executing but leaves its saved context behind (hence, the comment in the figure "never gets here"). Later, the kernel will again piek process A to run (except for the exit case, of course) when another process does a context switch, as just described. When process A's context is restored, the kernel will set the program counter to the value process A had previously saved in the function save_context, and it will also place the value 0, saved for the return value, into register 0. The kernel resumes execution of process A inside save context even though it had executed the code up to the call to resume_context before the context switch. Finally, process A returns from the function save context with the value 0


(in register 0) and resumes execution after the comment line "resuming process executes from here."


6.4.4 Saving Context for Abortive Returns


Situations arise when the kernel must abort its current execution sequence and immediateiy execute out of a previously saved context. Later sections dealing with sleep and signals describe the circumstances when a process must suddenly change its context; this section explains the mechanisms for executing a previous context.


The algorithm to save a context is setjmp and the algorithm to restore the context is longjmp. 3 The method is identical to that described for the function save context in the previous section, except that save_context pushes a new context layer, whereas setjmp stores the saved context in the u area and continues to execute in 3. These algorithms should not be confused with the library funetions of the same name that users can can directiy from th& programs (see [SVID


However, their functions are sirnilar.





6.4


SAVING THE CONTEXT OF A PROCESS


171


the old context layer. When the kernel wishes to resume the context it had saved in setjmp, it does a longimp, restoring its context from the u area and returning a 1 from setjrnp.


6.4.5 Copying Data between System and User Address Space


As presented so far, a process executes in kernel mode or in user mode with no overlap of modes. However, many system calls examined in the last chapter move data between kernel and user space, such as when copying system call parameters from user to kernel space or when copying data from I/O buffers in the read system call Many machines allow the kernel to reference addresses in user space directly. The kernel must ascertain that the address being read or written is accessible as if it had been executing in user mode; otherwise, it could override the ordinary protection mechanisms and inadvertently read or write addresses outside the user address space (possibly kernel data structures). Therefore, copying data between kernel space and user space is an expensive proposition, requiring more than one instruction.


eret:


mnegl


$1,r0


# error return (-1)


ret


Figure 6.17. Moving Data from User to System Space on a VAX


Figure 6.17 shows sample VAX code for moving one character from user address space to kernel address space. The prober instruction checks if one byte at address argument pointer register+4 (*4(ap)) could be read in user mode (mode 3) and, if not, the kernel branches to address eret, stores — 1 in register 0, and returns; the character move failed. Otherwise, the kernel moves one byte from the given user address to register 0 and returns that value to the caller. The procedure is expensive, requiring five instructions (with the function cal to fubyte) to move 1


character.


6.5 MANIPULATION OF THE PROCESS ADDRESS SPACE


So far, this chapter bas described how the kernel switches context between processes and how it pushes and paps context layers, viewing the user-level context as a static object that does not change during restoration of the process context.
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However, various system calls manipulate the virtual address space of a process, as will be seen in the next chapter, doing so according to well defined operations on regions. This section describes the region data structure and the operations on regions; the next chapter deals with the system calls that use the region operations.


The region table entry contains the information necessary to describe a region.


In particular, it contains the following entries:


• A pointer to the mode of the file whose contents were originally loaded into the region


• The region type (text, shared memory, private data or stack)


• The size of the region


• The location of the region in physical memory


• The status of a region, which may be a combination of


— locked


— in demand


in the process of being loaded into memory


— valid, loaded into memory


• The reference count, giving the number of processes that reference the region.


The operations that manipulate regions are to lock a region, unlock a region, allocate a region, attach a region to the memory space of a process, change the size of a region, load a region from a file into the memory space of a process, free a region, detach a region from the memory space of a process, and duplicate the contents of a region. For example, the exec system call, which overlays the user address space with the contents of an executable file, detaches old regions, frees them if they were not shared, allocates new regions, attaches them, and loads them with the contents of the file. The remainder of this section describes the region operations in detail, assuming the memory management model described earlier (page tables and hardware register triples) and the existence of algorithms for allocation of page tables and pages of physical memory (Chapter 9).


6.5.1 Locking and Unlocking a Region


The kernel has operations to lock and unlock a region, independent of the operations to allocate and free a region, just as the file system has lock-unlock and allocate-release operations for modes (algorithms iget and iput). Thus the kernel can lock and allocate a region and later unlock it without having to free the region.


Similarly, if it wants to manipulate an allocated region, it can lock the region to prevent access by other processes and later unlock it.


6.5.2 Allocating a Region


The kernel allocates a new region (algorithm allocreg, Figure 6.18) during fork, exec, and shmget (shared memory) system calls. The kernel contains a region
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table whose entries appear either on a free linked list or on an active linked list.


When it allocates a region table entry, the kernel removes the first available entry from the free list, places it on the active list, locks the region, and marks its type (shared or private). With few exceptions, every process is associated with an exeeutable file as a result of a prior exec can, and allocreg sets the mode field in the region table entry to point to the mode of the executable file. The Mode identifies the region to the kernel so that other processes can share the region if desired. The kernel increments the mode reference Count to prevent other processes from removing its contents when unlinking it, as will be explained in Section 7.5.


Allocreg returns a locked, allocated region.


algorithm allocreg


/* allocate a region data structure */


input: (I) mode pointer


(2) region type


output: locked region


remove region from linkecl list of free regions;


assign region type;


assign region mode pointer;


if (m ode pointer not null)


increment mode reference count;


place region on linked list of active regions;


return(locked region);


1


Figure 6.18. Algorithm for Allocating a Region


6.5.3 Attaching a Region to a Process


The kernel attaches a region during the fork, exec, and shmat system calls to connect it to the address space of a process (algorithm attachreg, Figure 6.19).


The region may be a newly allocated region or an existing region that the process will share with other processes. The kernel allocates a free pregion entry, sets its type field to text, data, shared memory, or stack, and records the virtual address where the region will exist in the process address space. The process must not exceed the system-imposed limit for the highest virtual address, and the virtual addresses of the new region must not overlap the addresses of existing regions. For example, if the system restricts the highest virtual address of a process to 8


megabytes, it would be illegal to attach a 1 megabyte-size region to virtual address 7.5M. If it is legal to attach the region, the kernel increments the size field in the process table entry according to the region size, and increments the region reference count.
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algorithm attachreg


/* attach a region to a process */


input: (1) pointer to (locked) region being attached


(2) process to which region is being attached


(3) virtual address in process where region will be attached


(4) region type


output: per process region table entry


allocate per process region table entry for process;


initialize per process region table entry:


set pointer to region being attached;


set type field;


set virtual address field;


check legality of virtual address, region size;


increment region reference count;


increment process size according to attached region;


initialize new hardware register triple for process;


return(per process region table entry);


Figure 6.19. Algorithm for Attachreg


Attachreg then initializes a new set of memory management register triples for the process: If the region is not already attached to another process, the kernel allocates page tables for it in a subsequent call to growreg (next section); otherwise, it uses the existing page tables. Finally, attachreg returns a pointer to the pregion entry for the newly attached region. For example, suppose the kernel wants to attach an existing (shared) text region of size 7K bytes to virtual address 0 of a process (Figure 6.20): it allocates a new memory management register triple and initializes the triple with the address of the region page table, the process virtual address (0), and the size of the page table (9 entries).


6.5.4 Changing the Size of a Region


A process may expand or contract its virtual address space with the sbrk system call. Similarly, the stack of a process automatically expands (that is, the process does not make an explicit system call) according to the depth of nested procedure calls. Internally, the kernel invokes the algorithm growreg to change the size of a region (Figure 6.21). When a region expands, the kernel makes sure that the virtual addresses of the expanded region do not overlap those of another region and that the growth of the region does not cause the process size to become greater than the maximum allowed virtual memory space. The kernel never invokes growreg to increase the size of a shared region that is already attached to several processes; therefore, it does not have to worry about increasing the size of a region
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Figure 6.20. Example of Attaching to an Existing Text Region


for one process and causing another process to grow beyond the system limit for process size. The two cases where the kernel uses growreg on an existing region are sbrk on the data region of a process and automatie growth of the user stack. Both regions are private. Text regions and shared memory regions cannot grow after they are initialized. These cases will become clear in the next chapter.


The kernel now allocates page tables (or extends existing page tables) to accommodate the larger region and allocates physical memory on systems that do not support demand ming. When allocating physical memory, it makes sure such memory is available before invoking growreg; if the memory is unavailable, it resorts to other measures to increase the region size, as will be covered in Chapter 9. If the process contracts the region, the kernel simply releases memory assigned to the region. In both cases, it adjusts the process size and region size and reinitializes the pregion entry and memory management register triples to conform to the new mapping.


For example, suppose the stack region of a process starts at virtual address 128K and currently contains 6K bytes, and the kernel wants to extend the size of the region by 1K bytes (1 page). 1f the process size is acceptable and virtual
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algorithm growreg


/* change the size of a region */


input: (1) pointer to per process region table entry


(2) change in size of region (may be positive or negative)


output: none


if (region size increasing)


check legality of new region size;


allocate auxiliary tables (page tables);


if (not system supporting demand paging)


allocate physical memory;


initialize auxiliary tables, as necessary;


else


/* region size decreasing */


free physical memory, as appropriate;


free auxiliary tables, as appropriate;


do (other) initialization of auxiliary tables, as necessary;


set size field in process table;


Figure 6.21. Algorithm Growreg for Changing the Size of a Region addresses 134K to 135K — 1 do not belong to another region attached to the process, the kernel extends the size of the region. It extends the page table, allocates a page of memory, and initializes the new page table entry. Figure 6.22


illustrates this case.


6.5.5 Loading a Region


In a system that supports demand paging, the kernel can "map" a file into the process address space during the exec system call, arranging to read individual physical pages later on demand, as will be explained in Chapter 9. If the kernel does not support demand paging, it must copy the executable file into memory, loading the process regions at virtual addresses specified in the executable file. It may attach a region at a different virtual address from where it loads the contents of the file, creating a gap in the page table (recall Figure 6.20). For example, this feature is used to cause memory faults when user programs access address 0


illegally. Programs with pointer variables sometimes use them erroneously without checking that their value is 0 and, hence, that they are illegal for use as a pointer
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Figure 6.22. Growing the Stack Region by IK Bytes


reference. By protecting the page containing address 0 appropriately, processes that errantly access address 0 incur a fault and abort, allowing programmers to discover such bugs more quickly.


To bad a file into a region, loadreg (Figure 6.23) accounts for the gap between the virtual address where the region is attached to the process and the starting virtual address of the region data and expands the region according to the amount of memory the region requires. Then it places the region in the state "being loaded into memory" and reads the region data into memory from the fik, using an internal variation of the read system eau algorithm.


if the kernel is loading a text region that can be shared by several processes t is possible that another process could find the region and attempt to use it before its contents were fully loaded, because the first process could sleep while reading the
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algorithm loadreg


/* load a portion of a file into a region 'V


input: (1) pointer to per process region table entry


(2) virtual address to load region


(3) Mode pointer of file for loading region


(4) byte offset in file for start of region


(5) byte count for amount of data to load


output: none


increase region size according to eventual size of region


(algorithm growreg);


mark region state: being loaded into memory;


unlock region;


set up u area parameters for reading file:


target virtual address where data is read to,


start offset value for reading file,


count of bytes to read from file;


read file into region (internal variant of read algorithm);


lock region;


mark region state: completely loaded into memory;


awaken all processes waiting for region to be loaded;


Figure 6.23. Algorithm for Loadreg


file. The details of how this could happen and why locks cannot be used are left for the discussion of exec in the next chapter and in Chapter 9. To avoid a problem, the kernel checks a region state flag to see if the region is completely loaded and, if the region is not loaded, the process sleeps. At the end of loadreg, the kernel awakens processes that were waiting for the region to be loaded and changes the region state to valid and in memory.


For example, suppose the kernel wants to load text of size 7K into a region that is attached at virtual address 0 of a process but wants to leave a gap of 1K bytes at the beginning of the region (Figure 6.24). By this time, the kernel will have allocated a region table entry and will have attached the region at address 0 using algorithms allocreg and attachreg. Now it invokes loadreg, which invokes growreg twice — first, to account for the 1K byte gap at the beginning of the region, and second, to allocate storage for the contents of the region — and growreg allocates a page table for the region. The kernel then sets up fields in the u area to read the file: It reads 7K bytes from a specified byte offset in the file (supplied as a parameter by the kernel) into virtual address 1K of the process.
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Figure 6.24. Loading a Text Region


6.5.6 Freeing a Region


When a region is no longer attached to any processes, the kernel can free the region and return it to the list of free regions (Figure 6.25). If the region is associated with an mode, the kernel releases the mode using algorithm iput, corresponding to the increment of the mode reference count in allocreg. The kernel releases physical resources associated with the region, such as page tables and memory pages. For example, suppose the kernel wants to free the stack region in Figure 6.22.


Assuming the region reference count is 0, it releases the 7 pages of physical memory and the page table.
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algorithm freereg


/* free an allocated region */


input: pointer to a (locked) region


output: none


if (region reference count non zero)


P some proeess stil using region */


release region lock;


if (region has an associated mode)


release mode lock;


return;


if (region has associated blode)


release Mode (algorithm iput);


free physical memory stil associated with region;


free auxiliary tables associated with region;


clear region fields;


place region on region free list;


unlock region;


1


Figure 6.25. Algorithm for Freeing a Region


algorithm detachreg


/* detach a region from a process */


input: pointer to per process region table entry


73


output: none


get auxiliary memory management tables for process,


release as appropriate;


decrement process size;


decrement region reference count;


if (region reference count is 0 and region not sticky bit)


free region (algorithm freereg);


else


/* either reference count non-0 or region sticky bit on */


free mode lock, if applicable (mode associated with region);


free region lock;


Figure 6.26. Algorithm Detachreg
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6.5.7 Detaching a Region from a Process


The kernel detaches regions in the exec, exit, and shmdt (detach shared memory) system calls. It updates the pregion entry and severs the connection to physical memory by invalidating the associated memory management register triple (algorithm detachreg, Figure 6.26). The address translation mechanisms thus invalidated apply specifically to the process, not to the region (as in algorithm freereg). The kernel decrements the region reference count and the size field in the process table entry according to the size of the region. If the region reference count drops to 0 and if there is no reason to leave the region intact (the region is not a shared memory region or a text region with the sticky bit on, as will be described in Section 7.5), the kernel frees the region using algorithm freereg.


Otherwise, it releases the region and mode locks, which had been locked to prevent race conditions as will be described in Section 7.5 but leaves the region and its resources allocated.
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Figure 6.27. Duplicating a Region
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algorithm dupreg


1* duplicate an existing region *1


input: pointer to region table entry


output: pointer to a region that looks identical to input region


if (region type shared)


caller will increment region reference count


* with subsequent attachreg call


•1


return(input region pointer);


allocate new region (algorithm allocreg);


set up auxiliary memory management structures, as currently


exists in input region;


allocate physical memory for region contents;


"copy" region contents from input region to newly allocated region;


return(pointer to allocated region);


Figure 6.28. Algorithm for Dupreg


6.5.8 Duplicating a Region


The fork system cal requires that the kernel duplicate the regions of a process. If a region is shared (shared text or shared memory), however, the kernel need not physically eopy the region; instead, it increments the region reference count, allowing the parent and child processes to share the region. If the region is not shared and the kernel must physically copy the region, it allocates a new region table entry, page talie, and physical memory for the region. In Figure 6.27 for example, process A forked process B and duplicated its regions. The text region of process A is shared, so process B can share it with proeess A. But the data and stack regions of process A are private, so process B duplicates them by copying their contents to newly allocated regions. Even for private regions, a physical copy of the region is not always necessary, as will be seen (Chapter 9). Figure 6.28


shows the algorithm for dupreg.


6.6 SLEEP


So far, this ehapter has covered all the low-level functions that are executed for the transitions to and from the state "kernel running" excepi. for the functions that move a process into the sleep state. k will conclude with a presentation of the algorithms for sleep, which changes the process state from "kernel running" to


"asleep in memory," and wakeup, which changes the process state from "asleep" to


"ready to run" in memory or swapped.
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Figure 6.29. Typical Context Layers of a Sleeping Process


When a process goes to sleep, it typically does so during execution of a system call: The process enters the kernel (context layer I) when it executes an operating system trap and goes to sleep awaiting a resource. When the process goes to sleep, it does a context switch, pushing its current context layer and executing in kernel context layer 2 (Figure 6.29). Processes also go to sleep when they incur page faults as a result of accessing virtual addresses that are not physically loaded; they sleep while the kernel reads in the contents of the pages.


6.6.1 Sleep Events and Addresses


Recall from Chapter 2 that processes are said to sleep on an event, meaning that they are in the sleep state until the event occurs, at which time they wake up and enter a "ready-to-run" state (in memory or swapped out). Although the system uses the abstraction of sleeping on an event, the implementation maps the set of events into a set of (kernel) virtual addresses. The addresses that represent the events are coded into the kernel, and their only significance is that the kernel
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proc a
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Figure 6.30. Processes Sleeping on Events and Events Mapping into Addresses expects an event to map into a particular address. The abstraction of the event does not distinguish how many processes are awaiting the event, nor does the implementation. As a result, two anomalies arise. First, when an event occurs and a wakeup call is issued for processes that are sleeping on the event, they all wake up and move from a sleep state to a ready-to-run state. The kernel does not wake up one process at a time, even though they may contend for a single locked structure, and many may go back to sleep after a brief visit to the kernel running state (recall the discussion in Chapters 2 and 3). Figure 6.30 shows several processes sleeping on events.


The second anomaly in the implementation is that several events may map into one address. In Figure 6.30, for example, the events "waiting for the buffer" to become free and "awaiting I/O completion" map into the address of the buffer ("addr A"). When I/O for the buffer completes, the kernel wakes up all processes sleeping on both events. Since a process waiting for I/O keeps the buffer locked, other processes waiting for the buffer to become free will go back to sleep if the buffer is still locked when they execute. It would be more efficient if there would be a one-to-one mapping of events to addresses. In practice, however, performance is not hurt, because the mapping of multiple events into one address is rare and because the running process usually frees the locked resource before the other processes are scheduled to run. Stylistically, however, it would make the kernel a little easier to understand if the mapping were one-to-one.
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algorithm sleep


input: (1) sleep address


(2) priority


output: 1 if process awakened as a result of a signal that process catches, longjump algorithm if process awakened as a result of a signal


that it does not catch,


0 otherwise;


raise processor execution level to block all interrupts;


set process state to sleep;


put process on sleep hash queue, based on sleep address;


save sleep address in process table slot;


set process priority level to input priority;


if (process sleep is NOT interruptible)


do context switch;


/* process resumes execution here when it wakes up */


reset processor priority level to allow interrupts as when


process went to sleep;


return (0);


1


/* here, process sleep is interruptible by signals */


if (no signal pending against process)


do context switch;


'ent


/* process resumes execution here when it wakes up *1


the


if (no signal pending against process)


and


ake


reset processor priority level to what it was when


'ake_


process went to sleep;


keL


return (0);


eral


1


remove process from sleep hash queue, if stilt there;


into


reset processor priority level to what it was when process went to sleep;


" to


if (process sleep priority set to catch signals)


Iffer


return(1)


do longjmp algorithm;


the


ronk'


Figure 6.31. Sleep Algorithm
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6.6.2 Algorithms for Sleep and Wakeup


Figure 6.31 shows the algorithm for sleep. The kernel first raises the processor execution level to block out all interrupts so that there can be no race conditions when it manipulates the sleep queues, and it saves the old processor execution level so that it can be restored when the process later wakes up. It marks the process state "asleep," saves the sleep address and priority in the process table, and puts it onto a hashed queue of sleeping processes. In the simple case (sleep cannot be interrupted), the process does a context switch and is safely asleep. When a sleeping process wakes up, the kernel later schedules it to run: The process returns from its context switch in the sleep algorithm, restores the processor execution level to the value it had when the process entered the algorithm, and returns.


algorithm wakeup


/* wake up a sleeping process */


input: sleep address


output: none


raise processor execution level to block all interrupts;


find sleep hash queue for sleep address;


for (every process asleep on sleep address)


remove process from hash queue;


mark process state "ready to run";


put process on scheduler list of processes ready to run;


clear field in process table entry for sleep address;


if (process not loaded in memory)


wake up swapper process (0);


else if (awakened process is more elligible to run than


currently running process)


set scheduler flag;


restore processor execution level to original level;


Figure 6.32. Algorithm for Wakeup


To wake up sleeping processes, the kernel executes the wakeup algorithm (Figure 6.32), either during the usual system call algorithms or when handling an interrupt. For instance, the algorithm iput releases a locked mode and awakens all processes waiting for the lock to become free. Similarly, the disk interrupt handler awakens a process waiting for 1/0 completion. The kernel raises the processor execution level in wakeup to block out interrupts. Then for every process sleeping on the input sleep address, it marks the process state field "ready to run," removes the process from the linked list of sleeping processes, places it on a linked list of processes eligible for scheduling, and clears the field in the process table that
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marked its sleep address. If a process that wake up was not loaded in memory, thi kernel awakens the swapper process to swap the process into memory (assuming thi or


system is one that does not support demand paging); otherwise, if the awakene(


ns


process is more eligible to run than the currently executing process, the kernel set.


'el


a scheduler fiag so that it will go through the process scheduling algorithm whei


;ss


the process returns to user mode (Chapter 8). Finally, the kernel restores thi it


processor execution level. It cannot be stressed enough: wakeup does not cause be


process to be scheduled immediately; it only makes the process eligible fo a


scheduling.


»ns


The discussion above is the simple case of the sleep and wakeup algorithms vel


because it assumes that the process sleeps until the proper event occurs. Processe frequently sleep on events that are "sure" to happen, such as when awaiting locked resource (inodes or buffers) or when awaiting completion of disk I/0. Th, process is sure to wake up because the use of such resources is designed to b temporary. However, a process may sometimes sleep on an event that is not sure happen, and if so, it must have a way to regain control and continue execution. Fo such cases, the kernel "interrupts" the sleeping process immediately by sending it signal. The next chapter explains signals in great detail; for now, assume that th, kernel can (selectively) wake up a sleeping process as a result of the signal, arm that the process can recognize that it has been sent a signal.


For instance, if a process issues a read system call to a terminal, the kernel doe not satisfy the call until a user types data on the terminal keyboard (Chapter 10) However, the user that started the process may leave the terminal for an all-da: meeting, leaving the process asleep and waiting for input, and another user ma: want to use the terminal. If the second user resorts to drastic measures (such a; turning the terminal off), the kernel needs a way to recover the disconnecte(


process: As a first step, it must awaken the process from its sleep as the result of signal. Parenthetically, there is nothing wrong with processes sleeping for a 'om ti me. Sleeping process occupy a slot in the process table and could thus lengther the search times for certain algorithms, but they do not use CPU time, so theil overhead is small.


To distinguish the types of sleep states, the kernel sets the scheduling priority oi the sleeping process when it enters the sleep state, based on the sleep priorit) parameter. That is, it invokes the sleep algorithm with a priority value, based or its knowledge that the sleep event is sure to occur or not. If the priority is above a thrn


threshold value, the process will not wake up prematurely on receipt of a signal bul g an


will sleep until the event it is waiting for happens. But if the priority value is belov, s all


the threshold value, the process will awaken immediately on receipt of the signal.4


'dier


tsso


4. The term "above" and "below" refer to the normal usage of the terms high priority and low priority ping


However, the kernel implementation uses integers to measure the priority value, with lower valueE


lavet_


irnplying higher priority.


St of ---


that
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If a signal is already set against a process when it enters the sleep algorithm, the conditions just stated determine whether the process ever gets to sleep. For instance, if the sleep priority is above the threshold value, the process goes to sleep and waits for an explicit wakeup call. If the sleep priority is below the threshold value, however, the process does not go to sleep but responds to the signal as if the signal had arrived while it was asleep. If the kernel did not check for signals before going to sleep, the signal may not arrive again and the process would never wake up.


When a process is awakened as a result of a signal (or if it never gets to sleep because of existence of a signal), the kernel may do a /ongimp, depending on the reason the process originally went to sleep. The kernel does a long imp to restore a previously saved context if it has no way to complete the system call it is executing, For instance, if a terminal read call is interrupted because a user turns the terminal off, the read should not complete but should return with an error indication. This holds for all system calls that can be interrupted while they are asleep. The process should not continue normally after waking up from its sleep, because the sleep event was not satisfied. The kernel saves the process context at the beginning of most system calls using seymp in anticipation of the need for a later longjmp.


There are occasions when the kernel wants the process to wake up on receipt of a signal but not do a longjmp. The kernel invokes the sleep algorithm with a special priority parameter that suppresses execution of the longjmp and causes the sleep algorithm to return the value I. This is more efficient than doing a setjmp immediately before the sleep call and then a longjmp to restore the context of the process as it was before entering the sleep state. The purpose is to allow the kernel to clean up local data structures. For example, a device driver may allocate private data structures and then go to sleep at an interruptible priority; if it wakes up because of a signal, it should free the allocated data structures, then longjmp if necessary. The user has no control over whether a process does a longjmp; that depends on the reason the process was sleeping and whether kernel data structures need modification before the process returns from the system call.


6.7 SUMMARY


This chapter has defined the context of a process. Processes in the UNIX system move between various logical states according to well-defined transition rules, and state information is saved in the process table and the u area. The context of a process consists of its user-level context and its system-level context. The user-level context consists of the process text, data, (user) stack, and shared memory regions, and the system-level context consists of a static part (process table entry, u area, and memory mapping information) and a dynamic part (kernel stack and saved registers of previous system context layer) that is pushed and popped as the process executes system calls, handles interrupts, and does context switches. The user-level context of a process is divided into separate regions, comprising contiguous ranges of virtual addresses that are treated as distinct objects for protection and sharing.
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The memory management model used to describe the virtual address layout of 2


process assumes the use of a page table for each process region. The kerne contains various algorithms that manipulate regions. Finally, the chapter describec the algorithms for sleep and wakeup. The following chapters use the low-leve structures and algorithms described here, in the explanation of the system calls process management, process scheduling, and the implementation of memor, management policies.


6.8 EXERCISES


1


Design an algorithm that translates virtual addresses to physical addresses, given virtual address and the address of the pregion entry.


2.


The AT&T 3B2 computer and the NSC Series 32000 use a two-tiered (segmented, translation scheme to translate virtual addresses to physical addresses. That is, th.


system contains a pointer to a table of page table pointers, and each entry in the tabl, can address a fixed portion of the process address space, according to its offset in th, table. Compare the algorithm for virtual address translation on these machines to th.


algorithm diseussed for the memory model in the text. Consider issues of performanc, and the space needecl for auxiliary tables.


3. The VAX-11 architecture contains two sets of base and limit registers that th, machine uses for user address translation. The scheme is the same as that describe•


in the previous problem, exeept that the number of page table pointers is two. Givei that processes have three regions, text, data, and stack, what is a good way of mappini the regions into page tables and using the two sets of registers? The stack in th, VAX-11 architecture grows towards lower virtual addresses. What should the stad region look like? Chapter 11 will describe another region for shared memory: Hom should it fit into the VAX-11 arehitecture?


4.


Design an algorithm for allocating and freeing memory pages and page tables. Wha data structures would allow best performance or simplest implementation?


5.


The MC68451 memory management unit for the Motorola 68000 Family o


Microprocessors allows allocation of memory segments with sizes ranging from 25(


bytes to 16 megabytes in powers of 2. Each (physical) memory management uni contains 32 segment descriptors. Describe an efficient rnethod for memory allocation What should the implementation of regions look like?


6.


Consider the virtual address map in Figure 6.5. Suppose the kernel swaps the proces!


out (in a swapping system) or swaps out many pages in the stack region (in a pagink tm


system). If the process later reads (virtual) address 68,432, must it read the identica nd


location in physical memory that it would have read before the swap or pagink a


operation? If the lower levels of memory management were implemented with page vel


tables, must the page tables be located in the same locations of physical memory?


*


It is possible to implement the system such that the kernel stack grows on top of th<


ea, •


user stack. Discuss the advantages and disadvantages of such an implementation.


ved


8.


When attaching a region to a process, how can the kernel check that the region doe: ess


not overlap virtual addresses in regions already attached to the process?


wel


9.


Consider the algorithm for doing a context switch. Suppose the system contains °nl) one process that is ready to run. In other words, the kernel picks the process that jusi


[ges


saved its context to run. Describe what happens.


ing.
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10. Suppose a process goes to sleep and the system contains no processes ready to run, What happens when the (about to be) sleeping process does its context switch?


11. Suppose that a process executing in user mode uses up its time slice and, as a result of a clock interrupt, the kernel schedules a new process to run. Show that the context switch takes place at kernel context layer 2.


12. In a paging system, a process executing in user mode may incur a page fault because it is attempting to access a page that is not loaded in memory. In the course of servicing the interrupt, the kernel reads the page from a swap device and goes to sleep.


Show that the context switch (during the sleep) takes place at kernel context layer 2.


13. A process executes the system call


read(fd, buf, 1024);


on a paging system. Suppose the kernel executes algorithm read to the point where it has read the data into a system buffer, but it incurs a page fault when trying to copy the data into the user address space because the page containing buf was paged out.


The kernel handles the interrupt by reading the offending page into memory. What happens in each kernel context layer? What happens if the page fault handler goes to sleep while waiting for the page to be written into main memory?


14. When copying data from user address space to the kernel in Figure 6.17, what would happen if the user supplied address was illegal?


* 15. In algorithms sleep and wakeup, the kernel raises the processor execution level to prevent interrupts. What bad things could happen if it did not raise the processor execution level? (Hint: The kernel frequently awakens sleeping processes from interrupt handlers.)


* 16. Suppose a process attempts to go to sleep on event A but has not yet executed the code in the sleep algorithm to block interrupts; suppose an interrupt occurs before the process raises the processor execution level in sleep, and the interrupt handler attempts to awaken all processes asleep on event A. What will happen to the process attempting to go to sleep? Is this a dangerous situation? 1f so, how can the kernel avoid it?


17. What happens if the kernel issues a wakeup call for all processes asleep on address A, but no processes are asleep on that address at the time?


18. Many processes can sleep on an address, but the kernel may want to wake up selected processes that receive a signal. Assume the signal meehanism can identify the partieular processes. Describe how the wakeup algorithm should be changed to wake up one process on a sleep address instead of all the processes.


19. The Multics system contains algorithms for sleep and wakeup with the following syntax:


sleep(event);


wakeup(event, priority);


That is, the wakeup algorithm assigns a priority to the process it is awakening.


Compare these calls to the sleep and wakeup calls in the UNIX system.
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The last chapter defined the context of a process and explained the algorithms that manipulate it; this chapter will describe the use and implementation of the system calls that control the process context. The fork system call creates a new process, the exit call terminates process execution, and the wait call allows a parent  process to synchronize its execution with the exit of a child process. Signals inform processes of asynchronous events. Because the kernel synchronizes execution of exit and wait via signals, the chapter presents signals before exit and wait. The exec system call allows a process to invoke a "new" program, overlaying its address space with the executable image of a file. The brk system call allows a process to allocate more memory dynamically; similarly, the system allows the user stack to grow dynamically by allocating more space when necessary, using the same mechanisms as for brk. Finally, the chapter sketches the construction of the major loops of the shell and of init.


Figure 7.1 shows the relationship between the system calls described in this chapter and the memory management algorithms described in the last chapter.


Almost all calls use sleep and wakeup, not shown in the figure. Furthermore, exec interacts with the file system algorithms described in Chapters 4 and 5.
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System Calls Dealing


System Calls Dealing


Miscellaneous


with Memory Management


with Synchronization


fork


exec


brk


exit


wait signal kill setpgrp setuid


dupreg


detachreg growreg detachreg


a ttachreg


allocreg


attachreg


growreg


loadreg


mapreg 1


Figure 7.1. Process System Calls and Relation to Other Algorithms 7.1 PROCESS CREATION


The only way for a user to create a new process in the UNIX operating system is to invoke the fork system call. The process that invokes fork is called the parent process, and the newly created process is called the child process. The syntax for the fork system call is


pid


fork();


On return from the fork system call, the two processes have identical copies of their user-level context except for the return value pid. In the parent process, pid is the child process ID; in the child process, pid is 0. Process 0, created internally by the kernel when the system is booted, is the only process not created via fork.


The kernel does the following sequence of operations for fork.


1.


It allocates a slot in the process table for the new process.


2.


It assigns a unique ID number to the child process.


3.


It makes a logical copy of the context of the parent process. Since certain portions of a process, such as the text region, may be shared between processes, the kernel can sometimes increment a region reference count instead of copying the region to a new physical location in memory,


4.


It increments file and mode table counters for files associated with the process.


5.


It returns the ID number of the child to the parent process, and a 0 value to the child process.


The implementation of the fork system call is not trivial, because the child process appears to start its execution sequence out of thin air. The algorithm for fork varies slightly for demand paging and swapping systems; the ensuing discussion is
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based on traditional swapping systems but will point out the places that change for demand paging systems. It also assumes that the system bas enough main memory available to store the child process. Chapter 9 considers the case where not enough memory is available for the child process, and it also describes the implementation of fork on a paging system.


algorithm fork


input: none


output: to parent process, child PID number


to child process, 0


check for available kernel resources;


get free proc table slot, unique PID nurnber;


check that user not running too many processes;


mark child state "being created;"


copy data from patent proc table slot to new child slot;


increment counts on current directory Mode and changed root Of applicahle); incrernent open file counts in file table;


make copy of patent context (u area, text, data, stack) in memory;


push dummy system level context layer onto child system level context; dummy context contains data allowing child process


to recognize itself, and start running from here


when scheduled;


if (executing process is patent process)


change child state to "ready to run;"


return(child ID);


/* from system to user */


else


/* executing process is the child process */


initialize u area timing fields;


return(0);


1* to user */


Figure 7.2. Algorithm for Fork


Figure 7.2 shows the algorithm for fork. The kernel first ascertains that it has available resources to complete the fork successfully. On a swapping system, it needs space either in memory or on disk to hold the child process; on a paging system, it bas to allocate memory for auxiliary tables such as page tables. 1f the resources are unavailable, the fork call fails. The kernel finds a slot in the process table to start constructing the context of the child process and makes sure that the user doing the fork does not have too many processes already running. It also picks a unique ID number for the new process, one greater than the most recently
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assigned ID number. If another process already has the proposed ID number, the kernel attempts to assign the next higher ID number. When the ID numbers reach a maximum value, assignment starts from 0 again. Since most processes execute for a short time, most ID numbers are not in use when ID assignment wraps around.


The system imposes a (configurable) limit on the number of processes a user can simultaneously execute so that no user can steal many process table slots, thereby preventing other users from creating new processes. Similarly, ordinary users cannot create a process that would occupy the last remaining slot in the process table, or else the system could effectively deadlock. That is, the kernel cannot guarantee that existing processes will exit naturally and, therefore, no new processes could be created, because all the process table slots are in use. On the other hand, a superuser can execute as many processes as it likes, bounded by the size of the process table, and a superuser process can occupy the last available slot in the process table. Presumably, a superuser could take drastic action and spawn a process that forces other processes to exit if necessary (see Section 7.2.3 for the kill system call).


The kernel next initializes the child's process table slot, copying various fields from the parent slot. For instance, the child "inherits" the parent process real and effective user ID numbers, the parent process group, and the parent nice value, used for calculation of scheduling priority. Later sections discuss the meaning of these fields. The kernel assigns the parent process ID field in the child slot, putting the child in the process tree structure, and initializes various scheduling parameters, such as the initial priority value, initial CPU usage, and other timing fields. The initial state of the process is "being created" (recall Figure 6.1).


The kernel now adjusts reference counts for files with which the child process is automatically associated. First, the child process resides in the current directory of the parent process. The number of processes that currently access the directory increases by 1 and, accordingly, the kernel increments its mode reference count.


Second, if the parent process or one of its ancestors had ever executed the chroot system call to change its root, the child process inherits the changed root and increments its mode reference count. Finally, the kernel searches the parent's user file descriptor table for open files known to the process and increments the global file table reference count associated with each open file. Not only does the child process inherit access rights to open files, but it also shares access to the files with the parent process because both processes manipulate the same file table entries.


The effect of fork is similar to that of dup vis-a-vis open files: A new entry in the user file descriptor table points to the entry in the global file table for the open file.


For dup, however, the entries in the user file descriptor table are in one process; for fork, they are in different processes.


The kernel is now ready to create the user-level context of the child process. It allocates memory for the child process u area, regions, and auxiliary page tables, duplicates every region in the parent process using algorithm dupreg, and attaches every region to the child process using algorithm attachreg. In a swapping system,
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it copies the contents of regions that are not shared into a new area of main memory. Recall from Section 6.2.4 that the u area contains a pointer to its process table slot. Exeept for that field, the contents of the child u area are initially the same as the contents of the parent process u area, but they can diverge after completion of the fork. For instance, the parent process may open a new file after the fork, but the child process does not have automatie access to it.


So far, the kernel has created the statie portion of the child context; now it creates the dynamic portion. The kernel copies the parent context layer 1, containing the user saved register context and the kernel stack frame of the fork system cal'. If the implementation is one where the kernel stack is part of the u area, the kernel automatically creates the child kernel stack when it creates the child u area. Otherwise, the parent process must Copy its kernel stack to a private area of memory associated with the child process. In either case, the kernel stacks for the parent and child processes are identical. The kernel then creates a dummy context layer (2) for the child process, containing the saved register context for context layer (1). k sets the program counter and other registers in the saved register context so that it can "restore" the child context, even though it had nevel executed before, and so that the child process can recognize itself as the child wher it runs. For instance, if the kernel code tests the value of register 0 to decide if thc process is the parent or the child, it writes the appropriate value in the child savec register context in layer 1. The mechanism is similar to that discussed for g context switch in the previous chapter.


When the child context is ready, the parent completes its part of fork 1)3


ehanging the child state to "ready to run (in memory)" and by returning the chil< process ID to the user. The kernel later schedules the child process for executior via the normal scheduling algorithm, and the child process "completes" its part o the fork. The context of the child process was set up by the parent process; to tho kernel, the child process appears to have awakened after awaiting a resource. Tb child process executes part of the code for the fork system call, according to th'


program counter that the kernel restored from the saved register context in contex layer 2, and returns a 0 from the system eau.


Figure 7.3 gives a logica! view of the parent and child processes and thei: relationship to other kernel data structures immediately after completion of tip fork system cal'. To summarize, both processes share files that the parent ha< open at the time of the fork, and the file table reference count for those files is ono greater than it had been. Similarly, the child process has the same curren directory and changed root (if applicable) as the parent, and the Mode referencd count of those directories is one greater than it had been. The processes havi identical copies of the text, data, and (user) stack regions; the region type and tb system implementation determine whether the processes can share a physical cop: of the text region.


S,


Consider the program in Figure 7.4, an example of sharing file access across fork system cal!. A user should invoke the program with two parameters, the nam of an existing file and the name of a new file to be created. The process opens
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Parent Process


File


Open Files it


Table


Current Directory


Changed Root


m ode


Table


Figure 7.3. Fork Creating a New Process Context


existing file, creats the new file, and — assuming it encounters no errors — forks and creates a child process. Internally, the kernel makes a copy of the parent context for the child process, and the parent process executes in one address space and the child process executes in another. Each process can access private copies of the global variables fdrd, fdwt, and c and private copies of the stack variables argc and argv, but neither process can access the variables of the other process.


However, the kernel copied the u area of the original process to the child process during the fork, and the child thus inherits access to the parent files (that is, the files the parent originally opened and created) using the same file descriptors.
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that they alternate execution of their system calls, or even if they alternate the execution of pairs of read-write system calls, the contents of the target file would be identical to the contents of the source file. But consider the following scenario where the processes are about to read the two character sequence "ab" in the source file. Suppose the parent process reads the character 'a', and the kernel does a context switch to execute the child process before the parent does the write, If the child process reads the character 'b' and writes it to the target file before the parent is rescheduled, the target file will not contain the string "ab" in the proper place, but "ba". The kernel does not guarantee the relative rates of process execution.


Now consider the program in Figure 7.5, which inherits file descriptors 0 and 1


(standard input and standard output) from its parent. The execution of each pipe system call allocates two more file descriptors in the arrays to_par and to_chil, respectively. The process forks and makes a copy of its context: each process can access its own data, as in the previous example. The parent process doses its standard output file (file descriptor I), and dups the write descriptor returned for the pipe to chil. Because the first free slot in the parent file descriptor table is the slot just cleared by the close, the kernel copies the pipe write descriptor to slot I in the file descriptor table, and the standard output file descriptor becomes the pipe write descriptor for to chil. The parent process does a similar operation to make its standard input descriptor the pipe read descriptor for to_par. Similarly, the child process closes its standard input file (descriptor 0) and dups the pipe read descriptor for to_chil. Since the first free slot in the file descriptor table is the previous standard input slot, the child standard input becomes the pipe read descriptor for to chil. The child does a similar set of operations to make its standard output the pipe write descriptor for to_par. Both processes close the file descriptors returned from pipe— good programming practice, as will be explained.


As a result, when the parent writes its standard output, it is writing the pipe to_chil and sending data to the child process, which reads the pipe on its standard input. When the child writes its standard output, it is writing the pipe to_par and sending data to the parent process, which reads the pipe on its standard input. The processes thus exchange messages over the two pipes.


The results of this example are invariant, regardless of the order that the processes execute their respective system calls. That is, it makes no difference whether the parent returns from the fork eall before the and or afterwards.


Similarly, it makes no difference in what relative order the processes execute the system calls until they enter their loops: The kernel structures are identical. If the child process executes its read system call before the parent does its write, the child process will sleep until the parent writes the pipe and awakens it. If the parent process writes the pipe before the child reads the pipe, the parent will not complete its read of standard input until the child reads its standard input and writes its standard output. From then on, the order of execution is fixed: Each process completes a read and write system call and cannot complete its next read system call until the other process completes a read and write system cal!. The parent
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#include <string.h>


char stringE


"hello world";


main()


int count, i;


int to_par[2], to_chil[21;


/* for pipes to parent, child */


char bun2561;


pipe(to_par);


pipe(to_chil);


if (fork()


/* child process c xecutes here */


close (0)


/* close old standard input */


dup(to_chil[01);


/* dup pipe read to standard inpu


close (1);


/* close old standard output */


*1


dup (to_parE I D ;


/* dup pipe write to standard out


*1


close(to_par[1]);


/* close unnecessary pipe descriptors


close(to_chil[0]);


close(to_par[0]);


close(to_chil[1]);


for (;;)


if ((count


ead(0, buf, sizeof(buf)))


exit();


write (1, buf, count);


/* parent process executes here */


*1


close(1);


/* rearrange standard in, out


dup(to chilE1D;


close (0);


dup(to_par[01);


close (to chil[11) ;


close(to_par[01);


close(to chil[01);


close(to_par[li);


for (i 0; i < 15; i++)


write(1, string, strlen(string));


read(0, buf, sizeof(buf));


Figure 7.5. Use of Pipe, Dup, and Fork
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exits after 15 iterations through the loop; the child then reads "end-of-file" because the pipe bas no writer processes and exits. If the child were to write the pipe after the parent had exited, it would receive a signa' for writing a pipe with no reader processes.


We mentioned above that it is good programming practice to close superfluous file descriptors. This is truc for three reasons. First, it conserves file descriptors in view of the system-imposed limit. Second, if a child process execs, the file descriptors remain assigned in the new context, as will be seen. Closing extraneous files before an exec allows programs to execute in a clean, surprise-free environment, with only standard input, standard output, and standard error file descriptors open. Finally, a read of a pipe returns end-of-file only if no processes have the pipe open for writing. If a reader process keeps the pipe write descriptor open, it will never know when the writer processes close their end of the pipe. The example above would not work properly unless the child doses its write pipe descriptors before entering its loop.


7.2 SIGNALS


Signals inform processes of the occurrence of asynchronous events. Processes may send each other signals with the kill system call, or the kernel may send signals internally. There are 19 signals in the System V (Release 2) UNIX system that can be classified as follows (see the description of the signal system call in [SVID


85D:


• Signals having to do with the termination of a process, sent when a process exits or when a process invokes the signal system call with the death of child parameter;


• Signals having to do with process induced exceptions such as when a process accesses an address outside its virtual address space, when it attempts to write memory that is read-only (such as program text), or when it executes a privileged instruction or for various hardware errors;


• Signals having to do with the unrecoverable conditions during a system call, such as running out of system resources during exec after the original address space bas been released (see Section 7.5);


• Signals caused by an unexpected error condition during a system Cali, such as making a nonexistent system call (the process passed a system call number that does not carrespond to a legal system eau), writing a pipe that has no reader processes, or using an illegal "reference" value for the lseek system call. It would be more consistent to return an error on such system calls instead of generating a signa', but the use of signals to abort misbehaving processes is more pragmatic;I
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• Signals originating from a process in user mode, such as when a process wishes to receive an alarm signal after a period of time, or when processes send arbitrary signals to each other with the kill system call;


• Signals related to terminal interaction such as when a user hangs up a terminal (or the "carrier" signal drops on such a line for any reason), or when a user presses the "break" or "delete" keys on a terminal keyboard;


• Signals for tracing execution of a process.


The discussion in this and in following chapters explains the circumstances under which signals of the various classes are used.


The treatment of signals has several facets, namely how the kernel sends a signal to a process, how the process handles a signal, and how a process controls its reaction to signals. To send a signal to a process, the kernel sets a bit in the signal field of the process table entry, corresponding to the type of signal received. If the process is asleep at an interruptible priority, the kernel awakens it. The job of the sender (process or kernel) is complete. A process can remember different types of signals, but it has no memory of how many signals it receives of a particular type.


For example, if a process receives a hangup signal and a kill signal, it sets the appropriate bits in the process table signal field, but it cannot tell how many instances of the signals it receives.


The kernel checks for receipt of a signal when a process is about to return from kernel mode to user mode and when it enters or leaves the sleep state at a suitably low scheduling priority (see Figure 7.6). The kernel handles signals only when a process returns from kernel mode to user mode. Thus, a signal does not have an instant effect on a process running in kernel mode. If a process is running in user mode, and the kernel handles an interrupt that causes a signal to be sent to the process, the kernel will recognize and handle the signal when it returns from the interrupt. Thus, a process never executes in user mode before handling outstanding signals.


Figure 7.7 shows the algorithm the kernel executes to determine if a process received a signal. The case for "death of child" signals will be treated later in the chapter. As will be seen, a process can choose to ignore signals with the signal system call. In the algorithm issig, the kernel simply turns off the signal indication for signals the process wants to ignore but notes the existence of signals it does not ignore.


1. The use of signals in some circumstances uncovers errors in programs that do not check for failure of system calls (private communication from D. Ritchie).
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Figure 7.6. Checking and Handling Signals in the Process State Diagram
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algorithm issig


/* test for receipt of signals 41


input: none


1output: true, if process received signals that it does not ignore


false otherwise


while (received signal field in process table entry not 0)


find a signal number sent to the process;


if (signal is death of child)


if (ignoring death of child signals)


free process table entries of zombie children;


else if (catching death of child signals)


return (true);


else if (not ignoring signal)


return (true) ;


turn off signal bit in received signal field in process table;


return (false);


Figure 7.7. Algorithm for Recognizing Signals


7.2.1 Handling Signals


The kernel handles signals in the context of the process that receives them so a process must run to handle signals. There are three cases for handling signals: the process exits on receipt of the signal, it ignores the signal, or it executes a particular (user) function on receipt of the signal. The default action is to call exit in kernel mode, but a process can specify special action to take on receipt of certain signals with the signal system call.


The syntax for the signal system call is


oldfunction signal(signum, function);


where signum is the signal number the process is specifying the action for, function is the address of the (user) function the process wants to invoke on receipt of the signal, and the return value oldfunction was the value of function in the most recently specified call to signal for sign urn. The process can pass the values 1 or 0


instead of a function address: The process will ignore future occurrences of the signal if the parameter value is 1 (Section 7.4 deals with the special case for ignoring the "death of child" signal) and exit in the kernel on receipt of the signal if its value is 0 (the default value). The u area contains an array of signal-handler fields, one for each signal defined in the system. The kernel stores the address of the user function in the field that corresponds to the signal number. Specification
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a gorithm psig


* handle signals after recognizing their ex s ence V


input: none


output: none


get signal number set in process table entry;


clear signal number in process table entry;


if (user had called signal sys call to ignore this signal)


return;


/* done V


if (user specified function to handle the signa!)


get user virtual address of signal catcher stored in u area;


/* the next statement has undesirable side-effects */


clear u area entry that stored address of signal catcher;


modify user level context:


artificially create user stack frame to mimic


call to signal catcher function;


modify system level context:


write address of signal catcher into program


counter field of user saved register context;


return;


if (signal is type that system should dump core image of process)


create file named "core" in current directory;


write contents of user level context to file "core";


invoke exit algorithm immediately;


Figure 7.8. Algorithm for Handling Signals


to handle signals of one type has no effect on handling signals of other types.


When handling a signa' (Figure 7.8) the kernel determines the signal type and turns off the appropriate signa' bit in the process table entry, set when the process received the signal. If the signal handling funetion is set to its default value, the kernel will dump a "core" image of the process (see exercise 7.7) for certain types of signals before exiting. The dump is a convenience to programmers, allowing them to ascertain its causes and, thereby, to debug their programs. The kernel dumps core for signals that imply something is wrong with a process, such as when a process executes an illegal instruction -or when it accesses an address outside its virtual address space. But the kernel does not dump core for signals that do not imply a program error. For instance, receipt of an interrupt signa', sent when a user hits the "delete" or "break" key on a terminal, implies that the user wants to terminate a process prematurely, and receipt of a hangup signa' implies that the login terminal is no langer "connected." These signals do not imply that anything
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is wrong with the process. The quit signal, however, induces a core dump even though it is initiated outside the running process. Usually sent by typing the control-vertical-bar character at the terminal, it allows the programmer to obtain a core dump of a running process, useful for one that is in an infinite loop.


When a process receives a signal that it had previously decided to ignore, it continues as if the signal had never occurred. Because the kernel does not reset the field in the u area that shows the signal is ignored, the process will ignore the signal if it happens again, too. If a process receives a signal that it had previously decided to catch, it executes the user specified signal handling function immediately when it returns to user mode, after the kernel does the following steps.


1.


The kernel accesses the user saved register context, finding the program counter and stack pointer that it had saved for return to the user process.


2.


It clears the signal handler field in the u area, setting it to the default state.


3.


The kernel creates a new stack frame on the user stack, writing in the values of the program counter and stack pointer it had retrieved from the user saved register context and allocating new space, if necessary. The user stack looks as if the process had called a user-level function (the signal catcher) at the point where it had made the system call or where the kernel had interrupted it (before recognition of the signal).


4.


The kernel changes the user saved register context: It resets the value for the program counter to the address of the signal catcher function and sets the value for the stack pointer to account for the growth of the user stack.


After returning from the kernel to user mode, the process will thus execute the signal handling function; when it returns from the signal handling function, it returns to the place in the user code where the system call or interrupt originally occurred, mimicking a return from the system call or interrupt.


For example, Figure 7.9 contains a program that catches interrupt signals (SIGINT) and sends itself an interrupt signal (the result of the kill call here), and Figure 7.10 contains relevant parts of a disassembly of the load module on a VAX


11/780. When the system executes the process, the call to the kill library routine comes from address (hexadecimal) ee, and the library routine executes the clunk


(change mode to kernel) instruction at address 10a to call the kill system call. The return address from the system call is 10c. In executing the system call, the kernel sends an interrupt signal to the process. The kernel notices the interrupt signal when it is about to return to user mode, removes the address 10c from the user saved register context, and places it on the user stack. The kernel takes the address of the function catcher, 104, and puts it into the user saved register context.


Figure 7.11 illustrates the states of the user stack and saved register context.


Several anomalies exist in the algorithm described here for the treatment of signals, First and most important, when a process handles a signal but before it returns to user mode, the kernel clears the field in the u area that contains the address of the user signal handling function. If the process wants to handle the signal again, it must call the signal system call again. This has unfortunate
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#include <signal.h>


main°


extern catchero;


signal(SIGINT, catcher);


kill (0, SIGINT);


1


catcher()


Figure 7.9. Source Code for a Program that Catches Signals


**** VAX DISASSEMBLER


_main°


e4:


e6:


pushab 0x18 (pc)


ec: pushl


$0x2


# next line calls signal


ee:


calls


$0x2,0x23(pc)


f5:


pushl


$0x2


f7:


dr!


—(sp)


# next line calls kill library routine


f9:


calls


$0x2,0x8(pc)


100:


ret


101:


halt


102:


halt


103:


halt


_catcher()


104:


106:


ret


107:


halt


_kin()


108:


# next line traps into kernel


10a:


chmk


$0x25


10e:


bgequ


0x6 <0x114>


10e:


j mp


0x14(pc)


114:


dr!


r0


116:


ret


Figure 7.10. Disassembly of Program that Catches Signais
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User Stack
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Process (10c)


Process (104)
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Kernel Context Layer 1
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Figure 7.11. User Stack and Kernel Save Area Before and After Receipt of Signal ramifications: A race condition results because a second instance of the signal may arrive before the process has a chance to invoke the system call. Since the process is executing in user mode, the kernel could do a context switch, increasing the chance that the process will receive the signal before resetting the signal catcher.


The program in Figure 7.12 illustrates the race condition. The process calls the signal system call to arrange to catch interrupt signals and execute the function sigratcher. It then creates a child process, invokes the nice system call to lower its scheduling priority relative to the child process (see Chapter 8), and goes into an infinite loop. The child process suspends execution for 5 seconds to give the parent process time to execute the nice system call and lower its priority. The child process then goes into a loop, sending an interrupt signal (via kill) to the parent process during each iteration. If the kill returns because of an error, probably because the parent process no longer exists, the child process exits. The idea is that the parent process should invoke the signal catcher every time it receives an interrupt signal. The signal catcher prints a message and calls signal again to
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#include <signal.h>


sigcatcher0


printf("PID %d caught one\n", getpid0);


I* print proc id */


signal(SIGINT, sigcatcher);


1


main()


int ppid;


signal(SIGINT, sigcatcher);


if (fork()


0)


/* give enough time for both procs to set up */


sleep(5);


islib function to delay 5 secs */


ppid getppid0;


/* get parent id */


for (;;)


if (kill(ppid, SIGINT)


—1)


exit();


/* lower priority, greater chance of exhibiting race */


nice(10);


for (;;)


Figure 7.12. Program Demonstrating Race Condition in Catching Signals catch the next occurrence of an interrupt signa', and the parent continues to execute in the infinite loop.


It is possible for the following sequence of events to occur, however.


1. The child process sends an interrupt signal to the parent process.


2.


The parent process catches the signa' and calls the signal catcher, but the kernel preempts the process and switches context before it executes the signal system call again.


3.


The child process executes again and sends another interrupt signal to the parent process.


4.


The parent process receives the second interrupt signa', but it has not made arrangements to catch the signal. When it resumes execution, it exits.


The program was written to encourage such behavior, since invocation of the nice system call by the parent process induces the kernel to schedule the chi1d process
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more frequently. However, it is indeterminate when this result will occur.


According to Ritchie (private communication), signals were designed as events that are fatal or ignored, not necessarily handled, and hence the race condition was not fixed in early releases. However, it poses a serious problem to programs that want to catch signals. The problem would be solved if the signal field were not cleared on receipt of the signal. But such a solution could result in a new problem: If signals keep arriving and are caught, the user stack could grow out of bounds because of the nested calls to the signal catcher. Alternatively, the kernel could reset the value of the signal-handling function to ignore signals of that type until the user again specifies what to do for such signals. Such a solution implies a loss of information, because the process has no way of knowing how many signals it receives. However, the loss of information is no more severe than it is for the case where the process receives many signals of one type before it has a chance to handle them. Finally, the BSD system allows a process to block and unblock receipt of signals with a new system call; when a process unblocks signals, the kernel sends pending signals that had been blocked to the process. When a process receives a signal, the kernel automatically blocks further receipt of the signal until the signal handler completes. This is analogous to how the kernel reacts to hardware interrupts: it blocks report of new interrupts while it handles previous interrupts.


A second anomaly in the treatment of signals concerns catching signals that occur while the process is in a system call, sleeping at an interruptible priority.


The signal causes the process to take a longimp out of its sleep, return to user mode, and call the signal handler. When the signal handler returns, the process appears to return from the system call with an error indicating that the system call was interrupted. The user can check for the error return and restart the system call, but it would sometimes be more convenient if the kernel automatically restarted the system call, as is done in the BSD system.


A third anomaly exists for the case where the process ignores a signal. If the signal arrives while the process is asleep at an interruptible sleep priority level, the process will wake up but will not do a kngjmp. That is, the kernel realizes that the process ignores the signal only after waking it up and running it. A more consistent policy would be to leave the process asleep. However, the kernel stores the signal function address in the u area, and the u area may not be accessible when the signal is sent to the process. A solution to this problem would be to store the signal function address in the process table entry, where the kernel could check whether it should awaken the process on receipt of the signal. Alternatively, the process could immediately go back to sleep in the sleep algorithm, if it discovers that it should not have awakened. Nevertheless, user processes never realize that the process woke up, because the kernel encloses entry to the sleep algorithm in a


"while" loop (recall from Chapter 2), putting the process back to sleep if the sleep event did not really occur.


Finally, the kernel does not treat "death of child" signals the same as other signals. In particular, when the process recognizes that it has received a "death of
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child" signal, it turns off the notification of the signa' in the process table entry signal field and in the default case, it acts as if no signa] had been sent. The effect of a "death of child" signal is to wake up a process sleeping at interruptible priority. 1f the process catches "death of child" signals, it invokes the user handler as it does for other signals. The operations that the kernel does if the process ignores "death of child" signals will be discussed in Section 7.4. Finally, if a process invokes the signal system call with "death of child" parameter, the kernel sends the calling process a "death of child" signal if it has child processes in the zombie state. Section 7.4 discusses the rationale for calling signal with the "de,ath of child" parameter.


7.2.2 Process Groups


Although processes on a UNIX system are identified by a unique ID number, the system must sometimes identify processes by "group." For instance, processes with a common ancestor process that is a login shell are generally related, and therefore all such processes receive signals when a user hits the "delete" or "break" key or when the terminal line hangs up. The kernel uses the process group ID to identify groups of related processes that should receive a common signa' for certain events.


It saves the group ID in the process table; processes in the same process group have identical group ID's.


The setpgrp system call initializes the process group number of a process and sets it equal to the value of its process ID. The syntax for the system call is grp setpgrp0;


where grp is the new process group number. A child retains the process group number of its parent during fork. Setpgrp also has important ramifications for setting up the control terminal of a process (see Section 10.3.5).


7.2.3 Sending Signals from Processes


Processes use the kill system call to send signals. The syntax for the system call is kill(pid, signum)


where pid identifies the set of processes to receive the signal, and signum is the signal number being sent. The following list shows the correspondence between values of pid and sets of processes.


• 1f pid is a positive integer, the kernel sends the signal to the process with process ID pid.


• If pid is 0, the kernel sends the signal to all processes in the sender's process group.


• If pid is —1, the kernel sends the signal to all processes whose real user ID


equals the effective user ID of the sender (Section 7.6 will define real and
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effective user ID's). If the sending process has effective user ID of superuser, the kernel sends the signal to all processes except processes 0 and 1.


• If pid is a negative integer but not — 1, the kernel sends the signal to all processes in the process group equal to the absolute value of pid.


In all cases, if the sending process does not have effective user ID of superuser, or its real or effective user ID do not match the real or effective user ID of the receiving process, kill fails.


—#include <signal.h>


main 0


register int i;


setpgrp0;


for (i 0; i < 10; i++)


if (fork()


0)


1* child proc


if (i & 1)


setpgrp0;


printf("pid %d pgrp n•• %d\n", getpid(), getpgrpo);


pause();


/* sys call to suspend execution */


SIG1NT);


Figure 7.13. Sample Use of Setpgrp


In the program in Figure 7.13, the process resets its process group number and creates 10 child processes. When created, each child process has the same process group number as the parent process, but processes created during odd iterations of the loop reset their process group number. The system calls getpid and getpgrp return the process ID and the group ID of the executing process, and the pause


system call suspends execution of the process until it receives a signal. Finally, the parent executes the kill system call and sends an interrupt signal to all processes in its process group. The kernel sends the signal to the 5 "even" processes that did not reset their process group, but the 5 "odd" processes continue to loop.
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7.3 PROCESS TERMINATION


Processes on a UNIX system terminate by executing the exit system eau. An exiting process enters the zombie state (recall Figure 6.1), relinquishes its resources, and dismantles its context except for its slot in the process table. The syntax for the call is


exit (status) ;


where the value of status is returned to the parent process for its examination.


Processes may call exit explicitly or implicitly at the end of a program: the startup routine linked with all C programs calls exit when the program returns from the


main function, the entry point of all programs. Alternatively, the kernel may invoke exit internally for a process on receipt of uncaught signals as discussed above. If so, the value of status is the signal number.


The system imposes no time limit on the execution of a process, and processes frequently exist for a long time. For instance, processes 0 (the swapper) and 1


(mi:) exist throughout the lifetime of a system. Other examples are getty processes, which monitor a terminal line, waiting for a user to log in, and special-purpose administrative processes.


algorithm exit


input: return code for parent process


output: none


ignore all signals;


if (process group leader with associated control terminal)


send hangup signa' to all members of process group;


reset process group for all members to 0;


close all open files (internal version of algorithm close);


release current directory (algorithm iput);


release current (changed) root, if exists (algorithm iput);


free regions, memory associated with process (algorithm freereg);


write accounting record;


make process state zombie


assign parent process ID of all child processes to be init process (I); if any children were zombie, send death of child signal to init;


send death of child signa' to parent process;


context switch;


Figure 7.14. Algorithm for Exit
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Figure 7.14 shows the algorithm for exit. The kernel first disables signal handling for the process, because it no longer makes any sense to handle signals. If the exiting process is a process group leader associated with a control terminal (see Section 10.3.5), the kernel assumes the user is not doing any useful work and sends a "hangup" signal to all processes in the process group. Thus, if a user types "end of file" (control-d character) in the login shell while some processes associated with the terminal are still alive, the exiting process will send them a hangup signal. The kernel also resets the process group number to 0 for processes in the process group, because it is possible that another process will later get the process ID of the process that just exited and that it too will be a process group leader. Processes that belonged to the old process group will not belong to the later process group.


The kernel then goes through the open file descriptors, closing each one internally with algorithm close, and releases the modes it had accessed for the current directory and changed root (if it exists) via algorithm iput.


The kernel now releases all user memory by freeing the appropriate regions with algorithm detachreg and changes the process state to zombie. It saves the exit status code and the accumulated user and kernel execution time of the process and its descendants in the process table. The description of wait in Section 7.4 shows how a process gets the timing data for descendant processes. The kernel also writes an accounting record to a global accounting file, containing various run-time statistics such as user ID, CPU and memory usage, and amount of I/O for the process. User-level programs can later read the accounting file to gather various statistics, useful for performance monitoring and customer billing. Finally, the kernel disconnects the process from the process tree by making process 1 (init) adopt all its child processes. That is, process I becomes the legal parent of all live children that the exiting process had created. If any of the children are zombie, the exiting process sends init a "death of child" signal so that init can remove them from the process table (see Section 7.9); the exiting process sends its parent a


"death of child" signal, too. In the typical scenario, the parent process executes a wait system call to synchronize with the exiting child. The now-zombie process does a context switch so that the kernel can schedule another process to execute; the kernel never schedules a zombie process to execute.


In the program in Figure 7.15, a process creates a child process, which prints its ND and executes the pause system call, suspending itself until it receives a signal.


The parent prints the child's ND and exits, returning the child's PID as its status code. If the exit call were not present, the startup routine calls exit when the process returns from main. The child process spawned by the parent lives on until it receives a signal, even though the parent process is gone.


7.4 AWAITING PROCESS TERMINATION


A process can synchronize its execution with the termination of a child process by executing the wait system call. The syntax for the system call is
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main()


int child;


if ((child


fork())


0)


M


printf( child PID Mit", getpid0);


pause0;


/* suspend execution until signal *1


/* parent */


printf(child PID %d\n", child);


exit(child);


Figure 7.15. Example of Exit


pid


wait(stat addr);


where pid is the process ID of the zombie child, and stat addr is the address user space of an integer that will contain the exit status code of the child.


Figure 7.16 shows the algorithm for walt. The kernel searches for a zombie child of the process and, if there are no children, returns an error. If it finds a zombie child, it extracts the PID number and the parameter supplied to the child's exit call and returns those values from the system call. An exiting process can thus specify various return codes to give the reason it exited, but many programs do not consistently set it in practice. The kernel adds the accumulated time the child process executed in user and in kernel mode to the appropriate fields in the parent process u area and, finally, releases the process table slot formerly occupied by the zombie process. The slot is now available for a new process.


1f the process executing wait has child processes but none are zombie, it sleeps at an interruptible priority until the arrival of a signal. The kernel does not contain an explicit wake up call for a process sleeping in wait: such processes only wake up on receipt of signals. For any signal except "death of child," the process will react as described above. However, if the signa' is "death of child," the process may respond differently.


• In the default case, it will wake up from its sleep in walt, and sleep invokes algorithm issig to check for signals. issig (Figure 7.7) recognizes the special case of "death of child" signals and returns "false." Consequently, the kernel does not "long jump" from sleep, but returns to walt. The kernel will restart the walt loop, find a zombie child — at least one is guaranteed to exist, release the child's process table slot, and return from the walt system call.


• If the process catches "death of child" signals, the kernel arranges to call the user signal-handler routine, as it does for other signals.
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algorithm wait


input: address of variable to store status of exiting process


output: child ID, child exit code


if (waiting process has no child processes)


return (error)


for (;;)


/* loop until return from inside loop */


if (waiting process has zombie child)


pick arbitrary zombie child;


add child CPU usage to parent;


free child process table entry;


return(child ID, child exit code);


if (process has no children)


return error;


sleep at interruptible priority (event child process exits);


Figure 7.16. Algorithm for Wait


• If the process ignores "death of child" signals, the kernel restarts the wait loop, frees the process table slots of zombie children, and searches for more children.


For example, a user gets different results when invoking the program in Figure 7.17 with or without a parameter. Consider first the case where a user invokes the program without a parameter (argc is 1, the program name). The (parent) process creates 15 child processes that eventually exit with return code I, the value of the loop variable when the child was created. The kernel, executing wait for the parent, finds a zombie child process and returns its process ID and exit code. It is indeterminate which child process it finds. The C library code for the exit system call stores the exit code in bits 8 to 15 of ret_code and returns the child process ID


for the wait call. Thus ret_code equals 256*1, depending on the value of i for the child process, and ret_val equals the value of the child process ID.


If a user invokes the above program with a parameter (argc > 1), the (parent) process calls signal to ignore "death of child" signals. Assume the parent process sleeps in wait before any child processes exit: When a child process exits, it sends a "death of child" signal to the parent process; the parent process wakes up because its sleep in wait is at an interruptible priority. When the parent process eventually runs, it finds that the outstanding signal was for "death of child"; but because it ignores "death of child" signals, the kernel removes the entry of the zombie child from the process table and continues executing wait as if no signal had happened.
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#include <signall>


main(argc, argv)


int argc;


char sargvn;


/* child proc here *I


printf("child proc %x\n", getpid());


exit (i);


ret val wait(8Lret code);


printf("wait ret_val %x ret code %x\n", ret_val, ret_code); Figure 7.17. Example of Wait and Ignoring Death of Child Signal The kernel does the above procedure each time the parent receives a "death of child" signal, until it finally goes through the walt loop and finds that the parent bas no children. The walt system call then returns a — 1. The difference between the two invocations of the program is that the parent process waits for the termination of any child process in the first case but waits for the termination of all child processes in the second case.


Older versions of the UNIX system implemented the exit and walt system calls without the "death of child" signa'. Instead of sending a "death of child" signa!, exit would wake up the parent process. If the parent process was sleeping in the walt system cal', it would wake up, find a zombie child, and return. 1f it was not sleeping in the walt system eau, the wake up would have no effect; it would find a zombie child on its next walt can. Similarly, the int: process would sleep in walt, and exiting processes would wake it up if it were to adopt new zombie processes.


The problem with that implementation is that it is impossible to clean up zombie processes unless the parent executes wait. 1f a process creates many children but never executes walt, the process table will become cluttered with zombie children when the children exit. For example, consider the dispatcher program in Figure 7.18. The process reads its standard input file until it encounters the end of file, creating a child process for each read. However, the parent process does not wal: for the termination of the child process, because it wants to dispatch processes as fast as possible and the child process may take too long until it exits. If the parent makes the signal call to ignore "death of child"





7.7


AWAITING PROCESS TERMINATION


217


/* child proc here typically does something with buf */


exit (0)


Figure 7.18. Example Depicting the Reason for Death of Child Signal signals, the kernel will release the entries for the zombie processes automatically.


Otherwise, zombie processes would eventually fill the maximum allowed slots of the process table.


7.5 INVOKING OTHER PROGRAMS


The exec system call invokes another program, overlaying the memory space of a process with a copy of an executable file. The contents of the user-level context that existed before the exec call are no longer accessible afterward except for exec's parameters, which the kernel copies from the old address space to the new address space. The syntax for the system call is


execve(filename, argv, envp)


where filename is the name of the executable file being invoked, argv is a pointer to an array of character pointers that are parameters to the executable program, and envp is a pointer to an array of character pointers that are the environment of the executed program. There are several library functions that call the exec system call such as exec!, execv, execk, and so on. All call execve eventually, hence it is used here to specify the exec system call. When a program uses command line parameters, as in


main(argc, argv)


the array argv is a copy of the argv parameter to exec. The character strings in the environment are of the form "name...value" and may contain useful information for programs, such as the user's home directory and a path of directories to search for executable programs. Processes can access their environment via the global
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algorithm exec


input: (1) file name


(2) parameter list


(3) environment variables list


output: none


get file mode (algorithm namei);


verify file executable, user bas permission to execute;


read file headers, check that it is a bad module;


copy exec parameters from old address space to system space;


for (every region attached to process)


detach all old regions (algorithm detach);


for (every region specified in laad module)


allocate new regions (algorithm allocreg);


attach the regions (algorithm attachreg);


b ad region into memory if appropriate (algorithm loadreg);


1


copy exec parameters into new user stack region;


special processing for setuid programs, tracing;


initialize user register save area for return to user mode;


release mode of file (algorithm iput);


Figure 7.19. Algorithm for Exec


variable environ, initialized by the C startup routine.


Figure 7.19 shows the algorithm for the exee system call. Exee first accesses the file via algorithm namei to determine if it is an executable, regular (nondirectory) file and to determine if the user has permission to execute the program. The kernel then reads the file header to determine the layout of the executable file.


Figure 7.20 shows the logical format of an executable file as it exists in the file system, typically generated by the assembler or loader. It consists of four parts: 1. The primary header describes how many sections are in the file, the start address for process execution, and the magie number, which gives the type of the executable file.


2.


Section headers describe each section in the file, giving the section size, the virtual addresses the section should occupy when running in the system, and other information.


3.


The sections contain the "data," such as text, that are initially loaded in the process address space.


4.


Miscellaneous sections may contain symbol tables and other data, useful for debugging.
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Figure 7.20. Image of an Executable File


Specific formats have evolved through the years, but all executable files have contained a primary header with a magic number.


The magic number is a short integer, which identifies the file as a load module and enables the kernel to distinguish run-time characteristics about it. For example, use of particular magic numbers on a PDP 11/70 informed the kernel that processes could use up to 128K bytes of memory instead of 64K bytes, 2 but the magic number still plays an important role in paging systems, as will be seen in Chapter 9.


2. The values of the magic numbers were the values of PDP 11 jump instructions; original versions of the system executed the instructions, and the program counter jumped to various locations depending on the size of the header and on the type of executable file being executed! This feature was no longer in use by the time the system was written in C.
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At this point, the kernel has accessed the Mode for the executable file and bas verified that it can execute it. It is about to free the memory resources that currently form the user-level context of the process. But since the parameters to the new program are contained in the memory space about to be freed, the kernel first copies the arguments from the old memory space to a temporary buffer until it attaches the regions for the new memory space.


Because the parameters to exec are user addresses of arrays of character strings, the kernel copies the address of the character string and then the character string to kernel space for each character string. It may choose several places to store the character strings, dependent on the implementation. The more popular places are the kernel stack (a local array in a kernel routine), unallocated areas (such as pages) of memory that can be borrowed temporarily, or secondary memory such as a swapping device.


The simplest implementation for copying parameters to the new user-level context is to use the kernel stack. But because system configurations usually impose a limit on the size of the kernel stack and because the exec parameters can have arbitrary length, the scheme must be combined with another. Of the other choices, implementations use the fastest method. If it is easy to allocate pages of memory, such a method is preferable since access to primary memory is faster than access to secondary memory (such as a swapping device).


After copying the exec parameters to a holding place in the kernel, the kernel detaches the old regions of the process using algorithm detachreg. Special treatment for text regions will be discussed later in this section. At this point the process has no user-level context, so any errors that it incurs from now on result in its termination, caused by a signal. Such errors include running out of space in the kernel region table, attempting to bad a program whose size exceeds the system limit, attempting to bad a program whose region addresses overlap, and others.


The kernel allocates and attaches regions for text and data, loading the contents of the executable file into main memory (algorithms allocreg, attachreg, and kadreg). The data region of a process is (initially) divided into two parts: data initialized at compile time and data not initialized at compile time ("bss"). The initial allocation and attachment of the data region is for the initialized data. The kernel then increases the size of the data region using algorithm growreg for the


"bss" data, and initializes the value of the memory to 0. Finally, it allocates a region for the process stack, attaches it to the process, and allocates memory to store the exec parameters. 1f the kernel has saved the exec parameters in memory pages, it can use those pages for the stack. Otherwise, it copies the exec parameters to the user stack.


The kernel clears the addresses of user signal catchers from the u area, because those addresses are meaningless in the new user-level context. Signals that are ignored remain ignored in the new context. Then the kernel sets the saved register context for user mode, specifically setting the initial user stack pointer and program counter: The loader had written the initial program counter in the file header. The kernel takes special action for setuid programs and for process tracing, covered in
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the next section and in Chapter 11, respectively. Finally, it invokes algorithm iput, releasing the mode that was originally allocated in the namei algorithm at the beginning of exec. The use of namei  and iput in exec corresponds to their use in opening and closing a file; the state of a file during the exec call resembles that of an open file except for the absence of a file table entry. When the process


"returns" from the exec system call, it executes the code of the new program.


However, it is the same process it was before the exec; its process ID number does not change, nor does its position in the process hierarchy. Only the user-level context changes.


main 0


int status;


if (fork0


0)


execi("/bin/date", "date", 0);


wait(&status);


Figure 7,21. Use of Exec


For example, the program in Figure 7.21 creates a child process that invokes the exec system call. Immediately after the parent , and child processes return from fork, they execute independent copies of the program. When the child process is about to invoke the exec call, its text region consists of the instructions for the program, its data region consists of the strings "Thin/date" and "date", and its stack contains the stack frames the process pushed to get to the exec call. The kernel finds the file "Thin/date" in the file system, finds that all users can execute it, and determines that it is an executable load module. By convention, the first parameter of the argument list argv to exec is the (last component of the) path name of the executable file. The process thus has access to the program name at user-level, sometimes a useful feature. 3 The kernel then copies the strings


"Min/date" and "date" to an internal holding area and frees the text, data, and stack regions occupied by the process. It allocates new text, data, and stack regions for the process, copies the instruction section of the file "Min/date" into the text region, and copies the data section of the file into the data region. The kernel reconstructs the original parameter list (here, the character string "date") and puts it in the stack region. After the exec call, the child process no longer executes the 3. On System V for instance, the standard programs for renaming a file (my), copying a file (cp), and linking a file (in) are one executable file because they execute similar code. The process looks at the name the user used to invoke it to determine what it should do.
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old program but executes the program "date": When the "date" program completes, the parent process receives its exit status from the walt call.


Until now, we have assumed that process text and data occupy separate sections of an executable program and, hence, separate regions of a running process. There are two advantages for keeping text and data separate: protection and sharing. 1f text and data were in the same region, the system could not prevent a process from overwriting its instructions, because it would not know which addresses contain instructions and which contain data. But if text and data are in separate regions, the kernel can set up hardware protection mechanisms to prevent processes from overwriting their text space. If a process mistakenly attempts to overwrite its text space, it incurs a protection fault that typically results in termination of the process.


#include <signal.h>


main()


int i, *ip;


extern


, sigcateh 0;


ip


(int *)f;


/* assign ip to address of function f */


for


0; i < 20; i++)


signal (i, sigcatch);


*ip


1;


/* attempt to overwrite address of f


printf(after assign to ip\n");


f0;


f0


sigeatch(n)


int n;


printf(caught sig %d\n", n);


exit (1);


Figure 7.22. Example of Program Overwriting its Text


For example, the program in Figure 7.22 assigns the pointer ip to the address of the function f" and then arranges to catch all signals. If the program is compiled so that text and data are in separate regions, the process executing the program incurs a protection fault when it attempts to write the contents of ip, because it is writing its w rite-protected text region. The kernel sends a SIGBUS signal to the process on
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an AT&T 3820 computer, although other implementations may send other signals.


The process catches the signal and exits without executing the print statement in main. However, if the program were compiled so that the program text and data were part of one region (the data region), the kernel would not realize that a process was overwriting the address of the function f. The address off contains the value 1! The process executes the print statement in main but executes an illegal instruction when it calls f. The kernel sends it a SIGILL signal, and the process exits.


Having instructions and data in separate regions makes it easier to protect against addressing errors. Early versions of the UNIX system allowed text and data to be in the same region, however, because of process size limitations imposed by PDP machines: Programs were smaller and required fewer "segmentation"


registers if text and data occupied the same region. Current versions of the system do not have such stringent size limitations on processes, and future compilers will not support the option to load text and data in one region.


The second advantage of having separate regions for text and data is to allow sharing of regions. If a process cannot write its text region, its text does not change from the time the kernel loads it from the executable file. If several processes execute a file they can, therefore, share one text region, saving memory. Thus, when the kernel allocates a text region for a process in exec, it checks if the executable file allows its text to be shared, indicated by its magic number. If so, it follows algorithm xalloc to find an existing region for the file text or to assign a new one (see Figure 7.23).


In xalloc, the kernel searches the active region list for the file's text region, identifying it as the one whose mode pointer matches the Mode of the executable file. If no such region exists, the kernel allocates a new region (algorithm allocreg), attaches it to the process (algorithm attachreg), loads it into memory (algorithm loadreg), and changes its protection to read-only. The latter step causes a memory protection fault if a process attempts to write the text region. If, in searching the active region list, the kernel locates a region that contains the file text, it makes sure that the region is loaded into memory (it sleeps otherwise) and attaches it to the process. The kernel unlocks the region at the conclusion of xalloc and decrements the region count later, when it executes detachreg during exit or exec. Traditional implementations of the system contain a text table that the kernel manipulates in the way just described for text regions. The set of text regions can thus be viewed as a modern version of the old text table.


Recall that when allocating a region for the first time in allocreg (Section 6.5.2), the kernel increments the reference count of the mode associated with the region, after it had incremented the reference count in namei (invoking iget) at the beginning of exec. Because the kernel decrements the reference count once in iput at the end of exec, the mode reference count of a (shared text) file being executed is at least 1: Therefore, if a process unlinks the file, its contents remain intact.


The kernel no longer needs the file after loading it into memory, but it needs the pointer to the in-core Mode in the region table to identify the file that corresponds
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algorithm xalloc


/* allocate and initialize text region *I


input: mode of executable file


output: none


if (executable file does not have separate text region)


return;


if (text region associated with text of Mode)


text region already exists...attach to it */


lock region;


while (contents of region not ready yet)


/* manipulation of reference count prevents total


* removal of the region.


*1


increment region reference count;


unlock region;


sleep (event contents of region ready);


lock region;


decrement region reference count;


attach region to process (algorithm attachreg);


unlock region;


return;


1


no such text region exists---create one


allocate text region (algorithm allocreg); /* region is locked */


if (m ode mode has sticky bit set)


turn on region sticky flag;


attach region to virtual address indicated by mode file header


(algorithm attachreg);


if (file specially formatted for paging system)


Chapter 9 discusses this case */


else


/* not formatted for paging system */


read file text into region (algorithm loadreg);


change region protection in per process region table to read only;


unlock region;


Figure 7.23. Algorithm for Allocation of Text Regions


to the region. 1f the reference count were to drop to 0, the kernel Gould reallocate the in-core mode to another file, compromising the meaning of the mode pointer in the region table: If a user were to exec the new file, the kernel would find the text region of the old file by mistake. The kernel avoids this problem by incrementing the m ode reference count in allocreg, preventing reassignment of the in-core mode.
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When the process detaches the text region during exit or exec, the kernel decrements the Mode reference count an extra time in freereg, unless the Mode has the sticky-bit mode set, as will be seen.


m ode Table


Region Table


possible scenario


if Min/date reference


text region


count could be 0


for /bin/who


in-core ',node


for /bin/date


text region


pointer o


for /bin/date


in-core Mode


Figure 7,24. Relationship of mode Table and Region Table for Shared Text For example, reconsider the exec of "Min/date" in Figure 7.21, and assume that the file has separate text and data sections. The first time a process executes


"Thin/date", the kernel allocates a region table entry for the text (Figure 7.24) and leaves the Mode reference count at 1 (after the exec completes). When


"Min/date" exits, the kernel invokes detachreg and freereg, decrementing the Mode reference count to 0. However, if the kernel had not incremented the Mode reference count for "Thin/date" the first time it was execed, its reference count would be 0 and the Mode would be on the free list while the process was running.


Suppose another process execs the file "Min/who", and the kernel allocates the in-core Mode previously used for "Min/date" to "Thin/who". The kernel would search the region table for the Mode for "Thin/who" but find the Mode for "Min/date"


instead. Thinking that the region contains the text for "Thin/who", it would execute the wrong program. Consequently, the mode reference count for running, shared text files is at least 1, so that the kernel cannot reallocate the Mode.


The capability to share text regions allows the kernel to decrease the startup time of an execed program by using the sticky-bit. System administrators can set the sticky-bit file mode with the chmod system call (and command) for frequently used executable files. When a process executes a file that has its sticky-bit set, the kernel does not release the memory allocated for text when it later detaches the region during exit or exec, even if the region reference count drops to 0. The kernel leaves the text region intact with m ode reference count 1, even though it is no longer attached to any processes. When another process execs the file, it finds the region table entry for the file text. The process startup time is small, because it does not have to read the text from the file system: If the text is still in memory, the kernel does not do any I/O for the text; if the kernel has swapped the text to a
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swap device, it is faster to bad the text from a swap device than from the file system, as will be seen in Chapter 9.


The kernel removes the entries for sticky-bit text regions in the following cases: 1.


If a process opens the file for writing, the write operations will change the contents of the file, invalidating the contents of the region.


2.


If a process changes the permission modes of the file (ehmod) such that the sticky-bit is no Jonger set, the file should not remain in the region table.


3.


If a process unlinks the file, no process will be able to exec it any more because the file has no entry in the file system; hence no new processes wili access the file's region table entry. Because there is no need for the text region, the kernel can remove it to free some resources.


4.


If a process unmounts the file system, the file is no Jonger accessible and ne processes can exec it, so the logje of the previous case applies.


5.


If the kernel runs out of space on the swap device, it attempts to free available space by freeing sticky-bit regions that are currently unused.


Although other processes may need the text region soon, the kernel has more immediate needs.


The sticky text region must be removed in the first two cases because it. no Jonger reflects the current state of the file. The kernel removes the sticky entries in the last three cases because it is pragmatic to do so. Of course, the kernel frees the region only if no processes currently use it (its reference count is 0); otherwise, the system calls open, unlink, and umount (cases 1, 3 and 4) fail.


The scenario for exec is slightly more complicated if a process execs itself. 1f a user types


sh script


the shell forks and the child process exces the shell and executes the commands in the file "script". 1f a process execs itself and allows sharing of its text region, the kernel must avoid deadlocks over the mode and region locks. That is, the kernel cannot lock the "old" text region, hold the lock, and then attempt to lock the


"new" text region, because the old and new regions are one region. Instead, the kernel simply leaves the old text region attached to the process, since it will be reused anyway.


Processes usually invoke exec after fork; the child process thus copies the parent address space during the fork, discards it during the exec, and executes a different program image than the parent process. Would it not be more natural to combine the two system calls into one to invoke a program and run it as a new process?


Ritchie surmises that fork and exec exist as separate system calls because, when designing the UNIX system, he and Thompson were able to add the fork system call without having to change much code in the existing kernel (see page 1584 of


[Ritchie 84a]). But separation of the fork and exec system calls is functionally important too, because the processes can manipulate their standard input and standard output file descriptors independently to set up pipes more elegantly than if
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the two system calls were combined. The example of the shell in Section 7.


highlights this feature.


7.6 THE USER ID OF A PROCESS


The kernel associates two user IDs with a process, independent of the process IT


the real user ID and the effective user ID or set uid (set user ID). The real user II identifies the user who is responsible for the running process. The effective user is used to assign ownership of newly created files, to check file access permission; and to check permission to send signals to processes via the kill system call. Tin kernel allows a process to change its effective user ID when it execs a setui program or when it invokes the setuid system call explicitly.


A setuid program is an executable file that has the setuid bit set in permission mode field. When a process execs a setuid program, the kernel sets effective user ID fields in the process table and u area to the owner ID of the fill To distinguish the two fields, let us call the field in the process table the saved  us(


ID. An example illustrates the difference between the two fields.


The syntax for the set uid system call is


set uid (uid)


where uid is the new user ID, and its result depends on the current value of th effective user ID. If the effective user ID of the calling process is superuser, th kernel resets the real and effective user ID fields in the process table and u area t uid. If the effective user ID of the calling process is not superuser, the kern4


resets the effective user ID in the u area to uid if uid has the value of the real use ID or if it has the value of the saved user ID. Otherwise, the system call return an error. Generally, a process inherits its real and effective user IDs from it parent during the fork system call and maintains their values across exec syster The program in Figure 7.25 demonstrates the setuid system call. Suppose th le


executable file produced by compiling the program has owner "maury" (user H


Le


8319), its setuid bit is on, and all users have permission to execute it Furthet assume that users "mjb" (user ID 5088) and "maury" own the files of thei respective names, and that both files have read-only permission for their owners User "mjb" sees the following output when executing the program: re


uid 5088 euid 8319


fdmjb — 1 fdmaury 3


after setuid(5088): uid 5088 euid 5088


fdmjb 4 fdmaury —1


Df-


after setuid(8319): uid 5088 euid 8319


ly


The system calls getuid and geteuid return the real and effective user IDs of till process, 5088 and 8319 respectively for user "mjb". Therefore, the process canno if


open file "mjb", because its effective user ID (8319) does not have read permissioi
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#include <fentl.h>


main°


int uid, euid, fdmjb, fdmaury;


uid getuid();


I* get real UID */


euid geteuid();


/* get effective UID */


printf("uid %d euid %d\n", uid, euid);


fdmjb open("mjb", O_RDONLY);


fdmaury open("maury", 0 RDONLY);


70


printf("fdmjb %d fdmaury .-de\n", fdmjb, fdmaury);


setuid(uid);


printWafter setuid(70d): uid %d euid %d\n", uid, getuid°, geteuid()); fdmjb open("mjb", O_RDONLY);


fdmaury open("maury", 0 RDONLY);


printf("fdmjb %d fdmaury %a\n", fdmjb, fdinaury);


setuid(euid);


printf("after setuid(%d): uid %d euid %d\n", euid, getuid°, geteuid()); Figure 7.25. Example of Execution of Setuid Program


for the file, but the process can open file "maury". After calling setuid to reset the effective user ID of the process to the real user 1D ("mjb"), the second print statement prints values 5088 and 5088, the user ID of "mjb". Now the process can


open the file "mjb", because its effective user ID bas read permission on the file, but the process cannot open file "maury". Finally, after calling setuid to reset the effective user 1D to the saved setuid value of the program (8319), the third print statement prints values 5088 and 8319 again. The last case shows that a process can exec a setuid program and toggle its effective user 1D between its real user 1D


and its execed setuid. 


User "maury" sees the following output when executing the program: uid 8319 euid 8319


fdmjb — 1 fdmaury 3


after setuid(8319): uid 8319 cuid 8313


fdmjb — 1 fdmaury 4


after setuid(8319): uid 8319 euid 8319


The real and effective user IDs are always 8319: the process can never open file


"mjb", but it can open file "maury". The effective user ID stored in the u area is
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the result of the most recent setuid system call or the exec of a set uid program; i.


is solely responsible for determining file access permissions. The saved user ID it the process table allows a process to reset its effective user ID to it by executing th4


set uid system call, thus recalling its original, effective user ID.


The login program executed by users when logging into the system is a typica program that calls the setuid system call. Login is setuid to root (superuser) an(


therefore runs with effective user ID root. It queries the user for variou.


information such as name and password and, when satisfied, invokes the setuii system call to set its real and effective user ID to that of the user trying to log ii (found in fields in the file "ietc/passwd"). Login finally execs the shell, which run with its real and effective user IDs set for the appropriate user.


The mkdir command is a typical setuid program. Recall from Section 5.8 tha only a process with effective user ID superuser can create a directory. To alio\


ordinary users the capability to create directories, the mkdir command is a setuio program owned by root (superuser permission). When executing mkdir, th process runs with superuser access rights, creates the directory for the user IA mknod, and then changes the owner and access permissions of the directory to tha of the real user.


7.7 CHANGING THE SIZE OF A PROCESS


A process may increase or decrease the size of its data region by using the bri system call. The syntax for the brk system call is


brk (endds) ;


where endds becomes the value of the highest virtual address of the data region o the process (called its break value). Alternatively, a user can call oldendds sbrk(increment);


where increment changes the current break value by the specified number of bytes and oldendds is the break value before the call. Sbrk is a C library routine tha calls brk. If the data space of the process increases as a result of the call, thi newly allocated data space is virtually contiguous to the old data space; that is, till virtual address space of the process extends continuously into the newly allocate(


data space. The kernel checks that the new process size is less than the systenr maximum and that the new data region does not overlap previously assigned virtua address space (Figure 7.26). If all checks pass, the kernel invokes growreg t(


allocate auxiliary memory (e.g., page tables) for the data region and increments th(


process size field. On a swapping system, it also attempts to allocate memory foi the new space and clear its contents to zero; if there is no room in memory, i swaps the process out to get the new space (explained in detail in Chapter 9). L


the process is calling brk to free previously allocated space, the kernel releases th(


memory; if the process accesses virtual addresses in pages that it had released, incurs a memory fault.
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algorithm brk


input: new break value


output: old break value


lock process data region;


if (region size increasing)


if (new region size is illegal)


unlock data region;


return (error);


change region size (algoriiiim growreg);


zero out addresses in new data space;


unlock process data region;


Figure 7.26. Algorithm for Brk


Figure 7.27 shows a program that uses brk and sample output when run on an AT&T 3B20 computer. After arranging to catch segrnentation Wolation signals by calling signal, the process calls sbrk and prints out its initial break value. Then it loops, inerementing a character pointer and writing its contents, until it attempts to write an address beyond lis data region, causing a segmentation violation signa'.


Catching the signal, catcher calls sbrk to allocate another 256 bytes in the data region; the process continues from where it was interrupted in the loop, writing into the newly acquired data space. When it loops beyond the data region again, the entire procedure repeats. An interesting phenomenon occurs on machines whose memory is allocated by pages, as on the 3B20. A page is the smallest unit of memory that is protected by the hardware and so the hardware cannot detect when a process writes addresses that are beyond its break value but still on a "semilegal"


page. This is shown by the output in Figure 7.27: the first sbrk call returns 140924, meaning that there are 388 bytes left on the page, which contain 2K bytes on a 3820. But the process will fault only when it addresses the next page, at address 141312. Catcher adds 256 to the break value, making it 141180, still below the address of the next page. Hence, the process immediately faults again, printing the same address, 141312. After the next sbrk, the kernel allocates a new page of memory, so the process eau address another 2K bytes, to 143360, even though the break value is not that high. When it faults, it will can sbrk 8 times until it eau continue. Thus, a process can sometimes cheat beyond its official break value, although it is poor programming style.


The kernel automatically extends the size of the user stack when it overfiows, following an algorithm similar to that for brk. A process originally contains enough (user) stack space to hold the exec parameters, but it overflows its initial stack area as it pushes data onto the stack during execution. When it overflows its
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#include <signal.h>


char *cp;


int callno;


main°


char *sbrk();


extern catcher0;


signal(SIGSEGV, catcher);


cp sbrk(0);


printf("original brk value %u\n", cp);


for (;;)


*cp++ 1;


catcher(signo)


int signo;


callno++;


printf("caught sig %d 7odth call at addr %u\n", signo, callno, cp); sbrk(256);


signal(SIGSEGV, catcher);


original brk value 140924


caught sig 11 1 th call at addr 141312


caught sig 11 2th call at addr 141312


caught sig 11 3th call at addr 143360


. (same address printed out to 10th call)


caught sig 11 10th call at addr 143360


caught sig 11 11th call at addr 145408


(same address printed out to 18th call)


caught sig 11 18th call at addr 145408


caught sig 11 19th call at addr 145408


Figure 7.27. Use of Brk and Sample Output


stack, the machine incurs a memory fault, because the process is attempting to access a location outside its address space. The kernel determines that the reason for the memory fault was because of stack overflow by comparing the value of the (faulted) stack pointer to the size of the stack region. The kernel allocates new space for the stack region exactly as it allocates space for brk, above. When it
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/* read command line until "end of file" */


while (read(stdin, buffer, numchars))


/* parse command line */


if (P command line contains & */)


amper -• 1;


else


amper 0;


/* for commands not part of the shell command language *1


if (fork°


/* redirection of 10? */


if (/* redirect output */)


fd creat(newfile, fmask);


close(stdout);


dup(fd);


close(fd);


/* stdout is now redirected */


if (/* piping */ )


pipe(fildes);


Figure 7.28. Main Loop of the Shell


returns from the interrupt, the process has the necessary stack space to continue.


7.8 THE SHELL


This chapter has covered enough material to explain how the shell works. The shell is more complex than described here, but the process relationships are illustrative of the real program. Figure 7.28 shows the main loop of the shell and demonstrates asynchronous execution, redirection of output, and pipes.


The shell reads a command line from its standard input and interprets it according to a fixed set of rules. The standard input and standard output file descriptors for the login shell are usually the terminal on which the user logged in, as will be seen in Chapter 10. If the shell recognizes the input string as a built-in command (for example, commands cd, for, while and others), it executes the command internally without creating new processes; otherwise, it assumes the command is the name of an executable file,
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if (fork0


0)


/* first component of command line */


close(stdout);


dup(ffidest li);


close(ffidesi I D;


close(fildes[0]);


/* stdout now goes to pipe *I


/* child process does command */


execlp(commandl, commandl, 0);


1


/* 2nd command component of command line


close(stdin);


dup(Mdes[01);


close(fildes[O]);


close(fildes[11);


/* standard input now comes from pipe */


execve(command2, command2, 0);


/* parent continues over here...


* waas for child to exit if required


*1


if (amper


retid


wait(&status);


Figure 7.28. Main Loop of the Shell (continued)


The simplest command lines contain a program name and some parameters, such as


who


grep —n include *.c


Is —1


The shell forks and creates a child process, which execs the program that the user specified on the command line. The parent process, the shell that the user is using, waits until the child process exits from the command and then loops back to read the next command.


To run a process asynchronously (in the background), as in


nroff — mm bigdocument &


the shell sets an internal variable amper when it parses the ampersand character.


If it finds the variable set at the end of the loop, it does not execute wait but immediately restarts the loop and reads  the next command line.
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The figure shows that the child process has access to a copy of the shell command line after the fork. To redirect standard output to a file, as in nroff — mm bigdocument > output


the child creats the output file specified on the command line; if the creat fails (for creating a file in a directory with wrong permissions, for example), the child would exit immediately. But if the creat succeeds, the child closes its previous standard output file and dups the file descriptor of the new output file. The standard output file descriptor now refers to the redirected output file. The child process closes the file descriptor obtained from creat to conserve file descriptors for the execed program. The shell redirects standard input and standard error files in a similar way.


Figure 7.29. Relationship of Processes for is —I 1 we


The code shows how the shell could handle a command line with a single pipe, as in


Is —I 1 wc


After the parent process forks and creates a child process, the child creates a pipe.


The child process then forks; it and its child each handle one component of the command line. The grandchild process created by the second fork executes the first command component (is): It writes to the pipe, so it closes its standard output file descriptor, dups the pipe write descriptor, and closes the original pipe write descriptor since it is unnecessary. The parent (wc) of,the last child process (Is) is the child of the original shell process (see Figure 7.29). This process (we) closes its standard input file and dups the pipe read descriptor, causing it to become the standard input file descriptor. It then closes the original pipe read descriptor since it no longer needs it, and execs the second command component of the original command line. The two processes that execute the command line execute
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asynchronously, and the output of one process goes to the input of the other process. The parent shell meanwhile waits for its child process (wc) to exit, then proceeds as usual: The entire command line completes when wc exits. The shell loops and reads the next command.


7.9 SYSTEM BOOT AND THE INIT PROCESS


To initialize a system from an inactive state, an administrator goes through a


"bootstrap" sequence: The administrator "boots" the system. Boot procedures vary according to machine type, but the goal is common to all machines: to get a copy of the operating system into machine memory and to start executing it. This is usually done in a series of stages; hence the name bootstrap. The administrator may set switches en the computer console to specify the address of a special hard-coded bootstrap program or just push a single button that instructs the machine to b ad a bootstrap program from its microcode. This program may consist of only a few instructions that instruct the machine to execute another program. On UNIX


systems, the bootstrap procedure eventually reads the boot block (block 0) of a disk, and loads it into memory. The program contained in the boot block loads the kernel from the file system (from the file "/unix", for example, or another name specified by an administrator). After the kernel is loaded in memory, the boot program transfers control to the start address of the kernel, and the kernel starts running (algorithm start, Figure 7.30).


The kernel initializes its internal data structures. For instance, it constructs the linked lists of free buffers and inodes, constructs hash queues for buffers and inodes, initializes region structures, page table entries, and so on. After completing the initialization phase, it mounts the root file system onto root ("1") and fashions the environment for process 0, creating a u area, initializing slot 0 in the process table and making root the current directory of process 0, among other things.


When the environment of process 0 is set up, the system is running as process 0.


Process 0 forks, invoking the fork algorithm directly from the kernel, because it is executing in kernel mode. The new process, process 1, running in kernel mode, creates its user-level context by allocating a data region and attaching it to its address space. It grows the region to its proper size and copies code (described shortly) from the kernel address space to the new region: This code now forms the user-level context of process I. Process 1 then sets up the saved user register context, "returns" from kernel to user mode, and executes the code it had just copied from the kernel. Process 1 is a user-level process as opposed to process 0, which is a kernel-level process that executes in kernel mode. The text for process 1, copied from the kernel, consists of a call to the exec system call to execute the program "tetc/init". Process 1 calls exec and executes the program in the normal fashion. Proeess 1 is commonly called init because it is responsible for initialization of new processes.


Why does the kernel copy the code for the exec system call to the user address space of process 1? It could invoke an internal version of exec directly from the





236


PROCESS CONTROL


algorithm start


1* system startup procedure */


input: none


output: none


initialize all kernel data structures;


pseudo-mount of root;


hand-craft environment of process 0;


fork process 1:


/* process 1 in here */


allocate region;


attach region to init address space;


grow region to accommodate code about to copy in;


copy code from kernel space to init user space to exec init;


change mode: return from kernel to user mode;


/* init never gets here---as result of above change mode,


* init exec's ietc/init and becomes a "normar user process


* with respect to invocation of system calls


*1


/* proc 0 continues here */


fork kernel processes;


/* process 0 invokes the swapper to manage the allocation of


* process address space to main memory and the swap devices,


* This is an infinite loop; process 0 usually sleeps in the


* loop unless there is work for it to do.


*1


execute code for swapper algorithrn;


Figure 7.30. Algorithm for Booting the System


kernel, but that would be more complicated than the implementation just described.


To follow the latter procedure, exec would have to parse file names in kernel space, not just in user space, as in the current implementation. Such generality, needed only for init, would complicate the exec code and slow its performance in more common cases.


The init process (Figure 7.31) is a process dispatcher, spawning processes that allow users to log in to the system, among others. Init reads the file "tetchnittab"


for instructions about which processes to spawn. The file "/etc/inittab" contains lines that contain an "id," a state identifier (single user, multi-user, etc.), an


"action" (see exercise 7.43), and a program specification (see Figure 7.32). Init reads the file and, if the state in which it was invoked matches the state identifier of a line, creates a process that executes the given program specification. For example, when invoking init for the multi-user state (state 2), init typically spawns
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algorithm init


/* init process, process I of the system */


input; none


output: none


t


fd — open("/etc/inittab", O_RDONLY);


while (line_read(fd, buffer))


t


/* read every line of file */


if (invoked state !, buffer state)


continue;


/* loop back to while *1


/* state matched */


if (fork() ..... 0)


t


execl("process specified in buffer");


exit();


)


/* init process does not wait 'V


/* loop back to while */


)


while ((id ..., wait((int *) 0)) ' -1)


f


1* check here if a spawned child died;


* consider respawning it */


/* otherwise, just continue */


I


Figure 7.31. Algorithm for Init


Format: identifier, state, action, process specification


Fields separated by colons.


Comment at end of line preceded by '#'


co:sespawn:/etc/getty console console


# Console in machine room


46:2:respawn:/etc/getty -t 60 tty46 480011


# comments here


Figure 7.32. Sample Inittab File
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getty processes to monitor the terminal lines configured on a system. When a user successfully logs in, getty goes through a login procedure and execs a login shell, described in Chapter 10, Meanwhile, init executes the walt system call, monitoring the death of its child processes and the death of processes "orphaned" by exiting parents.


Processes in the UNIX system are either user processes, daemon processes, or kernel processes. Most processes on typical systems are user processes, associated with users at a terminal. Daernon processes are not associated with any users but do system-wide functions, such as administration and control of networks, execution of time-dependent activities, line printer spooling, and so on. Init may spawn daemon processes that exist throughout the lifetime of the system or, on occasion, users may spawn them. They are like user processes in that they run at user mode and make system calls to access system services.


Kernel processes execute only in kernel mode. Process 0 spawns kernel processes, such as the page-reclaiming process vhand, and then becomes the swapper process. Kernel processes are similar to daemon processes in that they provide system-wide services, but they have greater control over their execution priorities since their code is part of the kernel. They can access kernel algorithms and data structures directly without the use of system calls, so they are extremely powerful. However, they are not as fiexible as daemon processes, because the kernel must be recompiled to change them.


7.10 SUMMARY


This chapter has discussed the system calls that manipulate the process context and control its execution. The fork system call creates a new process by duplicating all the regions attached to the parent process. The tricky part of the fork implementation is to initialize the saved register context of the child process, so that it starts executing inside the fork system call and recognizes that it is the child process. All processes terminate in a call to the exit system call, which detaches the regions of a process and sends a "death of child" signal to its parent. A parent process can synchronize execution with the termination of a child process with the wait system call. The exec system call allows a process to invoke other programs, overlaying its address space with the contents of an executable file. The kernel detaches the old process regions and allocates new regions, corresponding to the executable file. Shared-text files and use of the sticky-bit mode improve memory utilization and the startup time of execed programs. The system allows ordinary users to execute with the privileges of other users, possibly superuser, with setuid programs and use of the setuid system call. The brk system call allows a process to change the size of its data region. Processes control their reaction to signals with the signal system cal'. When they catch a signa', the kernel changes the user stack and the user saved register context to set up the call to the signa' handler.


Processes can send signals with the kill system cal', and they can control receipt of signals designated for particular process groups through the setpgrp system call.





7.7


SUMMARY


239


The shell and init use standard system calls to provide sophisticated functions normally found in the kernel of other systems. The shell uses the system calls to interpret user commands, redirecting standard input, standard output and standard error, spawning processes, setting up pipes between spawned processes, synchronizing execution with child processes, and recording the exit status of commands. Similarly, init spawns various processes, particularly to control terminal execution. When such a process exits, init can respawn a new process for the same function, if so specified in the file "ietchnittab".


7.11 EXERCISES


1. Run the program in Figure 7.33 at the terminal. Redirect its standard output to a file and compare the results.


[ main()


printf("hello\n");


if (fork()


0)


printf("world\n")',


Figure 7.33. Fork and the Standard I/O Package


2.


Describe what happens in the program in Figure 7.34 and compare to the results of Figure 7.4.


3.


Reconsider the program in Figure 7.5, where two processes exchange messages through a pair of pipes. What happens if they try to exchange messages through one pipe?


4.


In general, could there be any loss of information if a process receives several instances of a signal before it has a chance to react? (Consider a process that counts the number of interrupt signals it receives.) Should this problem be fixed?


5.


Describe an implementation of the kill system call.


6.


The program in Figure 7.35 catches "death of child" signals, and like many signal-catcher functions, resets the signal catcher. What happens in the program?


7.


When a process receives certain signals and does not handle them, the kernel dumps an image of the process as it existed when it received the signal. The kernel creates a file called "core" in the current directory of the process and copies the u area, text, data, and stack regions into the file. A user can subsequently investigate the dumped image of the process with standard debugging tools. Describe an algorithm the kernel could follow to create a core file. What should the algorithm do if a file "core"


already exists in the current directory? What should the kernel do if multiple processes dump "core" files in one directory?


8.


Reconsider the program in Figure 7.12 where a process bombards another process with signals that the second process catches. Discuss what would happen if the signal-handling algorithm were changed in either of the following two ways:
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#include <fenti,h>


int fdrd, fdwt;


char c;


main(argc, argv)


int argc;


char *argv[];


if (argc != 3)


exit(1);


fork();


if ((fdrd = open(argv[11, O_RDONLY))


— 1)


exit( 1);


if (((fdwt = creat(argv[2], 0666)) ----- 1) &&


((fdwt open(argv[2], O_WRONLY))


—1))


exit(1);


rdvvrt();


rdwrt()


for (;;)


if (read(fdrd, &c, 1) != 1)


return;


write(fdwt, &c, 1);


Figure 7.34. Program where Parent and Child Do Not Share File Access


• The kernel does not change the signal-handling function until the user explicitly requests to do so;


• The kernel causes the process to ignore the signal until the user calls signal again.


9. Redesign the algorithm for handling signals such that the kernel automatically arranges for a process to ignore further instances of a signal it is handling until the signal handler returns. How can the kernel find out when the signal handler, running in user mode, returns? This specification is closer to the treatment of signals on BSD


systems.


* 10. If a process receives a signal while sleeping at an interruptible priority in a system call, it long/nips out of the system call. The kernel arranges for the process to execute its signal handler, if specified; when the process returns from the signal handler, it appears to have returned from the system call with an error indication (interrupted) on System V. The BSD system automatically restarts the system call for the process.


How can this feature be implemented?
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#include <signal.h>


main 0


extern catcher();


signa' (S1GCLD, catcher);


if (fork -- 0)


exit();


/* pause suspends execution until receipt of a signa! *I


pause();


catcher 0


printf("parent caught sig\n");


signal(SIGCLD, catcher);


Figure 7.35. Catching Death of Child Signals


11. The conventional implementation of the mkdir command invokes the mknod system call to create the directory node, then calls the link system call twice to link the directory entries "." and ".." to the directory node and its parent directory. Without the three operations, the direetory will not be in the correct format. What happens if mkdir receives a signa' while executing? What if the signa! is S1GKILL, which cannot be caught? Reconsider this problem if the system were to implement a mkdir system can,


12. A process checks for signals when it enters or leaves the sleep state (if it sleeps at an interruptible priority) and when it returns to user mode from the kernel after completion of a system call or after handling an interrupt. Why does the process not have to check for signals when entering the system for execution of a system call?


* 13. Suppose a proce,ss is about to return to user mode after executing a system call, and it finds that it laas no outstanding signals. Immediately after checking, the kernel handles an interrupt and sends the process a signa'. (For instance, a user hits the


"break" key.) What does the process do when the kernel returns from the interrupt?


* 14. If several signals are sent to a process simultaneously, the kernel handles them in the order that they are listed in the manual. Given the three possibilities for responding to receipt of a signal — catching the signals, exit ing after dumping a core image of the process, and exiting without dumping a vore image of the process — is there a better order for handling simultaneous signals? For example, if a process receives a guit signa] (causes a core dump) and an interrupt signal (no core dump), does it make more sense to handle the quit signa' or the interrupt signa' first?


15. Implement a new system call


newpgrp(pid, ngrp);


that resets the process group of another process, identified by process ID pid to ngrp.


Discuss possible uses and dangers of such a system call.
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16. Comment on the following statement: A process can sleep on any event in the wait algorithm, and the system would work correctly.


17. Consider implementation of a new system call,


nowait(pid);


where the process ID pid identifies a child of the process issuing the call. When issuing the call, the process informs the kernel that it will never wait for the child process to exit, so that the kernel can immediately clean up the child process slot when the child dies. How could the kernel implement such a solution? Discuss the merits of such a system call and compare it to the use of "death of child" signals.


18. The C loader automatically includes a startup routine that calls the function main in the user program. If the user program does not call exit internally, the startup routine calls exit for the user after the return from main.  What would happen if the call to exit were missing from the startup routine (because of a bug in the loader) when the process returns from main?


19. What information does wait find when the child process invokes exit without a parameter? That is, the child process calls exit0 instead of exiaid . If a programmer consistently invokes exit without a parameter, how predictable is the value that wait examines? Demonstrate and prove your claim.


20.


Describe what happens when a process executing the program in Figure 7.36 execs itself. How does the kernel avoid deadlocks over locked modes?


main(argc, argv)


int argc;


char *argvn;


execl(argv[0], argv[0], 0);


Figure 7.36. An Interesting Program


21.


By convention, the first argument to exec is the (last component of the) file name that the process executes. What happens when a user executes the program in Figure 7.37.


What happens if "a.out" is the load module produced by compiling the program in Figure 7.36?


22.


Suppose the C language supported a new data type "read-only," such that a process incurs a protection fault whenever it attempts to write "read-only" data. Describe an implementation. (Hint: Compare to shared text.) What algorithms in the kernel change? What other objects could one consider for implementation as regions?


23.


Describe how the algorithms for open, chmod, unlink, and unmount change for sticky-bit files. For example, what should the kernel do with a sticky-bit file when the file is unlinked?


24.


The superuser is the only user who has permission to write the password file


"ietcipasswd", preventing malicious or errant users from corrupting its contents. The passwd program allows users to change their password entry, but it must make sure that they do not change other people's entries. How should it work?
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main()


if (fork()


execl("a.out", 0);


printf("exec failed\n");


1


Figure 7.37. An Unconventional Program


* 25. Explain the security problem that exists if a setuid program is not write-protected.


26.


Execute the following sequence of shell commands, where the file "a.out" is an executable file.


chmod 4777 a.out


chown root a.out


The chmod command turns on the setuid bit (the 4 in 4777), and the owner "root" is conventionally the superuser. Can execution of such a sequence allow a simple breach of security?


27.


What happens if you run the program in Figure 7.38? Why?


main()


char *endpt;


char *sbrk();


int brk();


endpt sbrk(0);


printf("endpt %ud after sbrk\n", (int) endpt);


while (endpt--)


if (brk(endpt) mar —1)


printfebrk of %ud failed\n", endpo;


exit();


Figure 7.38. A Tight Squeeze


28.


The library routine malloc allocates more data space to a process by invoking the brk system call, and the library routine free releases memory previously allocated by mailoc. The syntax for the calls is
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ptr malloc(size);


free (ptr);


where size is an unsigned integer representing the number of bytes to allocate, and pi, is a character pointer that points to the newly acquired space. When used as a parameter for free, ptr  must have been previously returned by malloc. Implement the library routines.


29. What happens when running the program in Figure 7.39? Compare to the results predicted by the system manual.


main 0


int i;


char *cp;


extern char *sbrk0;


cp sbrk(10);


for


0 i < 10; i++)


*cp++ 'a' + i;


sbrk(-10);


cp sbrk(10);


for (1 ... 0; i < 10; i++)


printf("char "%d '7oc'\n", i,*cp++);


Figure 7.39. A Simple Sbrk Example


30.


When the shell creates a new process to execute a command, how does it know that the file is executable? If it is executable, how does it distinguish between a shell script and a file produced by a compilation? What is the correct sequence for checking the above cases?


31. The shell symbol ">>" appends output to the specified file: for example, run >> outfile


creats the file "outfile" if it does not already exist and writes the file, or it opens the file and writes after the existing data. Write code to implement this.


main()


exit(0);


Figure 7.40. Truth Program


32. The shell tests the exit return from a process, treating a 0 value as true and a non-0


value as false (note the inconsistency with C). Suppose the name of the executable file corresponding to the program in Figure 7.40 is truth. Describe what happens





7.7


EXERC1SES


245


when the shell executes the following loop. Enhance the sample shell code to handle this case.


while truth


do


truth &


done


33.


Why must the shell create the processes to handle the two command components of a pipeline in the indicated order (Figure 7.29)?


34.


Make the sample code for the shell loop more genera] in how it handles pipes. That is, allow it to handle an arbitrary number of pipes on the command line.


35.


The environment variable PATH describes the ordered set of directories that the shell should search for executahle files. The library functions execlp and execvp prepend directories listed in PATH to file name arguments that do not begin with a slash character. lmplement these functions.


* 36. A superuser should set up the PATH environment variable so that the shell does not search for executable files in the current directory. What security problem exists if it attempts to execute files in the current directory?


37.


How does the shell handle the cd (change directory) command? For the command line


cd pathname &


what does the shell do?


38.


When the user types a "delete" or "break" key at the terminal, the terminal driver sends an interrupt signa' to all processes in the process group of the login shell. The user intends to stop processes spawned by the shell but probably does not want to log off. How should the shell loop in Figure 7.28 be enhanced?


39.


The user can type the command


nohup commandjine


to disallow reccipt of hangup signals and guit signals in the processes generated for


"command line." How should the shell loop in Figure 7.28 handle this?


40.


Consider the sequence of shell commands


nroff —mm bigfilel > biglout &


nroff —mm bigfile2 > big2out


and reexamine the shell loop shown in Figure 7.28. What would happen if the first nroff finished executing before the second one? How should the code for the shell loop be modified to handle this case correctly?


41.


When executing untested programs from the shell, a common error message printed by the shell is "Bus error — core dumped." The program apparently did something illegal; how does the shell know that it should print an error message?


42.


Only one Mit process can execute as process 1 on a system. However, a system administrator can change the state of the system by invoking init.  For example, the system comes up in single user state when it is booted, meaning that the system console is active but user terminals are not. A system administrator types the command
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init 2


at the console to change the state of init to state 2 (multi-user). The console shell forks and execs Mit. What should happen in the system, given that only one init process should be active?


43.


The format of entries in the file "ietc/inittab" allows specification of an action associated with each generated process. For example, the action typically associated with getty is respawn, meaning that Mit should recreate the process if it dies.


Practically, this means that Mit will spawn another getty process when a user logs off, allowing another user to access the now inoperative terminal line. How can init implement the respawn action?


44.


Several kernel algorithms require a search of the process table. The search time can be improved by use of parent, child, and sibling pointers: The parent pointer points to the parent of the process, the child pointer points to any child process, and the sibling pointer points to another process with the same parent. A process finds all its children by following its child pointer and then following the sibling pointers (loops are illegal).


What algorithms benefit from this implementation? What algorithms must remain the same?





PROCESS SCHEDULING


AND TIME


On a time sharing system, the kernel allocates the CPU to a process for a period of ti me called a time slice or time quantum, preempts the process and schedules another one when the time slice expires, and reschedules the process to continue execution at a later time. The scheduler function on the UNIX system uses relative time of execution as a parameter to determine which process to schedule next. Every active process has a scheduling priority; the kernel switches context to that of the process with the highest priority when it does a context switch. The kernel recalculates the priority of the running process when it returns from kernel mode to user mode, and it periodically readjusts the priority of every "ready-to-run" process in user mode.


Some user processes also have a need to know about time: For example, the time command prints the time it took for another command to execute, and the date command prints the date and time of day. Various time-related system calls allow processes to set or retrieve kernel time values or to ascertain the amount of process CPU usage. The system keeps time with a hardware clock that interrupts the CPU at a fixed, hardware-dependent rate, typically between 50 and 100 times a second. Each occurrence of a clock interrupt is called a clock tick. This chapter explores time related activities on the UNIX system, considering process scheduling, system calls for time, and the functions of the clock interrupt handler.
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8.1 PROCESS SCHEDULING


The scheduler on the UNIX system belongs to the general class of operating system schedulers known as round robin with multilevel feedback, meaning that the kernel allocates the CPU to a process for a time quantum, preempts a process that exceeds its time quantum, and feeds it back into one of several priority queues. A process may need many iterations through the "feedback loop" before it finishes. When the kernel does a context switch and restores the context of a process, the process resumes execution from the point where it had been suspended.


algorithm schedule_process


input: none


output: none


while (no process picked to execute)


for (every process on run queue)


pick highest priority process that is loaded in memory;


if (no process eligible to execute)


idle the machine;


/* interrupt takes machine out of idle state */


remove chosen process from run queue;


switch context to that of chosen process, resume its execution;


Figure 8.1. Algorithm for Process Scheduling


8.1.1 Algorithm


At the conclusion of a context switch, the kernel executes the algorithm to schedule a process (Figure 8.1), selecting the highest priority process from those in the states


"ready to run and loaded in memory" and "preempted." It makes no sense to select a process if it is not loaded in memory, since it cannot execute until it is swapped in. If several processes tie for highest priority, the kernel picks the one that has been "ready to run" for the longest time, following a round robin scheduling policy. If there are no processes eligible for execution, the processor idles until the next interrupt, which will happen in at most one clock tick; after handling that interrupt, the kernel again attempts to schedule a process to run.
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81.2 Seheduling Parameters


Each process table entry contains a priority field for process scheduling. The priority of a process in user mode is a function of its recent CPU usage, with processes getting a lower priority if they have recently used the CPU. The range of process priorities can be partitioned into two classes (see Figure 8.2): user priorities and kernel priorities. Each class contains several priority values, and each priority has a queue of processes logically associated with it. Processes with user-level priorities were preempted on their return from the kernel to user mode, and processes with kernel-level priorities achieved them in the sleep algorithm. User-level priorities are below a threshold value, and kernel-level priorities are above the threshold value. Kernel-level priorities are further subdivided: Processes with low kernel priority wake up on receipt of a signa', but processes with high kernel priority continue to sleep (see Section 7.2.1).


Figure 8.2 shows the threshold priority between user priorities and kernel priorities as the double line between priorities "waiting for child exit" and "user level 0." The priorities called "swapper," "waiting for disk I/O," "waiting for buffer," and "waiting for mode" are high, noninterruptible system priorities, with 1, 3, 2, and 1 processes queued on the respective priority level, and the priorities called "waiting for tty input," "waiting for tty output," and "waiting for child exit"


are low, interruptible system priorities with 4, 0, and 2 processes queued, respectively. The figure distinguishes user priorities, calling them "user level 0,"


"user level 1," to "user level n," 1 containing 0, 4, and 1 processes, respectively.


The kernel calculates the priority of a process in specific process states.


• It assigns priority to a process about to go to sleep, correlating a fixed, priority value with the reason for sleeping. The priority does not depend on the run-ti me characteristics of the process (I/0 bound or CPU bound), but instead is a constant value that is hard-coded for each call to sleep, dependent on the reason the process is sleeping. Processes that sleep in lower-level algorithms tend to cause more system bottlenecks the longer they are inactive; hence they receive a higher priority than prijacesses that would cause fewer system bottlenecks. For instance, a process sleeping and waiting for the completion of disk I/O has a higher priority than a process waiting for a free buffer for several reasons: First, the process waiting for completion of disk I/O already has a buffer; when it wakes up, there is a chance that it will do enough processing to release the buffer and, possibly, other resources. The more resources it frees, the better the chances are that other processes will not block waiting for resources. The system will have fewer context switches and, consequently, process response 1. The highest priority value on the system is 0. Thus, user level 0 bas higher priority than user level 1, and so on.
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Figure 8.2. Range of Process Priorities


time and system throughput are better. Second, a process waiting for a free buffer may be waiting for a buffer held by the process waiting for completion of I/O. When the I/0 completes, both processes wake up because they sleep on the same address. If the process waiting for the buffer were to run first, it would sleep again anyway until the other process frees the buffer; hence its priority is lower.


• The kernel adjusts the priority of a process that returns from kernel mode to user mode. The process may have previously entered the sleep state, changing its priority to a kernel-level priority that must be lowered to a user-level priority when returning to user mode. Also, the kernel penalizes the executing process in fairness to other processes, since it had just used valuable kernel resources.
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• The clock handler adjusts the priorities of all processes in user mode at 1 second intervals (on System V) and causes the kernel to go through the scheduling algorithm to prevent a process from monopolizing use of the CPU.


The clock may interrupt a process several times during its time quantum; at every clock interrupt, the clock handler increments a field in the process table that records the recent CPU usage of the process. Once a second, the clock handler also adjusts the recent CPU usage of each process according to a decay function, decay(CPU) CPU/2;


on System V. When it recomputes recent CPU usage, the clock handler also recalculates the priority of every process in the "preempted but ready-to-run" state according to the formula


priority ("recent CPU usage"/2) + (base level user priority) where "base level user priority" is the threshold priority between kernel and user mode described above. A numerically low value implies a high scheduling priority.


Examining the functions for recomputation of recent CPU usage and process priority, the slower the decay rate for recent CPU usage, the longer it will take for the priority of a process to reach its base level; consequently, processes in the


"ready-to-run" state will tend to occupy more priority levels.


The effect of priority recalculation once a second is that processes with user-level priorities move between priority queues, as illustrated in Figure 8.3.


Comparing this figure to Figure 8.2, one process has moved from the queue for user-level priority 1 to the queue for user-level priority 0. In a real system, all processes with user-level priorities in the figure would change priority queues, but only one has been depicted. The kernel does not change the priority of processes in kernel mode, nor does it allow processes with user-level priority to cross the threshold and attain kernel-level priority, unless they make a system call and go to sleep.


The kernel attempts to recompute the priority of all active processes once a second, but the interval can vary slightly. If the clock interrupt had come while the kernel was executing a critical region of code (that is, while the processor execution level was raised but, obviously, not raised high enough to block out the clock interrupt), the kernel does not recompute priorities, since that would keep the kernel in the critical region for too long a time. Instead, the kernel remembers that it should have recomputed process priorities and does so at a succeeding clock interrupt when the "previous" processor execution level is sufficiently low. Periodic recalculation of process priority assures a round-robin scheduling policy for processes executing in user mode. The kernel responds naturally to interactive requests such as for text editors or form entry programs; such processes have a high idle-time-to-CPU usage ratio, and consequently their priority value naturally rises when they are ready for execution (see page 1937 of [Thompson 78]). Other implementations of the scheduling mechanism vary the time quantum between 0


and 1 second dynamically, depending on system load. Such implementations can
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Figure 8.3. Movement of a Process on Priority Queues


thus give quicker response to processes, beeause they do not have to wait up to a second to run; on the other hand, the kernel has more overhead because of extra context switches.


8.1.3 Examples of Proeess Seheduling


Figure 8.4 shows the scheduling priorities on System V for 3 processes A. B, and C, under the following assumptions: They are created simultaneously with initial priority 60, the highest user-level priority is 60, the doek interrupts the system 60


ti mes a second, the processes make no system calls, and no other processes are
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Figure 8.4. Example of Process Scheduling


ready to run. The kernel calculates the decay of the CPU usage by


CPU decay(CPU) CPU/2;


and the process priority as


priority (CPU/2) + 60;


Assuming process A is the first to run and that it starts running at the beginning of a time quantum, it runs for 1 second: During that time the clock interrupts the system 60 times and the interrupt handler increments the CPU usage field of
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process A 60 times (to 60). The kernel forces a context switch at the 1-second mark and, after recalculating the priorities of all processes, schedules process B for execution. The clock handler increments the CPU usage field of process B 60 times during the next second and then recalculates the CPU usage and priority of all processes and forces a context switch. The pattern repeats, with the processes taking turns to execute.


Now consider the processes with priorities shown in Figure 8.5, and assume other processes are in the system. The kernel may preempt process A, leaving it the state "ready to run," after it had received several time quanta in succession on the CPU, and its user-level priority may therefore be low (Figure 8.5a). As time progresses, process B may enter the "ready-to-run" state, and its user-level priority may be higher than that of process A at that instant (Figure 8.51)). If the kernel does not schedule either process for a white (it schedules other processes), both processes could eventually be at the same user priority level, although process B


would probably enter that level first since its starting level was originally closer (Figures 8.5c and 8.5d). Nevertheless, the kernel would choose to schedule process A ahead of process B because it was in the state "ready to run" for a longer time (Figure 8.5e): This is the tie-breaker rule for processes with equal priority.


Recall from Section 6.4.3 that the kernel schedules a process at the conclusion of a context switch: A process must do a context switch when it goes to sleep or exits, and it has the opportunity to do a context switch when returning to user mode from kernel mode. The kernel preempts a process about to return to user mode if a process with higher priority is ready to run. Such a process exists if the kernel awakened a process with higher priority than the currently running process, or if the clock handler changed the priority of all "ready-to-run" processes. In the first case, the current process should not run in user mode given that a higher-priority kernel mode process is available. In the second case, the clock handler decides that the process used up its time quantum, and since many processes had their priorities changed, the kernel does a context switch to reschedule.


8.1.4 Controlling Process Priorities


Processes can exercise crude control of their scheduling priority by using the nice system call:


n ice (value);


where value is added in the calculation of process priority: priority.... ("recent CPU usage/constant) + (base priority) +. (nice value) The nice system call increments or decrements the nice field in the process table by the value of the parameter, although only the superuser can supply nice values that increase the process priority. Similarly, only the superuser can supply a nice value below a particular threshold. Users who invoke the nice system call to lower their process priority when executing computation-intensive jobs are "nice" to other users
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Figure 8.5. Round Robin Scheduling and Process Priorities


on the system, hence the name. Processes inherit the nice value of their parent during the fork system call. The nice system call works for the running process only; a process cannot reset the nice value of another process. Practically, this means that if a system administrator wishes to lower the priority values of various processes because they consume too much time, there is no way to do so short of killing them outright.


8.1.5 Fair Share Scheduler


The scheduler algorithm described above does not differentiate between classes of users. That is, it is impossible to allocate half of the CPU time to a particular set
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Figure 8.6. Example of Fair Share Scheduler — Three Processes, Two Groups 8.1.6 Real-Time Processing


Real-time processing implies the capability to provide immediate response to specific external events and, hence, to schedule particular processes to run within a specified time limit after occurrence of an event. For example, a computer may monitor the life-support systems of hospital patients to take instant action on a change in status of a patient. Processes such as text editors are not considered real-time processes: It is desirable that response to the user be quick, but it is not that critical that a user cannot wait a few extra seconds (although the user may
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have other ideas.). The scheduler algorithms described above were designed for use in a time-sharing environment and are inappropriate in a real-time environment, because they cannot guarantee that the kernel can schedule a particular process within a fixed time limit. Another impediment to the support of real-time processing is that the kernel is nonpreemptive; the kernel cannot schedule a real-time process in user mode if it is currently executing another process in kernel mode, unless major changes are made. Currently, system programmers must insert real-time processes into the kernel to achieve real-time response. A true solution to the problem must allow real-time processes to exist dynamically (that is, not be hard-coded in the kernel), providing them with a mechanism to inform the kernel of their real-time constraints. No standard UNIX system has this capability today.


8.2 SYSTEM CALLS FOR TIME


There are several time-related system calls, stime, time, times, and alarm. The first two deal with global system time, and the latter two deal with time for individual processes.


Same allows the superuser to set a global kernel variable to a value that gives the current time:


stime (pvalue);


where pvalue points to a long integer that gives the time as measured in seconds from midnight before (00:00:00) January 1, 1970, GMT. The clock interrupt handler increments the kernel variable once a second. Time retrieves the time as set by stime:


ti me (tloc);


where doe points to a location in the user process for the return value. Time returns this value from the system call, too. Commands such as date use time to determine the current time.


Times retrieves the cumulative times that the calling process spent executing in user mode and kernel mode and the cumulative times that all zombie children had executed in user mode and kernel mode. The syntax for the call is


ti mes (tbuffer)


struct tms *tbuffer;


where the structure tms contains the retrieved times and is defined by
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#include <sysitypes.h>


#include <sys/times.h>


extern long times();


main()


int i;


/* tms is data structure containing the 4 time elements */


struct tms pbl, pb2;


long ptl, pt2;


ptl


ti mes(&pb1);


for (i = 0; i < 10; i++)


if (fork()


child(i);


for (i — 0; i < 10; i++)


wait((int *) 0);


pt2 times(&pb2);


printf("parent real %u user %u sys %u cuser %u csys %u\n", pt2 ptl, pb2.tms_utirne


pbl.tms_utime, pb2.tms_stime — pbl.tms_stime,


pb2.tms_cutime pbl.tms_cutime, pb2.tms_cstime


pbl.tms cstime);


child (n)


int n;


int i;


struct tms cbl, cb2;


long t1, t2;


tl


ti mes(&cb1);


for (i 0; i < 10000; i++)


t2 times(&cb2);


printf('child %d: real %u user %u sys %u\n", n, t2


ti,


cb2.tms_utime — cbl.tms_utime, cb2.tms_stime cbl.tms_stime);


exit();


Figure 8.7. Program Using Times


struct tms


/* time_t is the data structure for time */


time_t tms_utime;


/* user time of process */


time_t tms stime;


/* kernel time of process *1
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timet tms_cutime;


/* user time of children */


ti met tms cstime


/* kernel time of children */


Times returns the elapsed time "from an arbitrary point in the past," usually the ti me of system boot.


In the program in Figure 8.7, a process creates 10 child processes, and each child loops 10,000 times. The parent process calls times before creating the children and after they all exit, and the child processes call times before and after their loops. One would naively expect the parent child user and child system times to equal the respective sums of the child processes' user and systern  times, and the parent real time to equal the sum of the child processes' real time. However, the child times do not include time spent in the fork and exit system calls, and all ti mes can be distorted by time spent handling interrupts or doing context switches.


User processes can schedule alarm signals using the alarm system call. For example, the program in Figure 8.8 checks the access time of a file every minute and prints a message if the file had been accessed. To do so, it enters an infinite loop: During each iteration, it calls stat to report the last time the file was accessed and, if accessed during the last minute, prints a message. The process then calls signal to catch alarm signals, calls alarm to schedule an alarm signa' in 60 seconds, and calls pause to suspend its activity until receipt of a signal. After 60 seconds, the alarm signa' goes off, the kernel sets up the process user stack to cal the signal catcher function wakeup, the function returns to the position in the code after the pause call, and the process executes the loop again.


The common factor in all the time related system calls is their reliance on the system doek: the kernel manipulates various time counters when handling doek interrupts and initiates appropriate action.


8.3 CLOCK


The functions of the doek interrupt handler are to


• restart the clock,


• schedule invocation of internal kernel functions based on internal timers,


• provide execution profiling capability for the kernel and for user processes,


• gather system and process accounting statistics,


• keep track of time,


• send alarm signals to processes on request,


• periodically wake up the swapper process (see the next chapter),


• control process scheduling.


Some operations are done every doek interrupt, whereas others are done after several clock ticks. The clock handler runs with the processor execution level set high, preventing other events (such as interrupts from peripheral devices) from happening while the handler is active. The clock handler is therefore fast, so that
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#include <sys/types.h>


#include <sys/stat.h>


#include <sys/signal.h>


main(argc, argv)


int argc;


char *asp[];


extern unsigned alarm();


extern wakeup();


struct stat statbuf;


tirnet axtime;


if (argc


2


printf("only I arg\n");


exit();


axt me N.' (tiMei) 0;


for (;;)


/* find out file access time


if (stat(argv[1], &statbuf)


printf("file %s not there\n", argv[ i]);


exit();


if (axtime


statbuf.st_atime)


printf("file %s accessed\n", argv[l i);


axtime statbufst_atime;


signal(SIGALRM, wakeup);


/* reset for alarm */


alarm (60);


pause();


/* sleep until signal */


wakeup


Figure 8.8. Program Using Alarm Call
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algorithm clock


input: none


output: none


restart doek;


/* so that it will interrupt again


if (callout table not empty)


adjust callout times;


schedule callout function if time elapsed;


if (kernel profiling on)


note program counter at time of interrupt;


if (user profiling on)


nate program counter at time of interrupt;


gather system statistics;


gather statistics per process;


adjust measure of process CPU utilitization;


if (1 second or more since last here and interrupt not in critical


region of code)


for (all processes in the system)


adjust alarm time if active;


adjust measure of CPU utilization;


if (process to execute in user mode)


adjust process priority;


wakeup swapper process is neeessary;


Figure 8.9. Algorithm for the Clock Handler


the critical time periods when other interrupts are blocked is as smalt as possible.


Figure 8.9 shows the algorithm for handling clock interrupts.


8.3.1 Restarting the Cloek


When the doek interrupts the system, most machines require that the clock be reprimed by software instructions so that it will interrupt the processor again after a suitable interval. Such instructions are hardware dependent and will not be discussed.
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8.3.2 Internal System Timeouts


Some kernel operations, particularly device drivers and network protocols, require invocation of kernel functions on a real-time basis. For instance, a process may put a terminal into raw mode so that the kernel satisfies user read requests at fixed intervals instead of waiting for the user to type a carriage return (see Section 10.3.3). The kernel stores the necessary information in the ca/lout table (Figure 8.9), which consists of the function to be invoked when time expires, a parameter for the function, and the time in clock ticks until the function should be called.


The user has no direct control over the entries in the callout table; various kernel algorithms make entries as needed. The kernel sorts entries in the callout table according to their respective "time to fire," independent of the order they are placed in the table. Because of the time ordering, the time field for each entry in the callout table is stored as the amount of time to fire after the previous element fires. The total time to fire for a given element in the table is the sum of the times to fire of all entries up to and including the element.


Function


Time to Fire


Function


Time to Fire


a()


-2


a()


-2


b()


3


b()


c0


10


f0


2


co


8


Before


After


Figure 8.10. Callout Table and New Entry for f


Figure 8.10 shows an instance of the cal/out table before and after addition of a new entry for the function f. (The negative time field for function a will be explained shortly.) When making a new entry, the kernel finds the correct (timed) position for the new entry and appropriately adjusts the time field of the entry i mmediately after the new entry. In the figure, the kernel arranges to invoke function f after 5 clock ticks: it creates an entry for f after the entry for b with the value of its time field 2 (the sum of the time fields for b and f is 5), and changes the time field for c to 8 (c will still fire in 13 clock ticks). Kernel implementations can use a linked list for each entry of the callout table, or they can readjust position of the entries when changing the table. The latter option is not that expensive if the kernel does not use the callout table too much.
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At every doek interrupt, the clock handler checks if there are any entries in the callout table and, if there are any, decrements the time field of the first entry.


Because of the way the kernel keeps time in the callout table, decrementing ti C


time field for the first entry effectively decrements the time field for all entries in the table. If the time field of the first entry in the list is less than or equal to 0, then the specified function should be invoked. The clock handler does not invoke the function directly so that it does not inadvertently block later doek interrupts: The processor priority level is currently set to block out doek interrupts, but the kernel bas no idea how long the function will take to complete. 1f the function were to last langer than a clock tick, the next doek interrupt (and all other interrupts that meur) would be blocked. Instead, the doek handler typically schedules the function by causing a "software interrupt," sometimes called a


"programmed interrupt" because it is caused by execution of a particular machine instruction. Because software interrupts are at a lower priority level than other interrupts, they are blocked until the kernel finishes handling all other interrupts.


Many interrupts, including dock interrupts, could occur between the time the kernel is ready to call a function in the callout table and the time the software interrupt occurs and, therefore,the time field of the first callout entry can have a negative value. When the software interrupt finally happens, the interrupt handler removes entries from the callout table whose time fields have expired and calls the appropriate function.


Since it is possible that the time field of the first entries in the callout talie are 0 or negative, the doek handler must find the first entry whose time field is positive and decrement it. In Figure 8.10 for example, the time field of the entry for function a is — 2, meaning that the system took 2 doek interrupts after a was eligible to be called. Assuming the entry for b was in the table 2 ticks ago, the kernel skipped the entry for a and decremented the time field for b.


8.33 Profiling


Kernel profiling gives a measure of how much time the system is executing in user mode versus kernel mode, and how much time it spends executing individual routines in the kernel. The kernel profile driver monitors the relative performance of kernel modules by sampling system activity at the time of a clock interrupt. The profile driver has a list of kernel addresses to sample, usually addresses of kernel functions; a process had previously down-loaded these addresses by writing the profile driver. lf kernel profiling is enabled, the doek interrupt handler invokes the interrupt handler of the profile driver, which determines whether the processor mode at the time of the interrupt was user or kernel. .. 1f the mode was user, the profiler increments a count for user execution, but if the mode was kernel, it increments an internal counter corresponding to the program counter. User processes can read the profile driver to obtain the kernel counts and do statistica'


measurements.
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Algorithm Address Count
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1
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Figure 8.11. Sample Addresses of Kernel Algorithms


For example, Figure 8.11 shows hypothetical addresses of several kernel routines. If the sequence of program counter values sampled over 10 clock interrupts is 110, 330, 145, address in user space, 125, 440, 130, 320, address in user space, and 104, the figure shows the counts the kernel would save. Examining these figures, one would conclude that the system spends 20% of its time in user mode and 50% of its time executing the kernel algorithm bread.


If kernel profiling is done for a long time period, the sampled pattern of program counter values converges toward a true proportion of system usage.


However, the mechanism does not account for time spent executing the clock handler and code that blocks out clock-level interrupts, because the clock cannot interrupt such critical regions of code and therefore cannot invoke the profile interrupt handler there. This is unfortunate since such critical regions of kernel code are frequently those that are the most important to profile. Hence, results of kernel profiling must be taken with a grain of salt. Weinberger [Weinberger 841


describes a scheme for generating counters into basic blocks of code, such as the body of "if-then" and "else" statements, to provide exact counts of how many times they are executed. However, the method increases CPU time anywhere from 50%


to 200%, so its use as a permanent kernel profiling mechanism is not practical.


Users can profile execution of processes at user-level with the profil system call: profil(buff, bufsize, offset, scale);


where buff is the address of an array in user space, bufsize is the size of the array, offset is the virtual address of a user subroutine (usually, the first), and scale is a factor that maps user virtual addresses into the array. The kernel treats scale as a fixed-point binary fraction with the binary point at the extreme "left": The hexadecimal value Oxffff gives a one to one mapping of program counters to words in buff, Ox7fff maps pairs of program addresses into a single buff word, Ox3fff maps groups of 4 program addresses into a single buff word, and so on. The kernel stores the system call parameters in the process u area. When the clock interrupts the process while in user mode, the clock handler examines the user program counter at the time of the interrupt, compares it to offset, and increments a location in buff whose address is a function of bufsize and scale.
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#include <signal.h>


int bufferi40961;


main()


{


int offset, endof, scale, eff, gee, text;


extern theend(), f(), g();


signal(SIGINT, theend);


endof .... (int) theend;


offset — (int) main;


/* calculates number of words of program text */


text ... (endof — offset + sizeof(int) — 1)/sizeof(int);


scale siE Oxffff;


w


printf( offset %d endof %d text %d\n", offset, endof, text);


eff — (int) f;


gee i= (int) g;


printf("f %d g %d fdiff %d gdiff %d\n", eff, gee, eff—offset, gee—offset); profil (buffer, sizeof(int)*text, offset, scale);


for (;;)


{


f();


g0;


l


)


f()


{


}


g()


{


1


theend()


l


int i;


for (i — 0; i <4096; i++)


if (buffertip


printfebuft%d] — %d\n", i, buffer[ii);


exit();


Figure 8.12. Program Invoking Profii System Cali


For example, consider the program in Figure 8.12, profiling exeeution of a program that calls the two funetions f and g successively in an infinite loop. The process first invokes signa! to arrange to call the funetion theend on occurrence of an interrupt signal and then calculates the range of text addresses it wishes to profile, extending from the address of the function main to the address of the function theend, and, finally, invokes prof! to inform the kernel that it wishes to
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212 endof 440 text 57


f 416 g428 fdiff 204 gdiff 216


buf[46] .2° 50


buf[48] — 8585216


buf[491 — 151


buf151) — 12189799


buft531 — 65


buf[54] — 10682455


bufi56] — 67


Figure 8.13. Sample Output for Profil Program


profile its execution. Running the program for about 10 seconds on a lightly loaded AT&T 3B20 computer gave the output shown in Figure 8.13. The address of f is 204 greater than the 0th profiling address; because the size of the text of f is 12


bytes and the size of an integer is 4 on an AT&T 3B20 computer, the addresses of f map into buf entries 51, 52, and 53. Similarly, the addresses of g map into buf entries 54, 55, and 56. The buf entries 46, 48, and 49 are for addresses in the loop in function main. In typical usage, the range of addresses to be profiled is determined by examination of the text addresses in the symbol table of the program being profiled. Users are discouraged from using the profil call directly because it is complicated; instead, an option on the C compiler directs the compiler to generate code to profile processes.


8.3.4 Accounting and Statistics


When the clock interrupts the system, the system may be executing in kernel mode, executing in user mode, or idle (not executing any processes). It is idle if all processes are sleeping, awaiting the occurrence of an event. The kernel keeps internal counters for each processor state and adjusts them during each clock interrupt, noting the current mode of the machine. User processes can later analyze the statistics gathered in the kernel.


Every process has two fields in its u area to keep a record of elapsed kernel and user time. When handling clock interrupts, the kernel updates the appropriate field for the executing process, depending on whether the process was executing in kernel mode or in user mode. Parent processes gather statistics for their child processes in the wait system call when accumulating execution statistics for exiting child processes.


Every process has one field in its u area for the kernel to log its memory usage.


When the clock interrupts a running process, the kernel calculates the total memory used by a process as a function of its private memory regions and its proportional usage of shared memory regions. For example, if a process shares a text region of size 50K bytes with four other processes and uses data and stack regions of size
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25K and 40K bytes, respectively, the kernel charges the process for 75K bytel (50K/5 + 25K + 40K). For a paging system, it calculates the memory usage by counting the number of valid pages in each region. Thus, if the interrupted proeess uses two private regions and shares another region with another process, the kernel charges it for the number of valid pages in the private regions plus half the num of valid pages in the shared region. The kernel writes the information in an accounting record when the process exits, and the information can be used for customer billing.


8.3.5 Keeping Time


The kernel increments a timer variable at every doek interrupt, keeping time in clock ticks from the time the system was booted. The kernel uses the timer variable to return a time value for the time system eau, and to calculate the total (mal time) execution time of a process. The kernel saves the process start time in its u area when a process is created in the fork system call, and it subtracts that value from the current time when the process exits, giving the real execution time of the process. Another timer variable, set by the stime system call and updated once a second, keeps track of calendar time.


8.4 SUMMARY


This chapter has described the basic algorithm for process scheduling on the UNIX


system. The kernel associates a scheduling priority with every process in the system, assigning the value when a process goes to sleep or, periodically, in the doek interrupt handler. The priority assigned when a process goes to sleep is a fixed value, dependent on the kernel algorithm the process was executing. The priority assigned in the doek handler (or when a process returns from kernel mode to user mode) depends on how much time the process has recently used the CPU: It receives a lower priority if it bas used the CPU recently and a higher priority, otherwise. The nice system call allows a process to adjust one parameter used in computation of process priority.


This chapter also described system calls dealing with time: setting and retrieving kernel time, retrieving process execution times, and setting process alarm signals. Finally, it described the functions of the clock interrupt handler, which keeps track of system time, manages the callout table, gathers statistics, and arranges for invocation of the process scheduler, process swapper, and page stealer.


The swapper and page stealer are the topics of the next chapter.


8.5 EXERCISES


1, In assigning priorities when a process goes to sleep, the kernel assigns a higher prioritY


to a process waiting for a 1ocked inode than to a process waiting for a locked buffer.
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Similarly, it assigns higher priority to processes waiting to read terminal input than to processes waiting to write terminal output. Justify both cases.


The algorithm for the clock interrupt handler recalculates process priorities and reschedules processes in 1-second intervals. Discuss an algorithm that dynamically changes the interval depending on system load. Is the gain worth the added complexity?


3. The Sixth Edition of the UNIX system uses the following formula to adjust the recent CPU usage of a process:


decay(CPU) max(threshold priority, CPU — 10);


and the Seventh Edition uses the formula:


decay(CPU) •-• .8 * CPU;


Both systems calculate process priority by the formula


priority CPU/16 + (base level priority);


Try the example in Figure 8.4 using these decay functions.


4.


Repeat the example in Figure 8.4 with seven processes instead of three. Repeat the example assuming there are 100 clock interrupts per second instead of 60. Comment.


5.


Design a scheme such that the system puts a time limit on how long a process executes, forcing it to exit if it exceeds the time limit. How should the user distinguish such processes from processes that should run for ever? If the only requirement was to run such a scheme from the shell, what would have to be done?


6.


When a process executes the wait system call and finds a zombie process, the kernel adds the child's CPU usage field to the parent's. What is the rationale for penalizing the parent?


7.


The command nice causes the subsequent command to be invoked with the given nice value, as in


nice 6 nroff —mm big...memo > output


Write C code for the nice command.


8.


Trace the scheduling of the processes in Figure 8.4 given that the nice value of process A is 5 or —5.


9.


Implement a system call, renice x y, where x is a process ID (of an active process) and y is the value that its nice value should take.


10. Reconsider the example in Figure 8.6 for the fair share scheduler. Suppose the group containing process A pays for 33% of the CPU and the group containing processes B


and C pays for 66% of the CPU time. What should the sequence of scheduled processes look like? Generalize the computation of process priorities so that it normalizes the value of the group CPU usage field.


11. Implement the command date: with no arguments, the command prints the system's opinion of the current date; using a parameter, as in


date mmddhhmmyy


a (super) user can set the system's opinion of the current date to the corresponding month, day, year, hour, and minute. For example,


date 0911205084


sets the system date to September 11, 1984, 8:50 p.m.
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12. Programs can use a user-level sleep function


sleep (seconds);


to suspend execution for the indicated number of seconds. Implement the function using the alarm and pause system calls. What should happen if the process had eend


alarm  before calling sleep?  Consider two possibilities: that the previous alarm cd would expire white the process was sleeping, and that it would expire after the sleep completed.


* 13. Refering to the last problem, the kernel could do a context switch between the alarm and pause calls in the sleep function, and the process could receive the alarm signa]


before it calls pause. What would happen? How can this race condition be fixed?





MEMORY MANAGEMENT


POLICIES


The CPU scheduling algorithm described in the last chapter is strongly influenced by memory management policies. At least part of a process must be contained in primary memory to run; the CPU cannot execute a process that exists entirely in secondary memory. However, primary memory is a precious resource that frequently cannot contain all active processes in the system. For instance, if a system contains 8 megabytes of primary memory, pine 1-megabyte processes will not fit there simultaneously. The memory management subsystem decides which processes should reside (at least partially) in main memory, and manages the parts of the virtual address space of a process that are not core resident. It monitors the amount of available primary memory and may periodically write processes to a secondary memory device called the swap device to provide more space in primary memory. At a later time, the kernel reads the data from the swap device back to main memory.


Historically, UNIX systems transferred entire processes between primary memory and the swap device, but did not transfer parts of a process independently, except for shared text. Such a memory management policy is called swapping. It made sense to implement such a policy on the PD? 11, where the maximum process size was 64K bytes. For this policy, the size of a process is bounded by the amount of physical memory available on a system. The BSD system (release 4.0) was the first major implementation of a demand paging policy, transferring memory pages instead of processes to and from a secondary device; recent releases 271
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of UNIX System V also support demand paging. The entire process does not have to reside in main memory to execute, and the kernel loads pages for a process on demand when the process references the pages. The advantage of a demand paging policy is that it permits greater flexibility in mapping the virtual address space of a process into the physical memory of a machine, usually allowing the size of a process to be greater than the amount of available physical memory and allowing more processes to fit simultaneously in main memory. The advantage of a swapping policy is that it is easier to implement and results in less system overhead.


This chapter discusses the two memory management policies, swapping and paging.


9.1 SWAPPING


There are three parts to the description of the swapping algorithm: managing space on the swap device, swapping processes out of main memory, and swapping processes into main memory.


9.1.1 Allocation of Swap Space


The swap device is a block device in a configurable section of a disk. Whereas the kernel allocates space for files one block at a time, it allocates space on the swap device in groups of contiguous blocks. Space allocated for files is used statically; since it will exist for a long time, the allocation scheme is flexible to reduce the amount of fragmentation and, hence, unallocatable space in the file system. But the allocation of space on the swap device is transitory, depending on the pattern of process scheduling. A process that resides on the swap device will eventually migrate back to main memory, freeing the space it had occupied on the swap device. Since speed is critical and the system can do I/O faster in one multiblock operation than in several single block operations, the kernel allocates contiguous space on the swap device without regard for fragmentation.


Because the allocation scheme for the swap device differs from the allocation scheme for file systems, the data structures that catalog free space differ too. The kernel maintains free space for file systems in a linked list of free blocks, accessible from the file system super block, but it maintains the free space for the swap device in an in-core table, called a map. Maps, used for other resources besides the swap device (some device drivers, for example), allow a first-fit allocation of contiguous


"blocks" of a resource.


A map is an array where each entry consists of an address of an allocatable resource and the number of resource units available there; the kernel interprets the address and units according to the type of map. Initially, a map contains one entry that indicates the address and the total number of resources. For instance, the kernel treats each unit of the swap map as a group of disk blocks, and it treats the address as a block offset from the beginning of the swap area. Figure 9.1


illustrates an initial swap map that consists of 10,000 blocks starting at address 1.
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Address


Units


1


10000


Figure 9.1. Initial Swap Map


algorithm malloc


/* algorithm to allocate map space */


input: (1) map address


/* indicates which map to use 'V


(2) requested number of units


output: address, if successful


0, otherwise


for (every map entry)


(


if (current map entry can fit requested units)


(


if (requested units —... number of units in entry)


delete entry from map;


else


adjust start address of entry;


return (original address of entry);


)


1


return (0);


Figure 9.2. Algorithm for Allocating Space from Maps


As the kernel allocates and frees resources, it updates the map so that it continues to contain accurate information about free resources.


Figure 9.2 gives the algorithm malloc for allocating space from maps. The kernel searches the map for the first entry that contains enough space to accommodate the request. 1f the request consumes all the resources of the map entry, the kernel removes the entry from the array and compresses the map (that is, the map bas one fewer entries). Otherwise, it adjusts the address and unit fields of the entry aceording to the amount of resources allocated. Figure 9.3 shows the sequence of swap map configurations after allocating 100 units, 50 units, then 100


units again. The kernel adjusts the swap map to show that the first 250 units have been allocated, and that it now contains 9750 free units starting at address 251.


When freeing resources, the kernel finds their proper position in the map by address. Three cases are possible:
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Address


Units


Address


Units


1


10000


101


9900


(a)


(I))


Address


Units


Address


Units


151


9850


251


9750


(c)


(d)


Figure 9.3. Allocating Swap Space


1. The freed resources completely fill a hole in the map: they are contiguous to the entries whose addresses would immediately precede them and follow them in the map. In this case, the kernel combines the newly freed resources and the existing (two) entries into one entry in the map.


2.


The freed resources partially fill a hole in the map. If the address of the freed resources are contiguous with the map entry that would immediately precede them or with the entry that would immediately follow them (but not both), the kernel adjusts the address and units fields of the appropriate entry to account for the resources just freed. The number of entries in the map remains the same.


3.


The freed resources partially fill a hole but are not contiguous to any resources in the map. The kernel creates a new entry for the map and inserts it in the proper position.


Returning to the previous example, if the kernel frees 50 units of the swap resource starting at address 101, the swap map contains a new entry for the freed resources, since the returned resources are not contiguous to existing entries in the map. If the kernel then frees 100 units of the swap resource starting at address 1, it adjusts the first entry of the swap map since the freed resources are contiguous to those in the first entry. Figure 9.4 shows the sequence of swap map configurations corresponding to these events.


Suppose the kernel now requests 200 units of swap space. Because the first entry in the swap map only contains 150 units, the kernel satisfies the request from the second entry (see Figure 9.5). Finally, suppose the kernel frees 350 units of
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Address
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Address


Units


251


9750


101


50


251


9750


(a)


(b)


Address


Units


150


251


9750


(c)


Figure 9.4. Freeing Swap Space


Address


Units


Address


Units


Figure 9.5. Allocating Swap Space from the Second Entry in the Map swap space starting at address 151. Although the 350 units were allocated separately, there is no reason the kernel could not free them at once. (It does not do so for swap space, since requests for swap space are independent of each other.) The kernel realizes that the freed resources fit neatly into the hole between the first and second entries in the swap map and creates one entry for the former two (and the freed resources).


Traditional implementations of the UNIX system use one swap device, but the latest implementations of System V allow multiple swap devices. The kernel
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chooses the swap device in a round robin scheme, provided it contains enough contiguous memory. Administrators can create and remove swap devices dynamically. If a swap device is being removed, the kernel does not swap data to it; as data is swapped from it, it empties out until it is free and can be removed.


9.1.2 Swapping Processes Out


The kernel swaps a process out if it needs space in memory, which may result from any of the following:


1. The fork system call must allocate space for a child process', 2.


The brk system call increases the size of a process,


3.


A process becomes larger by the natural growth of its stack,


4.


The kernel wants to free space in memory for processes it had previously swapped out and should now swap in.


The case of fork stands out, because it is the only case where the in-core memory previously occupied by the process is not relinquished.


When the kernel decides that a process is eligible for swapping from main memory, it decrements the reference count of each region in the process and swaps the region out if its reference count drops to 0. The kernel allocates space on a swap device and locks the process in memory (for cases 1-3), preventing the swapper from swapping it out (see exercise 9.12) while the current swap operation is in progress. The kernel saves the swap address of the region in the region table entry.


The kernel swaps as much data as possible per I/0 operation directly between the swap device and user address space, bypassing the buffer cache. If the hardware cannot transfer multiple pages in one operation, the kernel software must iteratively transfer one page of memory at a time. The exact rate of data transfer and its mechanics therefore depend on the capabilities of the disk controller and the implementation of memory management, among other factors. For instance, if memory is organized in pages, the data to be swapped out is likely to be discontiguous in physical memory. The kernel must gather the page addresses of data to be swapped out, and the disk driver may use the collection of page addresses to set up the I/O. The swapper waits for each I/O operation to complete before swapping out other data.


It is not necessary that the kernel write the entire virtual address space of a process to a swap device. Instead, it copies the physical memory assigned to a process to the allocated space on the swap device, ignoring unassigned virtual addresses. When the kernel swaps the process back into memory, it knows the virtual address map of the process, so it can reassign the process to the correct virtual addresses. The kernel eliminates an extra copy from a data buffer to physical memory by reading the data into the physical memory locations that were previously set up to conform to the virtual address locations.
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Layout of Virtual Addresses


Swap Device


Virtual, Ph sical Addresses
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0
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Data
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empty


Figure 9.6. Mapping Process Space onto the Swap Device


Figure 9.6 gives an example of mapping the in-core image of a process onto a swap device.' The process contains three regions for text, data, and stack: the text region ends at virtual address 2K, and the data region starts at virtual address 64K, leaving a gap of 62K bytes in the virtual address space. When the kernel swaps the process out, it swaps the pages for virtual addresses 0, 1K, 64K, 65K, 66K, and 128K; it does not allocate swap space for the empty 62K bytes between the text and data regions or the empty 61K bytes between the data and stack regions but fills the swap space contiguously. When the kernel swaps the process back in, it knows that the process has a 62K-byte hole by consulting the process memory map, and it assigns physical memory accordingly. Figure 9.7 demonstrates this case.


Comparison of Figures 9.6 and 9.7 shows that the physical addresses occupied by 1. For sirriplicity, the virtual address space of a process is depicted as a linear array of page table entries in this and in later figures, disregarding the fact that each region usually has a separate page table.
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Layout of Virtual Addresses
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Figure 9.7. Swapping a Process into Memory


the process before and after the swap are not the same; however, the process does not notice a change at user-level, because the contents of its virtual space are the same.


Theoretically, all memory space occupied by a process, including its u area and kernel stack, is eligible to be swapped out, although the kernel may temporarily lock a region into memory while a sensitive operation is underway. Practically, however, kernel implementations do not swap the u area if the u area contains the address translation tables for the process. The Implementation also dictates whether a process can swap itself out or whether it must request another process to swap it out (see exercise 9.4).


9.1.2.1 Fork Swap


The description of the fork system call (Section 7.1) assumed that the parent process found enough memory to create the child context. Otherwise, the kernel swaps the process out without freeing the memory occupied by the in-core (parent) copy. When the swap is complete, the child process exists on the swap device; the
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parent places the child in the "ready-to-run" state (see Figure 6.1) and returns to user mode. Since the child is in the "ready-to-run" state, the swapper will eventually swap it into memory, where the kernel will schedule it; the child will complete its part of the fork system call and return to user mode.


Original Layout


Expanded Layout
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--- .
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Figure 9.8. Adjusting Memory Map for Expansion Swap


9.1.2.2 Expansion Swap


If a process requires more physical memory than is currently allocated to it, either as a result of user stack growth or invocation of the brk system call and if it needs more memory than is currently available, the kernel does an expansion swap of the process. It reserves enough space on the swap device to contain the memory space of the process, including the newly requested space. Then, it adjusts the address translation mapping of the process to account for the new virtual memory but does not assign physical memory (since none was available). Finally, it swaps the process out in a normal swapping operation, zeroing out the newly allocated space
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on the swap device (see Figure 9.8). When the kernel later swaps the process int() memory, it will allocate physical memory according to the new (augmented size) address translation map. When the process resumes execution, it will have enough memory.


9.1.3 Swapping Proeesses lu


Process 0, the swapper, is the only process that swaps processes into memory from swap devices. At the conclusion of system initialization, the swapper goes into an infinite loop, where its only task is to do process swapping, as mentioned in Section 7.9. It attempts to swap processes in from the swap device, and it swaps processes out if it needs space in main memory. The swapper sleeps if there is no work for it to do (for example, if there are no processes to swap in) or if it is unable to do any work (there are no processes eligible to swap out); the kernel periodically wakes it up, as will be seen. The kernel schedules the swapper to execute just as it schedules other processes, albeit at higher priority, but the swapper executes only in kernel mode. The swapper makes no system calls but uses internal kernel functions to do swapping; it is the archetype of all kernel processes.


As mentioned briefiy in Chapter 8, the clock handler measures the time that each process has been in core or swapped out. When the swapper wakes up to swap processes in, it examines all processes that are in the state "ready to run but swapped out" and selects one that has been swapped out the longest (see Figure 9.9), 1f there is enough free memory available, the swapper swaps the process in, reversing the operation done for swapping out: It allocates physical memory, reads the process from the swap device, and frees the swap space.


1f the swapper successfully swaps in a process, it searches the set of "ready-to-run but swapped out" processes for others to swap in and repeats the above procedure. One of the following situations eventually arises:


• No "ready-to-run" processes exist on the swap device: The swapper goes to sleep until a process on the swap device wakes up or until the kernel swaps out a process that is "ready to run." (Recall the state diagram in Figure 6.1.)


• The swapper finds an eligible process to swap in but the system does not contain enough memory: The swapper attempts to swap another process out and, if successful, restarts the swapping algorithm, searching for a process to swap in.


1f the swapper must swap a process out, it examines every process in memory: Zombie processes do not get swapped out, because they do not take up any physical memory; processes locked in memory, doing region operations, for example, are also not swapped out. The kernel swaps out sleeping processes rather than those "ready to run," because "ready-to-run" processes have a greater chance of being scheduled soon. The choice of which sleeping process to swap out is a function of the process priority and the time the process has been in memory. If there are no sleeping processes in memory, the choice of which "ready-to-run" process to swap out is a function of the process nice value and the time the process has been in memory.
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algorithm swapper


/* swap in swapped out processes,


* swap out other processes to make room */


input: none


output: none


loop:


for (all swapped out processes that are ready to run)


pick process swapped out longest;


if (no such process)


sleep (event must swap in);


goto loop;


if (enough room in main memory for process)


swap process in;


goto loop;


/* loop2; here in revised algorithm (see page 285) */


for (all processes loaded in main memory, not zombie and not locked in memory) if (there is a sleeping process)


choose process such that priority + residence time


is numerically highest;


else /* no sleeping processes */


choose process such that residence time + nice


is numerically highest;


if (chosen process not sleeping or residency requirements not


satisfied)


sleep (event must swap process in);


else


swap out process;


goto loop;


/* goto loop2 in revised algorithm */


Figure 9.9. Algorithm for the Swapper


A "ready-to-run" process must be core resident for at least 2 seconds before being swapped out, and a process to be swapped in must have been swapped out for at least 2 seconds. If the swapper cannot find any processes to swap out or if neither the process to be swapped in nor the process to be swapped out have accumulated more than 2 seconds2 residence time in their environment, then the
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swapper sleeps on the event that it wants to swap a process into memory but cannot find room for it. The doek will awaken the swapper once a second in that state, The kernel als° awakens the swapper if another process goes to sleep, since it rnay be more eligible for swapping out than the processes previously considered by the swapper. 1f the swapper swaps out a process or if it sleeps because it could not swap out a process, it will resume execution at the beginning of the swapping algorithm, attempting to swap in eligible processes.


Figure 9.10 depicts five processes and the time they spend in memory or on the swap device as they go through a sequence of swapping operations. For simplicity, assume that all processes are CPU intensive and that they do not make any system calls; hence, a context switch happens only as a result of clock interrupts at 1-second intervals. The swapper runs at highest scheduling priority, so it always runs briefiy at 1-second intervals if it has work to do. Further, assume that the processes are the same size and the system can contain at most two processes simultaneously in main memory. Initially, processes A and B are in main memory and the other processes are swapped out. The swapper cannot swap any processes during the first 2 seconds, because none have been in memory or on the swap device for 2 seconds (the residency requirement), but at the 2-second mark, it swaps out processes A and B and swaps in processes C and D. It attempts to swap in process E, too, but fails because there is no more room in main memory. At the 3 second mark, process E is eligible for swapping because it has been on the swap device for 3 seconds, but the swapper cannot swap processes out of main memory because their residency time is under 2 seconds. At the 4-second mark, the swapper swaps out processes C and D and swaps in processes E and A.


The swapper chooses processes to swap in based on the amount of time the processes had been swapped out. Another criterion could have been to swap in the highest-priority process that is ready to run, since such processes deserve a better chance to execute. It has been demonstrated that such a policy results in "slightly"


better throughput under heavy system bad (see [Peachey 84]).


The algorithm for choosing a process to swap out to make room in memory has more serious flaws, however. First, the swapper swaps out a process based on its priority, memory-residence time, and nice value. Although it swaps out a process only to make room for a process being swapped in, it may swap out a process that does not provide enough memory for the incoming process. For instance, if the swapper attempts to swap in a process that occupies 1 megabyte of memory and the system eontains no free memory, it is futile to swap out a process that occupies only 2K bytes of memory. An alternative strategy would be to swap out groups of 2. The Version 6 Implementation of the UN/X system did not swap a process out to make room for an incoming process until the incoming process had been disk resident for 3 seconds. The outgoing process had to reside in memory at least 2 seconds. The choice of the time interval cuts down on thrashing and increases system throughput.
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Figure 9.10. Sequence of Swapping Operations
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Figure 9.11. Thrashing due to Swapping


processes only if they provide enough memory for the incoming process.


Experiments using a PDP 11/23 computer have shown that such a strategy can increase system throughput by about 10 percent under heavy loads (see [Peachey 84)),
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Second, if the swapper sleeps because it could not find enough memory to swap in a process, it searches again for a process to swap in although it had previously chosen one. The reason is that other swapped processes may have awakened in the meantime and they may be more eligible for swapping in than the previously chosen process. But that is small solace to the original process still trying to be swapped in. In some implementations, the swapper tries to swap out many smaller processes to make room for the big process to be swapped in before searching for another process to swap in; this is the revision in the swapper algorithm shown by the comments in Figure 9.9.


Third, if the swapper chooses a "ready-to-run" process to swap out, it is possible that the process had not executed since it was previously swapped in. Figure 9.11


depicts such a case, where the kernel swaps in process D at the 2-second mark, schedules process C, and then swaps out process D at the 3-second mark in favor of process E (because of the interaction of the nice value) even though process D had never run. Such thrashing is clearly undesirable.


One final danger is worthy of mention. If the swapper attempts to swap out a process but cannot find space on the swap device, a system deadlock could arise if the following four conditions are met: All processes in main memory are asleep, all


"ready-to-run" processes are swapped out, there is no room on the swap device for new processes, and there is no room in main memory for incoming processes.


Exercise 9.5 explores this situation. Interest in fixing problems with the swapper has declined in recent years as demand paging algorithms have been implemented for UNIX systems.


9.2 DEMAND PAGING


Machines whose memory architecture is based on pages and whose CPU has restartable instructions 3 can support a kernel that implements a demand paging algorithm, swapping pages of memory between main memory and a swap device.


Demand paging systems free processes from size limitations otherwise imposed by the amount of physical memory available on a machine. For instance, machines that contain 1 or 2 megabytes of physical memory can execute processes whose sizes are 4 or 5 megabytes. The kernel still imposes a limit on the virtual size of a process, dependent on the amount of virtual memory the machine can address.


Since a process may not fit into physical memory, the kernel must load its relevant portions into memory dynamically and execute it even though other parts are not loaded. Demand paging is transparent to user programs except for the virtual size 3. If a machine executes "part" of an instruction and incurs a page fault, the CPU must restart the instruction after handling the fault, because intermediate computations done before the page fault may have been lost.
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permissible to a process.


Processes tend to execute instructions in small portions of their text space, sach as program loops and frequently called subroutines, and their data references tend to cluster in small subsets of the total data space of the process. This is known as the principle of "locality." Denning [Denning 681 formalized the notion of tie working set of a process, which is the set of pages that the process has referenced in its last n memory references; the number n is called the window of the working set. Because the working set is a fraction of the entire process, more processes may fit simultaneously into main memory than in a swapping system, potentially increasing system throughput because of reduced swapping traffic. When a process addresses a page that is not in its working set, it incurs a page fault; in handling the fault, the kernel updates the working set, reading in pages from a secondary device if necessary.


Figure 9.12 shows a sequence of page references a process could make, depicting the working sets for various window sizes and following a least recently used replacement policy. As a process executes, its working set changes, depending on the pattern of memory references the process makes; a larger window size yields a iarger working set, implying that •a process will not fault as often. It is impractical to implement a pure working set model, because it is expensive to remember the order of page references. Instead, systems approximate a working set model by setting a reference bit whenever a process accesses a page and by sampling memory references periodically: 1f a page was recently referenced, it is part of a working set; otherwise, it "ages" in memory until it is eligible for swapping.


When a process accesses a page that is not part of its working set, it incurs a validity page fata:. The kernel suspends execution of the process until it reads the page into memory and makes it accessible to the process. When the page is loaded in memory, the process restarts the instruction it was executing when it incurred the fault. Thus, the implementation of a paging subsystem has two parts: swapping rarely used pages to a swapping device and handling page faults. This general description of ming schemes extends to non-UNIX systems, too. The rest of this chapter examines the paging scheme for UNIX System V in detail.


9.2.1 Data Structures for Dentand Paging


The kernel contains 4 major data structures to support low-level memory management functions and demand paging: page table entries, disk block descriptors, the page frame data table (called pfdata for short), and the swap-use table. The kernel allocates space for the pfdata table once for the lifetime of the system but allocates memory pages for the other structures dynamically.


Recall from Chapter 6 that a region contains page tables to access physical memory. Each entry of a page table (Figure 9.13) contains the physical address of the page, protection bits indicating whether processes can read, write or execute from the page, and the following bit fields to support demand paging:
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Figure 9.12. Working Set of a Process


• Valid


• Reference


• Modify


• Copy on write


• Age


The kernel turns on the valid bit to indicate that the contents of a page are legal, but the page reference is not necessarily illegal if the valid bit is off, as will be seen. The reference bit indicates whether a process recently referenced a page, and the modify bit indicates whether a process recently modified the contents of a page.


The copy on write bit, used in the fork system call, indicates that the kernel must create a new copy of the page when a process modifies its contents. Finally, the kernel manipulates the age bits to indicate how long a page has been a member of the working set of a process. Assume the kernel manipulates the valid, copy on
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write, and age bits, and the hardware sets the reference and modify bits of the page table entry; Section 9.2.4 will consider hardware that does not have these capabilities.


Page Table Entry


Page (Physical) Address


Age Cp/Wrt Mod Ref Val Prot


Disk Block Descriptor


Figure 9.13. Page Table Entries and Disk Block Descriptors


Each page table entry is associated with a disk block descriptor, which describes the disk copy of the virtual page (Figure 9.13). Processes that share a region therefore access common page table entries and disk block descriptors. The contents of a virtual page are either in a particular block on a swap device, in an executable file, or not on a swap device. If the page is on a swap device, the disk block descriptor contains the logical device number and block number containing the page contents. If the page is contained in an executable file, the disk block descriptor contains the logical block number in the file that contains the page; the kernel can quickly map this number into its disk address. The disk block descriptor also indicates two special conditions set during exec: that a page is "demand fill"
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or "demand zero." Section 9.2.1.2 will explain these conditions.


The pfdata table describes each page of physical memory and is indexed by page number. The fields of an entry are


• The page state, indicating that the page is on a swap device or executable file, that DMA is currently underway for the page (reading data from a swap device), or that the page can be reassigned.


• The number of processes that reference the page. The reference count equals the number of valid page table entries that reference the page. It may differ from the number of processes that share regions containing the page, as will be described below when reconsidering the algorithm for fork.


• The logical device (swap or file system) and block number that contains a copy of the page.


• Pointers to other pfdata table entries on a list of free pages and on a hash queue of pages.


The kernel links entries of the pfdata table onto a free list and a hashed list, analogous to the linked lists of the buffer cache. The free list is a cache of pages that are available for reassignment, but a process may fault on an address and still find the corresponding page intact on the free list. The free list thus allows the kernel to avoid unnecessary read operations from the swap device. The kernel allocates new pages from the list in least recently used order. The kernel also hashes the pfdata table entry according to its (swap) device number and block number. Thus, given a device and block number, the kernel can quickly locate a page if it is in memory. To assign a physical page to a region, the kernel removes a free page frame entry from the head of the free list, updates its swap device and block numbers, and puts it onto the correct hash queue.


The swap-use table contains an entry for every page on a swap device. The entry consists of a reference count of how many page table entries point to a page on a swap device.


Figure 9.14 shows the relationship between page table entries, disk block descriptors, pfdata table entries, and the swap-use count table. Virtual address 1493K of a process maps into a page table entry that points to physical page 794; the disk block descriptor for the page table entry shows that a copy of the page exists at disk block 2743 on swap device I. The pfdata table entry for physical page 794 also shows that a copy of the page exists at disk block 2743 on swap device 1, and its in-core reference count is 1. Section 9.2.4.1 will explain why the disk block number is duplicated in the pfdata table and the disk block descriptor.


The swap use count for the virtual page is 1, meaning that one page table entry points to the swap copy.


9.2.1.1 Fork in a Paging System


As explained in Section 7.1, the kernel duplicates every region of the parent process during the fork system call and attaches it to the child process. Traditionally, the
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Page Table Entry


Disk Block Descriptor
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Page No 794
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Block No 2743
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Figure 9.14. Relationship of Data Structures for Demand Paging kernel of a swapping system makes a physical copy of the parent's address space, usually a wasteful operation, because processes often call exec soon after the fork call and immediately free the memory just copied. On the System V paging system, the kernel avoids copying the page by manipulating the region tables, page table entries, and pfdata table entries: It simply increments the region reference count of shared regions. For private regions such as data and stack, however, it allocates a new region table entry and page table and then examines each parent page table entry: If a page is valid, it increments the ,:eference count in the pfdata table entry, indicating the number of processes that share the page via different regions (as opposed to the number that share the page by sharing the region). If the page exists on a swap device, it increments the swap-use table reference count for the page.


The page can now be referenced through both regions, which share the page until a process writes to it. The kernel then copies the page so that each region has a private version. To do this, the kernel turns on the "copy on write" bit for every page table entry in private regions of the parent and child processes during fork. If either process writes the page, it incurs a protection fault, and in handling the fault, the kernel makes a new copy of the page for the faulting process. The physical copying of the page is thus deferred until a process really needs it.


Figure 9.15 shows the data structures when a process forks. The processes share access to the page table of the shared text region T, so the region reference count is 2 and the pfdata reference count for pages in the text region is I. The
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Figure 9.15. A Page in a Process that Forks


kernel allocates a new child data region, Cl, a Copy of region Pl in the parent process. The page table entries of the two regions are identical, as illustrated by the entry for virtual address 97K. The page table entries point to pfdata table entry 613, whose reference count is 2, indicating that two regions reference the page.


The implementation of the fork system call in the BSD system makes a physical copy of the pages of the patent process. Recognizing the performance improvement gained by not having to do the copy, however, the BSD system also contains the vfork system eau, which assumes that a child process will immediately invoke exec on return from the vfork call. Vfork does not copy page tables so it is faster than the System V fork implementation. But the child process executes in the same
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physical address space as the parent process (until an exec or exit) and can thus overwrite the parent's data and stack. A dangerous situation could arise if 3


programmer uses vfork incorrectly, so the onus for calling vfork lies with the programmer. The difference between the System V approach and the BSD


approach is philosophical: Should the kernel hide idiosyncrasies of its i mplementation from users, or should it allow sophisticated users the opportunity to take advantage of the implementation to do a logical function more efficiently?


int global;


main()


int local;


local — 1;


if (vfork0


/* child *I


global -• 2;


/* write parent data space */


local a• 3;


/* write parent stack */


_exit();


printf("global %d local %d\n", global, local);


Figure 9.16. Vfork and Corruption of Process Memory


For example, consider the program in Figure 9.16. After the vfork call, the child process does not exec, but resets the variables global and local and exits.4


The system guarantees that the parent process is suspended until the child process execs or exits. When the parent process finally resumes execution, it finds that the values of the two variables are not the same as they were before the vfork! More spectacular effects can occur if the child process returns from the function that had called vfork (see exercise 9.8).


4. The call to _exit is used, because exit "cleans up" the standard I/O (user-level) data structures for the parent and child processes, preventing the parent's printf statement from working correctly —


another unfortunate side effect of vfork.
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9.2.1.2 Exee in a Paging System


When a process invokes the exec system call, the kernel reads the executable file into memory from the file system, as described in Chapter 7. On a demand paged system, however, the executable file may be too large to fit in the available main memory. The kernel, therefore, does not preassign memory to the executable file but "faults" it in, assigning memory as needed. It first assigns the page tables and disk block descriptors for the executable file, marking the page table entries


"dernand fill" (for non-bss data) or "demand zero" (for bss data). Following a variant of the read algorithm for reading the file into memory, the process incurs a validity fault as it reads each page. The fault handler notes whether the page is


"demand fill," meaning its contents will immediately be overwritten with the contents of the executable file so it need not be cleared, or that it is "demand zero,"


meaning that its contents should be cleared. The description of the validity fault handler in Section 9.2.3 will show how this is done. 1f the process cannot fit into memory, the page-stealer process periodically swaps pages from memory, making room for the incoming file.


There are obvious inefficiencies in this scheme. First, a process incurs a page fault when reading each page of the executable file, even though it may never access the page. Second, the page stealer may swap pages from memory before the exec is done, resulting in two extra swap operations per page if the process needs the page early. To make exec more efficient, the kernel can demand page directly from the executable file if the data is properly aligned, as indicated by a special magie number. However, use of standard algorithms (such as bmap, in Chapter 4) to access a file would make it expensive to demand page from indirect blocks because of the multiple buffer cache accesses necessary to read a block.


Furthermore, consistency problems could arise because bmap is not reentrant. The kernel sets various 1/0 parameters in the u area during the read system call. 1f a process incurs a page fault during a read system call when attempting to copy data to user space, it would overwrite these fields in the u area to read the page from the file system. Therefore, the kernel cannot use the regular algorithms to fault in pages from the file system. The algorithms are, of course, reentrant in regular cases, because each process bas a separate u area and a process cannot simultaneously execute multiple system calls.


To page directly from an executable file, the kernel finds all the disk block numbers of the executable file when it does the exec and attaches the list to the file m ode. When setting up the page tables for such an executable file, the kernel marks the disk block descriptor with the logica! block number (starting from block 0 in the file) containing the page; the validity fault handler later uses this information to bad the page from the file. Figure 9.17 shows a typical arrangement, where the disk block descriptor indicates that the page is at logica!


block offset 84 in the file. The kerne! follows the pointer from the region to the m ode and looks up the appropriate disk block number (279).
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m ode
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Figure 9.17. Mapping a File into a Region


9.2.2 The Page-Stealer Process


The page stealer is a kernel process that swaps out memory pages that are no longer part of the working set of a process. The kernel creates the page stealer during system initialization and invokes it throughout the lifetime of the system when low on free pages. It examines every active, unlocked region, skipping locked regions in the expectation of examining them during its next pass through the region list, and increments the age field of all valid pages. The kernel locks a region when a process faults on a page in the region, so that the page stealer cannot steal the page being faulted in.


There are two paging states for a page in memory: The page is aging and is not yet eligible for swapping, or the page is eligible for swapping and is available for reassignment to other virtual pages. The first state indicates that a process recently accessed the page, and the page is therefore in its working set. Some machines set a reference bit when they reference a page, but software methods can be substituted if the hardware does not have this feature (Section 9.2.4). The page stealer turns off the reference bit for such pages but remembers how many examinations have passed since the page was last referenced. The first state thus consists of several substates, corresponding to the number of passes the page stealer makes before the page is eligible for swapping (see Figure 9.18). When the number exceeds a threshold value, the kernel puts the page into the second state, ready to be swapped. The maximum period that a page can age before it is eligible to be swapped is implementation dependent, constrained by the number of bits available in the page table entry.


Figure 9.19 depicts the interaction between processes accessing a page and examinations by the page stealer. The page starts out in main memory, and the figure shows the number of examinations by the page stealer between memory
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Figure 9.18. State Diagram for Page Aging


references. A process referenced the page after the second examination, dropping its age to 0. Similarly, a process referenced the page again after one more examination. Finally, the page stealer examined the page three times without an intervening reference and swapped the page out.


If two or more processes share a region, they update the reference bits of the same set of page table entries. Pages can thus be part of the working set of more than one process, but that does not matter to the page stealer. 1f a page is part of the working set of any process, it remains in memory; if it is not part of the working set of any process, it is eligible for swapping. It does not matter if one region has more pages in memory than others: the page stealer does not attempt to swap out equal numbers of pages from all active regions.


The kernel wakes up the page stealer when the available free memory in the system is below a low-water mark, and the page stealer swaps out pages until the available free memory in the system exceeds a high-water mark. The use of high-and low-water marks reduces thrashing: 1f the kernel were only to use one threshold, it would swap out enough pages to get above the threshold (of free pages), but as a result of faulting pages back into memory, the number would soon drop below the threshold. The page stealer would effectively thrash about the threshold. By swapping out pages until the number of free pages exceeds a high-water mark, it takes longer until the number of free pages drops below the low-water mark, so the page stealer does not run as often. Administrators can configure the values of the high- and low-water marks for best performance.


When the page stealer decides to swap out a page, it considers whether a copy of the page is on a swap device. There are three possibilities.
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Figure 9.19. Example of Aging a Page


1.


If no copy of the page is on a wap device, the kernel "schedules" the page for swapping: The page stealer places the page on a list of pages to be swapped out and continues; the swap is logically complete. When the list of pages to be swapped reaches a limit (dependent on the capabilities of the disk controller), the kernel writes the pages to the swap device.


2.


If a copy of the page is already on a swap device and no process had modified its in-core contents (the page table entry modify bit is clear), the kernel clears the page table entry valid bit, decrements the reference count in the pfdata table entry, and puts the entry on the free list for future allocation.


3.


1f a copy of the page is on a swap device but a process had rnodified its contents in memory, the kernel schedules the page for swapping, as above, and frees the space it currently occupies on the swap device.


The page stealer copies the page to a swap device if case 1 or case 3 is true.


To illustrate the differences between the last two cases, suppose a page is on a swap device and is swapped into main memory after a process incurs a validity fault. Assume the kernel does not automatically remove the disk copy. Eventually, the page stealer decides to swap the page out again. 1f no process has written the
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page since it was swapped in, the memory copy is identical to the disk copy and there is no need to write the page to the swap device. If a process has written the page, however, the memory copy differs from the disk copy, so the kernel must write the page to the swap device, after freeing the space on the swap device previously occupied by the page. It does not reuse the space on the swap device immediately, so that it can keep swap space contiguous for better performance.


The page stealer fills a list of pages to be swapped, possibly from different regions, and swaps them to a swap device when the list is full. Every page of a process need not be swapped: Some pages may not have aged sufficiently, for example. This differs from the policy of the swapping process, which swaps every page of a process from memory, but the method for writing data to the swap device is identical to that described in Section 9.1.2 for a swapping system. If no swap device contains enough contiguous space, the kernel swaps out one page at a time, which is clearly more costly. There is more fragmentation of a swap device in the paging scheme than in a swapping scheme, because the kernel swaps out blocks of pages but swaps in only one page at a time.


When the kernel writes a page to a swap device, it turns off the valid bit in its page table entry and decrements the use count of its pfdata table entry. If the count drops to 0, it places the pfdata table entry at the end of the free list, caching it until reassignment. If the count is not 0, several processes are sharing the page as a result of a previous fork call, but the kernel still swaps the page out. Finally, the kernel allocates swap space, saves the swap address in the disk block descriptor, and increments the swap-use table count for the page. If a process incurs a page fault while the page is on the free list, however, the kernel can rescue the page from memory instead of having to retrieve it from the swap device. However, the page is still swapped if it is on the swap list.


For example, suppose the page stealer swaps out 30, 40, 50 and 20 pages from processes A, B, C, and D, respectively, and that it writes 64 pages to the swap device in one disk write operation. Figure 9.20 shows the sequence of page-swapping operations that would occur if the page stealer examines pages of the processes in the order A, B, C, and D. The page stealer allocates space for 64


pages on the swap device and swaps out the 30 pages of process A and 34 pages of process B. It then allocates more space on the swap device for another 64 pages and swaps out the remaining 6 pages of process B, the 50 pages of process C, and 8


pages of process D. The two areas of the swap device for the two write operations need not be contiguous. The page stealer keeps the remaining 12 pages of process D on the list of pages to be swapped but does not swap them until the list is full.


As processes fault in pages from the swap device or when the pages are no longer in use (processes exit), free space develops on the swap device.


To summarize, there are two phases to swapping a page from memory. First, the page stealer finds the page eligible for swapping and places the page number on a list of pages to be swapped. Second, the kernel copies the page to a swap device when convenient, turns off the valid bit in the page table entry, decrements the pfdata table entry reference count, and places the pfdata table entry at the end of
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Groups of 64 Pages to Swap


Proc A 30 pgs


Proc B 6 pgs


Proc D 12 pgs


Proc B 34 pgs


Proc C 50 pgs


•.


Proc D 8 pgs


Swap Device


Figure 9.20. Allocation of Swap Space in Paging Scheme


the free list if its reference count is 0. The contents of the physical page in memory are valid until the page is reassigned.


9.2.3 Page Faults


The system can incur two types of page faults: validity faults and protection faults.


Because the fault handlers may have to read a page from disk to memory and sleep during the I/O operation, fault handlers are an exception to the genera' rule that interrupt handlers cannot sleep. However, because the fault handler sleeps in the context of the process that caused the memory fault, the fault relates to the running process; hence, no arbitrary processes are put to sleep.


9.2.3.1 Validity Fault Handler


If a process attempts to access a page whose valid bit is not set, it incurs a validity fault and the kernel invokes the validity faalt handler (Figure 9.21). The valid bit is not set for pages outside the virtual address space of a process, nor is it set for pages that are part of the virtual address space but do not currently have a physical page assigned to them. The hardware supplies the kernel with the virtual address that was accessed to cause the memory fault, and the kernel finds the page table entry and disk block descriptor for the page. The kernel locks the region containing the page table entry to prevent race conditions that would occur if the page stealer attempted to swap the page out. If the disk block descriptor has no record of the








9.2


DEMAND PAGING


299


algorithm vfault


/* handler for validity faults */


input: address where process faulted


output: none


find region, page table entry, disk block descriptor


corresponding to faulted address, lock region;


if (address outside virtual address space)


send signal (SIGSEGV: segmentation violation) to process;


goto out;


if (address now valid)


/* process may have slept above */


goto out;


if (page in cache)


remove page from cache;


adjust page table entry;


while (page contents not valid) /* another proc faulted first */


sleep (event contents become valid);


else


/* page not in cache */


assign new page to region;


put new page in cache, update pfdata entry;


if (page not previously loaded and page "demand zero")


clear assigned page to 0;


else


read virtual page from swap dev or exec file;


sleep (event I/O done);


awaken processes (event page contents valid);


set page valid bit;


clear page modify bit, page age;


recalculate process priority;


out: unlock region;


Figure 9.21. Algorithm for Validity Fault Handler
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faulted page, the attempted memory reference is invalid and the kernel sends a


"segmentation violation" signal to the offending process (recall Figure 7.25), This is the same procedure a swapping system fellows when a process accesses an invalid address, except that it recognizes the error immediately because all legal pages are memory resident. If the memory reference was legal, the kernel allocates a page of memory to read in the page contents from the swap device or from the executable file.


The page that caused the fault is in one of five states:


1. On a swap device and not in memory,


2.


On the free page list in memory,


3.


In an executable file,


4.


Marked "demand zero,"


5.


Marked "demand fill."


Let us consider each case in detail.


If a page is on a swap device and not in memory (case 1), it once resided in main memory but the page stealer had swapped it out. From the disk block descriptor, the kernel finds the swap device and block number where the page is stored and verifies that the page is not in the page cache. The kernel updates the page table entry so that it points to the page about to be read in, places the pfdata table entry on a hash list to speed later operation of the fault handler, and reads the page from the swap device. The faulting process sleeps until the I/O completes, when the kernel awakens other processes who were waiting for the contents of the page to be read in.


For example, consider the page table entry for virtual address 66K in Figure 9.22. 1f a process incurs a validity fault when accessing the page, the fault handler examines the disk block descriptor and sees that the page is contained in block 847


of the swap device (assume there is only one swap device): Hence, the virtual address is legal. The fault handler then searches the page cache but fails to find an entry for disk block 847. Therefore, there is no copy of the virtual page in memory, and the fault handler must read it from the swap device. The kernel assigns page 1776 (Figure 9.23), reads the contents of the virtual page from the swap device into the new page, and updates the page table entry to refer to page 1776. Finally, it updates the disk block descriptor to indicate that the page is still swapped and the pfdata table entry for page 1776 to indicate that block 847 of the swap device contains a duplicate copy of the virtual page.


The kernel does not always have to do an I/0 operation when it incurs a validity fault, even though the disk block descriptor indicates that the page is swapped (case 2). It is possible that the kernel had never reassigned the physical page after swapping it out, or that another process had faulted the virtual page into another physical page. In either case, the fault handler finds the page in the page cache, keying off the block number in the disk block descriptor. It reassigns the page table entry to point to the page just found, increments its page reference count, and removes the page from the free list, if necessary. For example, suppose
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Figure 9.22. Occurrence of a Validity Fault


a process faults when accessing virtual address 64K in Figure 9.22. Searching the page cache, the kernel finds that page frame 1861 is associated with disk block 1206, as is the disk block descriptor. It resets the page table entry for virtual address 64K to point to page 1861, sets the valid bit, and returns. The disk block number thus associates a page table entry with a pfdata table entry, explaining why both tables save it.


Similarly, the fault handler does not have to read the page into memory if another process had faulted on the same page but had not completely read it in yet.


The fault handler finds the region containing the page table entry locked by another instance of the fault handler. It sleeps until the other instance of the fault handler completes, finds the page now valid, and returns. Figure 9.24 depicts such a scenario.
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Figure 9.23. After Swapping Page into Memory
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Figure 9.24. Double Fault on a Page


If a copy of the page does not exist on a swap device but is in the original executable file (case 3), the kernel reads the page from the original file. The fault handler examines the disk block descriptor, finds the logical block number in the file that contains the page, and finds the mode associated with the region table entry. It uses the logica! block number as an offset into the array of disk block numbers attached to the mode during exec. Knowing the disk block number, it reads the page into memory. For example, the disk block descriptor for virtual
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address 1K in Figure 9.22 shows that the page contents are in logical block 3 in the executable file.


If a process incurs a page fault for a page marked "demand fill" or "demand zero" (cases 4 and 5), the kernel allocates a free page in memory and updates the appropriate page table entry. For "demand zero," it also clears the page to zero.


-Finally, it clears the "demand fill" or "demand zero" flags: The page is now valid in memory and its contents are not duplicated on a swap device or in a file system.


This would happen when accessing virtual addresses 3K and 65K in Figure 9.22: No process had accessed those pages since the file was execed.


The validity fault handler concludes by setting the valid bit of the page and clearing the modify bit. It recalculates the process priority, because the process may have slept in the fault handler at a kernel-level priority, giving it an unfair scheduling advantage when returning to user mode. Finally, if returning to user mode, it checks for receipt of any signals that occurred while handling the page fault.


9.2.3.2 Protection Fault Handler


The second kind of memory fault that a process can incur is a protection fault, meaning that the process accessed a valid page but the permission bits associated with the page did not permit access. (Recall the example of a process attempting to write its text space, in Figure 7.22.) A process also incurs a protection fault when it attempts to write a page whose copy on write bit was set during the fork system call. The kernel must determine whether permission was denied because the page requires a copy on write or whether something truly illegal happened.


The hardware supplies the protection fault handler with the virtual address where the fault occurred, and the fault handler finds the appropriate region and page table entry (Figure 9.25). It locks the region so that the page stealer cannot steal the page while the protection fault handler operates on it. If the fault handler determines that the fault was caused because the copy on write bit was set, and if the page is shared with other processes, the kernel allocates a new page and copies the contents of the old page to it; the other processes retain their references to the old page. After copying the page and updating the page table entry with the new page number, the kernel decrements the reference count of the old pfdata table entry. Figure 9.26 illustrates the scenario: Three processes share physical page 828. Process B writes the page but incurs a protection fault, because the copy on write bit is set. The protection fault handler allocates page 786, copies the contents of page 828 to the new page, decrements the reference count of page 828, and updates the page table entry accessed by process B to point to page 786.


If the copy on write bit is set but no other processes share the page, the kernel allows the process to reuse the physical page. It turns off the copy on write bit and disassociates the page from its disk copy, if one exists, because other processes may share the disk copy. It then removes the pfdata table entry from the page queue, because the new copy of the virtual page is not on the swap device. Then, it
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algorithm pfault


/* protection fault handler */


input:


address where process faulted


output:


none


find region, page table entry, disk block descriptor,


page frame for address, lock region;


if (page not valid in memory)


goto out;


if (copy on write bit not set)


goto out;


Is real program error — signal *I


if (page frame reference count > 1)


allocate a new physical page;


copy contents of old page to new page;


decrement old page frame reference count;


update page table entry to point to new physical page;


else


P steal" page, since nobody else is using it */


if (copy of page exists on swap device)


free space on swap device, break page association;


if (page is on page hash queue)


remove from hash queue;


set modify bit, clear copy on write bit in page table entry;


recalculate process priority;


check for signals;


out: unlock region;


Figure 9.25. Algorithm for Protection Fault Handler


decrements the swap-use count for the page and, if the count drops to 0, frees the swap space (see exercise 9.11).


1f a page table entry is invalid and its eopy on write bit is set to cause a protection fault, let us assume that the system handles the validity fault first when a process accesses the page (exercise 9.17 covers the reverse case). Nevertheless, the protection fault handler must check that a page is stilt valid, because it could sleep when locking a region, and the page stealer could meanwhile swap the page from memory. 1f the page is invalid (the valid bit is clear), the fault handler returns immediately, and the process will incur a validity fault. The kernel handles the validity fault, but the process will incur the protection fault again. More than likely, it will handle the final protection fault without any more interference, because it will take a long time until the page will age sufficiently to be swapped out. Figure 9.27 illustrates this sequence of events.
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Page Table Entry - Proc A


Page 828 Valid, Copy on Write


Page Table Entry - Proc B


Page Frame 828


Page 828 Valid, Copy on Write


Ref Count 3


Page Table Entry - Proc C


Page 828 Valid, Copy on Write


(a) Before Proe B Incurs Protection Fault


Page Table Entry - Proc A


Page 828 Valid, Copy on Write


Page Frame 828


Ref Count 2


Page Table Entry - Proc B


Page 786 Valid


Page Frame 786


Page Table Entry - Proc C


Ref Count I


Page 828 Valid, Copy on Write


(b) After Protection Fault Handler Runs for Proc B


Figure 9.26. Protection Fault with Copy on Write Set


When the protection fault handler finishes executing, it sets the modify and protection bits, but clears the copy on write bit. It recalculates the process priority and checks for signals, as is done at the end of the validity fault handler.
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Process Incurring Page Faults


Page Stealer


Locks Region


Incur Validity Fault


Time


Figure 9.27. Interaction of Protection Fault and Validity Fault 9.2.4 Demand Paging on Less-Sophisticated Hardware


The algorithms for demand paging are most efficient if the hardware sets the reference and modify bits and causes a protection fault when a process writes a page whose copy on write bit is set. However, it is possible to implement the paging algorithms described here if the hardware recognizes only the valid and protection bits. 1f the valid bit is duplicated by a software-valid bit that indicates whether the page is really valid or not, then the kernel could turn off the hardware valid bit and simulate the setting of the other bits in software. For example, the VAX-1 1 hardware does not have a reference bit (see [Levy 82D. The kernel can turn off the hardware valid bit for the page and follow this scenario: 1f a process references the page, it incurs a page fault because the hardware valid bit is off, and the page fault interrupt handler examines the page. Because the software-valid bit is set, the kernel knows that the page is really valid and in memory; it sets the software reference bit and turns the hardware valid bit on, but it will have acquired the knowledge that the page had been referenced. Subsequent references to the page will not incur a fault because the hardware valid bit is on. When the page stealer examines the page, it turns off the hardware valid bit again, causing
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Valid


Valid


Reference


Off
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(a) Before Modifying Page


(b) After Modifying Page


Figure 9.28. Mimicking Hardware Modify Bit in Software


processes to fault when referencing the page, repeating the cycle. Figure 9.28


depicts this case.


9.3 A HYBRID SYSTEM WITH SWAPPING AND DEMAND PAGING


Although demand paging systems treat memory more flexibly than swapping systems, situations can arise where the page stealer and validity fault handler thrash because of a shortage of memory. If the sum of the working sets of all processes is greater than the physical memory on a machine, the fault handler will usually sleep, because it cannot allocate pages for a process. The page stealer will not be able to steal pages fast enough, because all pages are in a working set.


System throughput suffers because the kernel spends too much time in overhead, rearranging memory at a frantic pace.


The System V kernel runs swapping and demand paging algorithms to avoid thrashing problems. When the kernel cannot allocate pages for a process, it wakes up the swapper and puts the calling process into a state that is the equivalent of


"ready to run but swapped." Several processes may be in this state simultaneously.


The swapper swaps out entire processes until available memory exceeds the high-water mark. For each process swapped out, it makes one "ready-to-run but swapped" process ready to run. It does not swap those processes in via the normal swapping algorithm but lets them fault in pages as needed. Later iterations of the swapper will allow other processes to be faulted in if there is sufficient memory in the system, This method slows down the system fault rate and reduces thrashing; it is similar in philosophy to methods used in the VAX/VMS operating system ([Levy 82]).


9.4 SUMMARY


This chapter has explored the UNIX System V algorithms for process swapping and demand paging. The swapping algorithm swaps entire processes between main memory and a swap device. The kernel swaps processes from memory if their size grows such that there is no more room in main memory (as a result of a fork,
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exec,  or sbrk system cal or as a result of normal stack growth), or if it bas ta make room for a process being swapped in. The kernel swaps processes in via tie special swapper process, process 0, invoking it whenever there exists a "ready-to.


run" process on the swap device. The swapper swaps in all such processes until there are no more processes on the swap device or until there is no more room in memory. In the latter case, it attempts to swap processes from main memory, bui it reduces the amount of thrashing by prohibiting swapping of processes that do not satisfy residency requirements; hence, the swapper is not always successful in swapping all processes into memory during each pass. The doek handler wakes up the swapper every second if it has work to do.


The implementation of demand paging allows processes to execute even though their entire virtual address space is not loaded in memory; therefore the virtual size of a process can exceed the amount of physical memory available in a system.


When the kernel runs low on free pages, the page stealer goes through the active pages of every region, marks pages eligible for stealing if they have aged sufficiently, and eventually copies them to a swap device. When a process addresses a virtual page that is currently swapped out, it incurs a validity fault. The kernel invokes the validity fault handler to assign a new physical page to the region and copies the contents of the virtual page to main memory.


With the implementation of the demand paging algorithm, several features improve system performance. First, the kernel uses the copy on write bit for forking processes, removing the need to make physical copies of pages in most cases. Second, the kernel can demand page contents of an executable file from the file system, eliminating the need for exec to read the file into memory immediately.


This helps performance because such pages may never be needed during the lifetime of a process, and it eliminates extra thrashing caused if the page stealer were to swap such pages from memory before they are used.


9.5 EXERCISES


1. Sketch the design of an algorithm mfree, which frees space and returns it to a map.


2.


Section 9.11 states that the system locks a process being swapped so that no other process can swap it while the first operation is underway. What would happen if the system did not lock the process?


3.


Suppose the u area contains the segment tables and page tables for a process. How can the kernel swap the u area out?


4.


1f the kernel stack is inside the u area, why can't a process swap itself out? How would you encode a kernel process to swap out other processes and how should it be invoked?


* 5. Suppose the kernel attempts to swap out a process to make room for processes on a swap device. 1f there is not enough space on any swap devices, the swapper sleeps until more space becomes available. Is it possible for all processes in memory to be asleep and for all ready-to-run processes to be on the swap device? Describe such a scenario. What should the kernel do to rectify the situation?
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6.


Reconsider the swapping example in Figure 9.10 if there is room for only 1 process in memory.


7.


Reconsider the swapping example in Figure 9.11. Construct an example where a process is permanently starved from use of the CPU. Is there any way to prevent this?


main()


Figure 9.29. Vfork and More Corruption


8.


What happens when executing the program in Figure 9.29 on a 4.2 BSD system?


What happens to the parent's stack?


9.


Why is it advantageous to schedule the child process before the parent after a fork call if copy on write bits are set on shared pages? How can the kernel force the child to run first?


* 10. The validity fault algorithm presented in the text swaps in one page at a time. Its efficiency can be improved by prepaging other pages around the page that caused the fault. Enhance the page fault algorithm to allow prepaging.


11. The algorithms for the page stealer and for the validity fault handler assume that the size of a page equals the size of a disk block. How should the algorithms be enhanced to handle the cases where the respective sizes are not equal?


* 12. When a process forks, the page use count in the pfdata table is incremented for all shared pages. Suppose the page stealer swaps a (shared) page to a swap device, and one process (say, the parent) later faults it in. The virtual page now resides in a physical page. Explain why the child process will always be able to find a legal copy of the page, even after the parent writes the page. If the parent writes the page, why must it disassociate itself from the disk copy immediately?


13. What should a fault handler do if the system runs out of pages?


* 14. Design an algorithm that pages out infrequently used parts of the kernel. What parts of the kernel cannot be paged and how should they be identified?
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15. Devise an algorithm that tracks the allocation of space on a swap device by means of a bit map instead of the maps described in the chapter. Compare the efficiency of taa two methods.


16. Suppose a machine has no hardware valid bit but has protection bits to allow read, write, and execute from a page. Simulate manipulation of a software valid bit.


17. The VAX-11 hardware checks for protection faults before validity faults. What ramifications does this have for the algorithms for the fault handlers?


18. The plock system call allows superusers to lock and unlock the text and data regio!».


of the calling process into memory. The swapper and page stealer processes cannot remove locked pages from memory. Processes that use this call never have to wait be swapped in, assuring them faster response than other processes. How should the system call be implemented? Should there be an option to lock the stack region int°


memory too? What should happen if the total memory space of plocked regions is greater than the available memory on the machine?


19. What is the program in Figure 9.30 doing? Consider an alternative paging policy, where each process has a maximum allowed number of pages in its working set.
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struct fourmeg


int pagei5121;


/* assume int is 4 bytes */


fourmeg120481;


main()


for (;;)


switch(fork())


case —1:


/* parent can't fork---too many children */


case 0:


/* child */


Wilco;


default:


continue;


funco


int i;


for (;;)


printf("proc %d loops again\e, getpid());


for


0; i < 2048; i++)


fourmegfil.page[01


i;


Figure 930. A Misbehaving Program
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The I/O subsystem allows a process to communicate with peripheral devices such as disks, tape drives, terminals, printers, and networks, and the kernel modules that control devices are known as device drivers. There is usually a one-to-one correspondence between device drivers and device types: Systems may contain one disk driver to control all disk drives, one terminal driver to control all terminals, and one tape driver to control all tape drives. Installations that have devices from more than one manufacturer — for example, two brands of tape drives — may treat the devices as two different device types and have two separate drivers, because such devices may require different command sequences to operate properly.


A device driver controls many physical devices of a given type. For example, one terminal driver may control all terminals connected to the system. The driver distinguishes among the many devices it controls: Output intended for one terminal must not be sent to another.


The system supports "software devices," which have no associated physical device. For example, it treats physical memory as a device to allow a process access to physical memory outside its address space, even though memory is not a peripheral device. The ps command, for instance, reads kernel data structures from physical memory to report process statistics. Sirnilarly, drivers may write trace records useful for debugging, and a trace driver may allow users to read the records. Finally, the kernel profiler described in Chapter 8 is implemented as a driver: A process writes addresses of kernel routines found in the kernel symbol 312
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table and reads profiling results.


This chapter examines the interfaces between processes and the I/O subsystem and between the machine and the device drivers. It investigates the general structure and function of device drivers, then treats disk drivers and terminal drivers as detailed examples of the general interface. It concludes with a description of a new method for implementing device drivers called streams.


10.1 DRIVER INTERFACES


The UNIX system contains two types of devices, block devices and raw or character devices. As defined in Chapter 2, block devices, such as disks and tapes, look like random access storage devices to the rest of the system; character devices include all other devices such as terminals and network media. Block devices may have a character device interface, too.


The user interface to devices goes through the file system (recall Figure 2.1): Every device has a name that looks like a file name and is accessed like a file. The device special file has an mode and occupies a node in the directory hierarchy of the file system. The device file is distinguished from other files by the file type stored in its Mode, either "block" or "character special," corresponding to the device it represents. If a device has both a block and character interface, it is represented by two device files: its block device special file and its character device special file. System calls for regular files, such as open, close, read, and write, have an appropriate meaning for devices, as will be explained later. The ioctl system call provides an interface that allows processes to control character devices, but it is not applicable to regular files) However, each device driver need not support every system call interface. For example, the trace driver mentioned earlier allows users to read records written by other drivers, but it does not allow users to write it.


10.1.1 System Configuration


System configuration is the procedure by which administrators specify parameters that are installation dependent. Some parameters specify the sizes of kernel tables, such as the process table, mode table, and file table, and the number of buffers to be allocated for the buffer pool. Other parameters specify device configuration, telling the kernel which devices are included in the installation and their "address."


For instance, a configuration may specify that a terminal board is plugged into a I. Conversely, the ftnti system call provides control of operations at the file descriptor level, not the device level. Other implementations interpret loch for all file types.
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particular slot on the hardware backplane.


There are three stages at which device configuration can be specified. First administrators can hard-code configuration data into files that are compiled and linked when building the kernel code. The configuration data is typically specified in a simple format, and a configuration program converts it into a file suitable for compilation. Second, administrators can supply configuration information after the system is already running; the kernel updates internal configuration tables dynamically. Finally, self-identifying devices permit the kernel to recognize which devices are installed. The kernel reads hardware switches to configure itself. The details of system configuration are beyond the scope of this book, but in all cases, the configuration procedure generates or fills in tables that form part of the code of the kernel.


The kernel to driver interface is described by the block device switch table and the character device switch table (Figure 10.1). Each device type has entries in the table that direct the kernel to the appropriate driver interfaces for the system calls, The open and close system calls of a device file funnel through the two device switch tables, according to the file type. The mount and umount system calls also invoke the device open and close procedures for block devices. Read, write, and ioctl system calls of character special files pass through the respective procedures in the character device switch table. Read and write system calls of block devices and of files on mounted file systems invoke the algorithms of the buffer cache, which invoke the device strategy procedure. Some drivers invoke the strategy procedure internally from their read and write procedures, as will be seen. The next section explores each driver interface in greater detail.


The hardware to driver interface consists of machine-dependent control registers or I/O instructions for manipulating devices and interrupt vectors: When a device interrupt accurs, the system identifies the interrupting device and calls the appropriate interrupt handler. Obviously, software devices such as the kernel profiler driver (Chapter 8) do not have a hardware interface, but other interrupt handlers may cal] a "software interrupt handler" directly. For example, the doek interrupt handler calls the kernel profiler interrupt handler.


Administrators set up device special files with the mknod command, supplying file type (block or character) and major and minor numbers. The mknod command invokes the mknod system uil to create the device file. For example, in the command line


mknod /devitty13 c 2 13


"Jdevitty13" is the file name of the device, c specifies that it is a character special file (b specifies a block special file), 2 is the major number, and 13 is the minor number. The major number indicates a device type that corresponds to the appropriate entry in the block or character device switch tables, and the minor number indicates a unit of the device. 1f a process opens the block special file


"idev/dsk 1" and its major number is 0, the kernel calls the routine gdopen in entry 0 of the block device switch table (Figure 10.2); if a process reads the character
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Figure 10.1. Driver Entry Points


special file "idevimem" and its major number is 3, the kernel calls the routine mmread in entry 3 of the character device switch table. The routine nulidev is an


"empty" routine, used when there is no need for a particular driver function.


Many peripheral devices can be associated with a major device number; the minor device number distinguishes them from each other. Device special files do not have to be created every time the system is booted; they need be changed only if the configuration changes, such as when adding devices to an installation.


10.1.2 System Calls and the Driver Interface


This section describes the interface between the kernel and device drivers. For system calls that use file descriptors, the kernel follows pointers from the user file
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Figure 10.2. Sample Block and Character Device Switch Tables


descriptor to the kernel file table and mode, where it examines the file type and accesses the block or character device switch table, as appropriate. It extracts the major and minor numbers from the mode, uses the major number as an index into the appropriate table, and calls the driver function according to the system eau being made, passing the minor number as a parameter. An important difference between system calls for devices and regular files is that the mode of a special file is not locked while the kernel executes the driver. Drivers frequently sleep, waiting for hardware connections or for the arrival of data, so the kernel cannot determine how long a process will sleep. If the mode was locked, other processes that access the mode (via the stat system call, for example) would sleep indefinitely because another process is asleep in the driver.


The device driver interprets the parameters of the system call as appropriate for the device. A driver maintains data structures that describe the state of each unit that it controls; driver functions and interrupt handlers execute according to the state of the driver and the action being done (for example, data being input or output). Each interface will now be described in greater detail.


10.1.2.1 Open


The kernel follows the same procedure for opening a device as it does for opening regular files (see Section 5.1), allocating an in-core mode, incrementing its reference count, and assigning a file table entry and user file descriptor. The kerne'


eventually returns the user file descriptor to the calling process, so that opening a device looks like opening a regular file, However, it invokes the device-specific open procedure before returning to user mode, (Figure 10.3). For a block device, it
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convert pathname to mode, increment Mode reference count,


allocate entry in file table, user file descriptor,


as in open of regular file;


get major, minor number from mode;


save context (algorithm setjmp) in case of long jump from driver;


if (block device)


use major number as index to block device switch table;


call driver open procedure for index:


pass minor number, open modes;


else


use major number as index to character device switch table;


call driver open procedure for index:


pass minor number, open modes;


if (open fails in driver)


decrement file table, mode counts;


Figure 10.3. Algorithm for Opening a Device


invokes the open procedure encoded in the block device switch table, and for a character device, it invokes the open procedure in the character device switch table.


If a device is both a block and a character device, the kernel will invoke the appropriate open procedure depending on the particular device file the user opened: The two open procedures may even be identical, depending on the driver.


The device-specific open procedure establishes a connection between the calling process and the opened device and initializes private driver data structures. For a terminal, for example, the open procedure may put the process to sleep until the machine detects a (hardware) carrier signal indicating that a user is trying to log in. It then initializes driver data structures according to appropriate terminal settings (such as the terminal baud rate). For software devices such as system memory, the open procedure may have no initialization to do.
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If a process must sleep for some external reason when opening a device, it is possible that the event that should awaken the process from its sleep may never occur. For example, if no user ever logs in to a particular terminal, the getty process that opened the terminal (Section 7.9) sleeps until a user attempts to log in, potentially a long time. The kernel must be able to awaken the process from its sleep and cancel the open call en receipt of a signal: It must reset the mode, file table entry, and user file descriptor that it had allocated before entry int° the driver, because the open fails. Hence, the kernel saves the process context using algorithm setfmp (Section 6.4.4) before entering the device-specific open routine; d the process awakens from its sleep because of a signal, the kernel restores the process context to its state before entering the driver using algorithm longjmp (Section 6.4.4) and releases all data structures it had allocated for the open.


Similarly, the driver can catch the signal and clean up private data structures, if necessary. The kernel also readjusts the file system data structures when the driver encounters error conditions, such as when a user attempts to access a device that was not configured. The open call fails in such cases.


Processes may specify various options to qualify the device open. The most common option is "no delay," meaning that the process will not sleep during the open procedure if the device is not ready. The open system call returns immediately, and the user process has no knowledge of whether a hardware connection was made or not. Opening a device with the "no delay" option also affects the semantics of the read system call, as will be seen (Section 10.3.4).


If a device is open cd many times, the kernel manipulates the user file descriptors and the Mode and file table entries as described in Chapter 5, invoking the device specific open procedure for each open system call. The device driver can thus count how many times a device was open cd and fail the open eau ir the count is inappropriate. For example, it makes sense to allow multiple processes to open a terminal for writing so that users can exchange messages. But it does not make sense to allow multiple processes to open a printer for writing simultaneously, since they could overwrite each other's data. The differences are practical rather than i mplementational: allowing simultaneous writing to terminals fosters communication between users; preventing simultaneous writing to printers increases the chance of getting readable printouts.2


10.1.2.2 Close


A process severs its connection to an open device by closing it. However, the kernel invokes the device-specific close procedure only for the last close of the 2. In practice, printers are usually controlled by special spooler processes, and perrnissions are set up sc that °ni), the spooler can access the printer. But the analogy is still applicable.
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device, that is, only if no other processes have the device open, because the device close procedure terminates hardware connections; clearly this must wait until no processes are accessing the device. Because the kernel invokes the device open procedure during every open system call but invokes the device close procedure only once, the device driver is never sure how many processes are still using the device.


Drivers can easily put themselves out -of state if not coded carefully: If they sleep in the close procedure and another process opens the device before the close completes, the device can be rendered useless if the combination of open and close results in an unrecognized state.


algorithm close


/* for devices */


input: file descriptor


output: none


do regular close algorithm (chapter 5xxx);


if (file table reference count not 0)


goto finish;


if (there is another open file and its major, minor numbers


are same as device being closed)


goto finish;


/* not last close after all */


if (character device)


use major number to index into character device switch table;


call driver close routine: parameter minor number;


if (block device)


if (device mounted)


goto finish;


write device blocks in buffer cache to device;


use major number to index into block device switch table;


call driver close routine: parameter minor number;


invalidate device blocks still in buffer cache;


finish:


release mode;


Figure 10.4. Algorithm for Closing a Device


The algorithm for closing a device is similar to the algorithm for closing a regular file (Figure 10.4). However, before the kernel releases the mode it does operations specific to device files.


I. It searches the file table to make sure that no other processes still have the device open. It is not sufficient to rely on the file table count to indicate the
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last close of a device, because several processes may access the device via a different file table entry. It is also not sufficient to rely on the Mode table count, because several device files may specify the same device. For example, the results of the following Is — 1 command show two character device files (the first "c" on the line) that refer to one device, because their major and minor numbers (9 and 1) are equal. The link count of 1 for each file implies that there are two inodes.


crw--w--w—	1 root vis


9, 1 Aug 6 1984 idevitty01


crw— w w


1 root unix 9, 1 May 3 15:02 idevifty01


1f processes open the two files independently, they access different inodes hut the same device.


2.


For a character device, the kernel invokes the device close procedure and returns to user mode. For a block device, the kernel searches the mount table to make sure that the device does not contain a mounted file system, 1f there is a mounted file system from the block device, the kernel cannot invoke the device close procedure, because it is not the last close of the device. Even if the device does not contain a mounted file system, the buffer cache could stijl contain blocks of data that were left over from a previously mounted file system and never written to the device, because they were marked "delayed write." The kernel therefore searches the buffer cache for such blocks and writes them to the device before invoking the device close procedure. After closing the device, the kernel again goes through the buffer cache and invalidates all buffers that contain blocks for the now closed device, allowing buffers with useful data to stay in the cache longer.


3.


The kernel releases the mode of the device file.


To summarize, the device close procedure severs the device connection and reinitializes driver data structures and device hardware, so that the kernel can reopen the device later on.


10.1.2.3 Read and Write


The kernel algorithms for read and write of a device are similar to those for a regular file. If the process is reading or writing a character device, the kernel invokes the device driver read or write procedure. Although there are important cases where the kernel transmits data directly between the user address space and the device, device drivers may buffer data internally. For example, terminal drivers use clists to buffer data (Section 10.3.1). In such cases, the device driver allocates a "buffer," capjes data from user space during a write, and outputs the data from the "buffer" to the device. The driver write procedure throttles the amount of data being output (called flow control): 1f processes generate data faster than the device can output it, the write procedure puts processes to sleep until the device can accept more data. For a read, the device driver receives the data from the device in a
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Figure 10.5, Memory Mapped I/O with the VAX DZ11 Controller


buffer and copies the data from the buffer to the user address specified in the system call.


The precise method in which a driver communicates with a device depends on the hardware. Some machines provide memory mapped I/O, meaning that certain addresses in the kernel address space are not locations in physical memory but are special registers that control particular devices. By writing control parameters to specified registers according to hardware specifications, the driver controls the device. For example, I/O controllers for the VAX-11 computer contain special registers for recording device status (control and status registers) and for data transmission (data buffer registers), which are configured at specific addresses in physical memory. In particular, the VAX DZ11 terminal controller controls 8


asynchronous lines for terminal communication (see [Levy 80] for more detail on the VAX architecture). Assume that the control and status register of a particular DZ11 is at address 160120, the transmit data buffer register is at address 160126, and the receive data buffer register is at address 160122 (Figure 10.5). To write a character to terminal "idevitty09", the terminal driver writes the number 1 (1 — 9


modulo 8) to a specified bit position in the control and status register and then writes the character to the transmit data buffer register. The operation of writing the transmit data buffer register transmits the data. The DZ11 controller sets a done bit in the control and status register when it is ready to accept more data.


The driver can optionally set a transmit interrupt enable bit in the control and status register, which causes the DZ11 controller to interrupt the system when it is ready to accept more data. Reading data from the DZ11 is similar.
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Other machines have programmed I/O, meaning that the machine contains instructions to control devices, Drivers control devices by executing the appropriate instructions. For example, the IBM 370 computer has a Start I/O instruction to initiate an I/O operation to a device. The method a driver uses to communicate with peripherals is transparent to the user.


Because the interface between device drivers and the underlying hardware is machine dependent, no standard interfaces exist at this level. For both memory-mapped I/O and programmed I/O, a driver can issue control sequences to a device to set up direct memory access (DMA) between the device and memory. The system allows bulk DMA transfer of •data between the device and memory in parallel to CPU operations, and the device interrupts the system when such a transfer has completed. The driver sets up the virtual memory mapping so that the correct locations in memory are used for DMA.


High-speed devices can sometimes transfer data directly between the device and the user's address space, without intervention of a kernel buffer. This results in higher transfer speed because there is one less copy operation in the kernel, and the amount of data transmitted per transfer operation is not bounded by the size of kernel buffers. Drivers that make use of this "raw" I/O transfer usually invoke the block strategy interface from the character read and write procedures if they have a block counterpart.


10.1.2.4 Strategy Interface


The kernel uses the strategy interface to transmit data between the buffer cache and a device, although as mentioned above, the read and write procedures of character devices sometimes use their (block counterpart) strategy procedure to transfer data directly between the device and the user address space. The strategy procedure may queue I/0 jobs for a device on a work list or do more sophisticated processing to schedule I/O jobs. Drivers can set up data transmission for one physical address or many, as appropriate. The kernel passes a buffer header address to the driver strategy procedure; the header contains a list of (page) addresses and sizes for transmission of data to or from the device. This is also how the swapping operations discussed in Chapter 9 work. For the buffer cache, the kernel transmits data from one data address; when swapping, the kernel transmits data from many data addresses (pages). If data is being copied to or from the user's address space, the driver must lock the process (or at least, the relevant pages) in memory until the I/O transfer is complete.


For example, after mourzting a file system, the kernel identifies every file in the file system by its device number and mode number. The device number is an encoding of the device major and minor numbers. When the kernel accesses a block from a file, it copies the device number and block number into the buffer header, as described in Chapter 3. When the buffer cache algorithms (bread or bwrite, for example) access the disk, they invoke the strategy procedure indicated by the device major number. The strategy procedure Lises the minor number and
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block number fields in the buffer header to identify where to find the data on the device, and it uses the buffer address to identify where the data should be transferred. Similarly, if a process accesses a block device directly (that is, the process opens the block device and reads or writes it), it uses the buffer cache algorithms, and the interface works as just described.


10.1.2.5 loctl


The ioctl system call is a generalization of the terminal-specific stty (set terminal settings) and guy (get terminal settings) system calls available in earlier versions of the UNIX system. It provides a general, catch-all entry point for device specific commands, allowing a process to set hardware options associated with a device and software options associated with the driver. The specific actions specified by the ioctl call vary per device and are defined by the device driver. Programs that use ioctl must know what type of file they are dealing with, because they are device-specific. This is an exception to the general rule that the system does not differentiate between different file types. Section 10.3.3 provides more detail on the use of ioctl for terminals.


The syntax of the system call is


ioctl(fd, command, arg);


where fd is the file descriptor returned by a prior open system call, command is a request of the driver to do a particular action, and arg is a parameter (possibly a pointer to a structure) for the command. Commands are driver specific; hence, each driver interprets commands according to internal specifications, and the format of the data structure arg depends on the command. Drivers can read the data structure arg from user space according to predefined formats, or they can write device settings into user address space at arg. For instance, the ioctl interface allows users to set terminal baud rates; it allows users to rewind tapes on a tape drive; finally, it allows network operations such as specifying virtual circuit numbers and network addresses.


10.1.2.6 Other File System Related Calls


File system calls such as stat and chmod work for devices as they do for regular files; they manipulate the mode without accessing the driver. Even the lseek system call works for devices. For example, if a process !seeks to a particular byte offset on a tape, the kernel updates the file table offset but does no driver-specific operations. When the process later reads or writes, the kernel moves the file table offset to the u area, as is done for regular files, and the device physically seeks to the correct offset indicated in the u area. An example in Section 10.3 illustrates this case.
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Figure 10.6. Device Interrupts


10.1.3 Interrupt Handlers


As previously explained (Section 6.4.1), occurrence of an interrupt causes the kernel to execute an interrupt handler, based on the correlation of the interrupting device and an offset in the interrupt vector table. The kernel invokes the device specific interrupt handler, passing it the device number or other parameters to identify the specific unit that caused the interrupt. For example, Figure 10.6 shows two entries in an interrupt vector table for handling terminal interrupts ("ttyintr"), each handling interrupts for 8 terminals. 1f device tty09 interrupts the system, the system calis the interrupt handler associated with the hardware position of the interrupting device. Because many physical devices can be associated with one interrupt vector entry, the driver must be able to resolve which device caused the interrupt. In the figure, the two interrupt vector entries for "ttyintr" are labeled 0


and 1, implying that the system distinguishes between the two vector entries in some way when calling the interrupt handler, such as using that number as a parameter to the call. The interrupt handler would use that number and other information passed by the interrupt mechanism to ascertain that device tty09


interrupted the system and not 11y12, for example. This example is a simplification of what happens on real systems, where several levels of controllers and their interrupt handlers enter the picture, but it illustrates the general principles.


In summary, the device number used by the interrupt handler identifies a hardware unit, and the minor number in the device file identifies a device for the kernel. The device driver correlates the minor device number to the hardware unit number.
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10.2 DISK DRIVERS


Historically, disk units on UNIX systems have been configured into sections that contain individual file systems, allowing "the [disk] pack to be broken up into more manageable pieces" (see [System V 840. For instance, if a disk contains four file systems, an administrator may leave one unmounted, mount another "read-only,"


and mount  the last two "read-write." Even though all the file systems coexist on one physical unit, users cannot access files in the unmounted file system using the access methods described in Chapters 4 and 5, nor can any users write files in the


"read-only" file system. Furthermore, since each section (and hence file system) spans contiguous tracks and cylinders of the disk, it is easier to copy entire file systems than if they were dispersed throughout an entire disk volume.


The disk driver translates a file system address, consisting of a logica' device number and block number, to a particular sector on the disk. The driver gets the address in one of two ways: Either the strategy procedure uses a buffer from the buffer pool and the buffer header contains the device and block number, or the read and write procedures are passed the logica' (minor) device number as a parameter; they convert the byte offset saved in the u area to the appropriate block address.


The disk driver uses the device number to identify the physical drive and particular section to be used, maintaining internal tables to find the sector that marks the beginning of a disk section. Finally, it adds the block number of the file system to the start sector number to identify the sector used for the I/O transmission.
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Figure 10.7. Disk Sections for RP07 Disk


Historically, the sizes and lengths of disk sections have been fixed according to the disk type. For instance, the DEC RP07 disk is partitioned into the sections shown in Figure 10.7. Suppose the files "/dev/dsk0", "/dev/dskl", "idevidsk2"


and "/dev/dsk3" correspond to sections 0 through 3 of an RP07 disk and have minor numbers 0 through 3. Assume the size of a logical file system block is the same as that of a disk block. If the kernel attempts to access block 940 in the file system contained in "/dev/dsk3", the disk driver converts the request to access
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block 336940 (section 3 starts at block 336000; 336000 + 940


336940) on the


disk.


The sizes of disk sections vary, and administrators configure file systems in sections of the appropriate size: Large file systems go into large sections, and so on. Sections may overlap on disk. For example, Sections 0 and 1 in the RP07 disk are disjoint, but together they cover blocks 0 to 1008000, the entire disk. Section 7


also covers the entire disk. The overlap of sections does not matter, provided that the file systems contained in the sections are configured such that they do not overlap. It is advantageous to have one section include the entire disk, since the entire volume can thus be quickly copied.


The use of fixed sections restricts the flexibility of disk configuration. The hard-coded knowledge of disk sections should not be put into the disk driver but should be placed in a configurable volume table of contents on the disk. However, it is difficult to find a generic position on all disks for the volume table of contents and retain compatibility with previous versions of the system. Current implementations of System V expect the boot block of the first file system on a disk to occupy the first sector of the volume, although that is the most logical place for a volume table of contents. Nevertheless, the disk driver could contain hard-coded information on where the volume table of contents is stored for that particular disk, allowing variable sized disk sections.


Because of the high level of disk traffic typical of UNIX systems, the disk driver must maximize data throughput to get the best system performance. Most modern disk controllers take care of disk job scheduling, positioning the disk arm, and transferring data between the disk and the CPU; otherwise, the disk driver must do these tasks.


Utility programs can use either the raw or block interface to access disk data directly, bypassing the regular file system access method investigated in Chapters 4


and 5. Two important programs that deal directly with the disk are Inkfs and fsck.


Mkfs formats a disk section for a UNIX file system, creating a super block, mode list, linked list of free disk blocks, and a root directory on the new file system. Fmk checks the consistency of an existing file system and corrects errors, as presented in Chapter 5.


Consider the program in Figure 10.8 and the files "Alevidsk15" and


"idevirdsk15", and suppose the Is command prints the following information.


is —1 idevidsk15 idev/rdsk15


b r - - - - - - - - - - 2 root


root


0, 21 Feb 12 15:40


/devidsk15


crw-rw - - - - - - 2 root root 7, 21 Mar 7 09:29 /devirdsk15


It shows that "klevidsk15" is a block device owned by "root," and only "root" can read it directly. Its major number is 0, and its minor number is 21. The file


"/devirdsk15" is a character device owned by "root" but allows read and write permission for the owner and group (both root here). Its major number is 7, and its minor number is 21. A process opening the files gains access to the device via





10.2


DISK DRI VERS


327


#include "fentl„h"


rnain()


char bufl[4096), buf2140961;


int fdl, fd2, i;


if (((fdi open("/devidsk5", 0 RDONLY))


— 1) 11


((fd2 openeidevirdsk5", QRDONLY))


—1))


printfefailure on open\n");


exit();


iseek(fdl, 8192L, 0);


iseek(fd2, 8192L, 0);


if ((read(fdl, buf1, sizeof(bufa)


—1)1T (read(fd2, buf2, sizeof(buf2))


—1))


printf(failure on read\n");


exit();


for


0; i < sizeof(buf1); i++)


if (bufl[ii


buf2[i])


printf("different at offset %d\n", i);


exit();


printf("reads match\n");


Figure 10.8. Reading Disk Data Using Block and Raw Interface


the block device switch table and the Character device switch table, respectively, and the minor number 21 informs the driver which disk section is being accessed —


for example, physical drive 2, section 1. Because the minor numbers are identical for each file, both refer to the same disk section, assuming this is one device. 3 Thus, a process executing the program opens the same driver twice (through different interfaces), lseeks to byte offset 8192 in the devices, and reads data from that 3. There is no way to verify that a character driver and a block driver refer to the same device, except by examination of the system configuration tables and the driver code.
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position. The results of the read calls should be identical, assuming no other file system activity.


Programs that read and write the disk directly are dangerous because they eaa read or write sensitive data, jeopardizing system security. Administrators must protect the block and raw interfaces by putting the appropriate permissions on the disk device files. For example, the disk files "idevidsk 15" and "idev/rdsk 15"


should be owned by "root," and their permissions should allow "root" to read the file but should not allow any other users to read or write.


Programs that read and write the disk directly can also destroy the consistency of file system data. The file system algorithms explained in Chapters 3, 4, and 5


coordinate disk I/O operations to maintain a consistent view of disk data structures, including linked lists of free disk blocks and pointers from modes to direct and indirect data blocks. Processes that access the disk directly bypass these algorithms. Even if they are carefully encoded, there is still a consistency problem if they run while other file system activity is going on. For this reason, fsck should not be run on an active file system.


The difference between the two disk interfaces is whether they deal with the buffer cache. When accessing the block device interface, the kernel follows the same algorithm as for regular files, except that after converting the logical byte offset into a logical block offset (recall algorithm bmap in Chapter 4), it treats the logical block offset as a physical block number in the file system. It then accesses the data via the buffer cache and, ultimately, the driver strategy interface.


However, when accessing the disk via the raw interface, the kernel does not convert the byte offset into the file but passes the offset immediately to the driver via the II area. The driver read or write routine converts the byte offset to a block offset and copies the data directly to the user address space, bypassing kernel buffers.


Thus, if one process writes a block device and a second process then reads a raw device at the same address, the second process may not read the data that the first process had written, because the data may still be in the buffer cache and not on disk. However, if the second process had read the block device, it would automatically pick up the new data, as it exists in the buffer cache.


Use of the raw interface may also introduce strange behavior. If a process reads or writes a raw device in units smaller than the block size, for example, results are driver-dependent. For instance, when issuing 1-byte writes to a tape drive, each byte may appear in different tape blocks.


The advantage of using the raw interface is speed, assuming there is no advantage to caching data for later access. Processes accessing block devices transfer blocks of data whose size is constrained by the file system logical block size. For example, if a file system has a logical block size of 1K bytes, at most 1 K


bytes are transferred per I/O operation. However, processes accessing the disk as a raw device can transfer many disk blocks during a disk operation, subject to the capabilities of the disk controller. Functionally, the process sees the same result, but the raw interface may be much faster. In Figure 10.8 for example, when a process reads 4096 bytes using the block interface for a file system with 1K bytes
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per block, the kernel loops internally four times and accesses the disk during each iteration before returning from the system eau, but when it reads the raw interface, the driver may satisfy the read with one disk operation. Furthermore, use of the block interface entails an extra copy of data between user address space and kernel buffers, which is avoided in the raw interface.


10.3 TERMINAL DRI VERS


Terminal drivers have the same function as other drivers: to control the transmission of data to and from terminals. However, terminals are special, because they are the user's interface to the system. To accommodate interactive use of the UNIX system, terminal drivers contain an internal interface to line discipline modules, which interpret input and output. In canonical mode, the line discipline converts raw data sequences typed at the keyboard to a canonical form (what the user really meant) before sending the data to a receiving process; the line discipline also converts raw output sequences written by a process to a format that the user expects. In raw mode, the line discipline passes data between processes and the terminal without such conversions.


For example, programmers are notoriously fast but error-prone typists.


Terminals provide an "erase" key (or such a key can be so designated) such that the user can logically erase part of the typed sequence and enter corrections. The terminal sends the entire sequence to the machine, including the erase characters.4


In canonical mode, the line discipline buffers the data into lines (the sequence of characters until a carriage-return s character) and processes erase characters internally before sending the revised sequence to the reading process.


The functions of a line discipline are


• to parse input strings into lines;


• to process erase characters;


• to process a "kill" character that invalidates all characters typed so far on the current line;


• to echo (write) received characters to the terminal;


• to expand output such as tab characters to a sequence of blank spaces;


• to generate signals to processes for terminal hangups, line breaks, or in response to a user hitting the delete key;


• to allow a raw mode that does not interpret special characters such as erase, kill or carriage return.


4. This section will assume the use of dumb terminals, which transmit all characters typed by the user without processing them.


5. This chapter will use the generic term "carriage return" for "carriage return" and "new-line"


characters,
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The support of raw mode implies the use of an asynchronous terminal, because processes can read characters as they are typed instead of waiting until a user hits a carriage return or "enter" key.


Ritchie notes that the original terminal line disciplines used during system development in the early 1970s were in the shell and editor programs, not in the kernel (see page 1580 of [Ritchie 84]). However, because their function is needed by many programs, their proper place is in the kernel. Although the line discipline performs a function that places it logically between the terminal driver and the rest of the kernel, the kernel does not invoke the line discipline directly but only through the terminal driver. Figure 10.9 shows the logical flow of data through the terminal driver and line discipline and the corresponding flow of control through the terminal driver. Users can specify what line discipline should be used via an ioctI system call, but it is difficult to implement a scheme such that one device uses several line disciplines simultaneously, where each line discipline module successively calls the next module to process the data in turn.
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Figure 10.9. Call Sequence and Data Flow through Line Discipline
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Figure 10.10. A Cblock


10.3.1 Clists


Line disciplines manipulate data on clists. A dist, or character list, is a variable-length linked list of cblocks with a count of the number of characters on the list.


A cblock contains a pointer to the next cblock on the linked list, a small character array to contain data, and a set of offsets indicating the position of the valid data in the cblock (Figure 10.10). The start offset indicates the first location of valid data in the array, and the end offset indicates the first location of nonvalid data.


The kernel maintains a linked list of free cblocks and has six operations on clists and cblocks.


1.


It has an operation to assign a cblock from the free list to a driver.


2.


It also has an operation to return a cblock to the free list.


3.


The kernel can retrieve the first character from a clist: It removes the first character from the first cblock on the clist and adjusts the clist character count and the indices into the cblock so that subsequent operations will not retrieve the same character. If a retrieval operation consumes the last character of a cblock, the kernel places the empty cblock on the free list and adjusts the clist pointers. If a clist contains no characters when a retrieval operation is done, the kernel returns the null character.


4.


The kernel can place a character onto the end of a clist by finding the last cblock on the clist, putting the character onto it, and adjusting the offset values. If the cblock is full, the kernel allocates a new cblock, links it onto the end of the clist, and places the character into the new cblock.


5.


The kernel can remove a group of characters from the beginning of a clist one cblock at a time, the operation being equivalent to removing all the characters in the cblock one at a time.


6.


The kernel can place a cblock of characters onto the end of a clist.


Clists provide a simple buffer mechanism, useful for the small volume of data transmission typical of slow devices such as terminals. They allow manipulation of data one character at a time or in groups of cblocks. For example, Figure 10.11


depicts the removal of characters from a clist; the kernel removes one character at a time from the first cblock on the clist (Figure 10.11a —c) until there are no more
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Figure 10.11. Removing Characters from a Clist
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Figure 10.12. Placing a Character on a Clist
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characters in the cblock (Figure 10.11d); then, it adjusts the clist pointer to point to the next cblock, which becomes the first one on the linked list. Similarly, Figure 10.12 depicts how the kernel puts characters onto a dist; assuming a cblock holds up to 8 characters, the kernel !inks a new cblock onto the end of the linked list (Figure 10.12d).


10.3.2 The Terminal Driver in Canonieal Mode


The data structures for terminal drivers have three clists associated with them: a dist to store data for output to the terminal, a clist to store "raw" input data provided by the terminal interrupt handler as the user typed it in, and a dist to store "cooked" input data, after the line discipline converts special characters in the raw clist, such as the erase and kill characters,


a gorithm terminal write


while (more data to be copied from user space)


if (tty flooded with output data)


start write operation to hardware with data


cm output clist;


sleep (event: tty can accept more data);


continue;


/* back to while loop */


1


copy cblock size of data from user space to output clist:


line discipline converts tab characters, etc;


start write operation to hardware with data cm output clist;


Figure 10.13. Algorithm for Writing Data to a Terminal


When a process writes a terminal (Figure 10.13), the terminal driver invokes the line discipline. The line discipline loops, reading output characters from user address space and placing them onto the output clist, until it exhausts the data.


The line discipline processes output characters, expanding tab characters to a series of space characters, for example. If the number of characters on the output dist becomes greater than a high-water mark, the line discipline calls driver procedures to transmit the data on the output dist to the terminal and puts the writing process to sleep. When the amount of data on the output clist drops below a low-water mark, the interrupt handler awakens all processes asleep on the event the terminal can accept more data. The line discipline finishes its loop, having copied all the
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output data from user space to the output clist, and calls driver procedures to transmit the data to the terminal, as described earlier.


If multiple processes write to a terminal, they follow the given procedure independently. The output could be garbled; that is, data written by the processes may be interleaved on the terminal. This could happen because a process may write the terminal using several write system calls. The kernel could switch context while the process is in user mode between successive write system calls, and newly scheduled processes could write the terminal while the original process sleeps.


Output data could also be garbled at a terminal because a writing process may sleep in the middle of a write system call while waiting for previous output data to drain from the system. The kernel could schedule other processes that write the terminal before the original process is rescheduled. Because of this case, the kernel does not guarantee that the contents of the data buffer to be output by a write system call appear contiguously on the terminal.


char form


"this is a sample output string from child ";


main()


char output[ 128);


int i;


for — 0; i < 18; i++)


switch (fork())


case — 1:


/* error — hit max procs */


exit();


default:


/* parent process */


break;


case 0:


/* child process */


1* format output string in variable output */


sprintf(output, "%s%d\rasTod\n", form, i, form, 0;


for (;;)


write(1, output, sizeof(output));


Figure 10.14. Flooding Standard Output with Data


Consider the program in Figure 10,14. The parent process creates up to 18


children; each child process formats a string (via the library function sprint!) in the array output, which includes a message and the value of i at the time of the fork
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and then goes into a loop, writing the string to its standard output file during each iteration. 1f the standard output is the terminal, the terminal driver regulates the flow of data to the terminal. The output string is more than 64 characters long, tec large to fit into a cblock (64 bytes long) in System V implementations. Henee, the terminal driver needs more than one cblock for each write eau, and output eould become garbled. For example, the following lines were part of the output produced when running the program on an AT&T 3820 computer:


this is a sample output string from child 1


this is a sample outthis is a sample output string from child 0


Reading data from a terminal in canonical mode is a more complex operation.


The read system call specifies the number of bytes the process wants to read, but the line discipline satisfies the read on receipt of a carriage return even though the character count is not satisfied. This is practical, since it is impossible for a process to predict how many characters the user will enter at the keyboard, and it does not make sense to wait for the user to type a large number of characters. For example, users type command lines to the shell and expect the shell to respond to the command on receipt of a carriage return character. It makes no difference whether the commands are simple, such as "date" or "who," or whether they are more complicated command sequences such as


pic file*Itblleqn1troff —mm —Taps 1apsend


The terminal driver and line discipline know nothing about shell syntax, and rightly so, because other programs that read terminals (such as editors) have different command syntax. Hence, the line discipline satisfies read calls on receipt of a carriage return.


Figure 10.15 shows the algorithm for reading a terminal. Assume the terminal is in canonical mode; Section 10.3.3 will cover the case of raw mode. If no data is currently on either input dist, the reading process sleeps until the arrival of a line of data. When data is entered, the terminal interrupt handler invokes the line discipline "interrupt handler," which places the data on the raw clist for input to reading processes and on the output clist for echoing back to the terminal. If the input string contains a carriage return, the interrupt handler awakens all sleeping reader processes. When a reading process runs, the driver removes characters from the raw clist, does erase and kill character processing, and places the characters on the canonical clist. It then copies characters to user address space until the carriage return character or until it satisfies the count in the read system call, whichever number is smaller. However, a process may find that the data for which it woke up no longer exists: Other processes may read the terminal and remove the data from the raw dist before the first process is rescheduled. This is similar to what happens when multiple processes read data from a pipe.


Character processing in the input and output direction is asymmetrie, evidenced by the two input elists and the one output clist. The line discipline outputs data from user space, processes it, and places it on the output dist. To be symmetric,
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algorithm terminal_read


if (no data on canonical dist)


while (no data on raw dist)


if (tty opened with no delay option)


return;


if (tty in raw mode based on timer and timer not active)


arrange for timer wakeup (callow table);


sleep (event: data arrives from terminal);


I* there is data on raw clist */


if (tty in raw mode)


copy all data from raw clist to canonical clist;


else


/* tty is in canonical mode */


while (characters on raw clist)


copy one character at a time from raw clist


to canonical dist:


do erase, kill processing;


if (char is carriage return or end—of—file)


break;


/* out of while loop */


while (characters on canonical list and read count not satisfied)


copy from cblocks on canonical list to user address space;


Figure 10.15. Algorithm for Reading a Terminal


there should be only one input clist. However, this would require the interrupt handler to process erase and kill characters, making it more complex and time consuming, and blocking out other interrupts at a critical time. Use of two input clists means that the interrupt handler can simply dump characters onto the raw clist and wake up reading processes, which properly incur the expense of processing input data. Nevertheless, the interrupt handler puts input characters immediately on the output clist, so that the user experiences minimal delay in seeing typed characters on the terminal.


Figure 10.16 shows a program where a process creates many child processes that read their standard input file, contending for terminal data. Terminal input is
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char input[256];


main()


register int i;


for (i


0; i < 18; i++)


switch (fork0)


case — 1:


/* error */


printf("error cannot fork\n");


exit();


default:


/* parent process */


break;


case 0:


/* child process */


for (;;)


read(0, input, 256);


/* read line */


printf("%d read %An", i, input);


Figure 10.16. Contending for Terminal Input Data


usually too slow to satisfy all the reading processes, so the processes will spend most of their time sleeping in the terminal read algorithm, waiting for input data.


When a user enters a line of data, the terminal interrupt handler awakens all the reading processes; since they slept at the same priority level, they are eligible to run at the same priority. The user cannot predict which process runs and reads  the line of data; the successful process prints the value of i at the time it was spawned. All other processes will eventually be scheduled to run, but they will probably find no input data on the input clists and go back to sleep. The entire procedure is repeated for every input line; it is impossible to guarantee that one process does not hog all the input data.


k is inherently ambiguous to allow multiple readers of a terminal, but the kernel copes with situation as best as it can. On the other hand, the kernel must allow multiple processes to read a terminal, otherwise processes spawned by the shell that read standard input would never work, because the shell stilt accesses standard input, too. In short, processes must synchronize terminal access at user level.
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When the user types an "end of file" character (ASCII control-d), the line discipline satisfies terminal reads of the input string up to, but not including, the end of file character. It returns no data (return value 0) for the read system call that encounters only the end of file on the clists; the calling process is responsible for recognizing that it has read the end of file and that it should no longer read the terminal. Referring to the code examples for the shell in Chapter 7, the shell loop terminates when a user types control-d: The read call returns 0, and the shell exits.


This section has considered the case of dumb terminal hardware, which transmits data to the machine one character at a time, precisely as the user types it. Intelligent terminals cook their input in the peripheral, freeing the CPU for other work. The structure of their terminal drivers resembles that of dumb terminal drivers, although the functions of the line discipline vary according to the capabilities of the peripherals.


10.3.3 The Terminal Driver in Raw Mode


Users set terminal parameters such as erase and kill characters and retrieve the values of current settings with the ioctl system call. Similarly, they control whether the terminal echoes its input, set the terminal baud rate (the rate of bit transfers), flush input and output character queues, or manually start up or stop character output. The terminal driver data structure saves various control settings (see (SVID 85] page 281), and the line discipline receives the parameters of the iocti call and sets or gets the relevant fields in the terminal data structure. When a process sets terminal parameters, it does so for all processes using the terminal.


The terminal settings are not automatically reset when the process that changed the settings exits.


Processes can also put the terminal into raw mode, where the line discipline transmits characters exactly as the user typed them: No input processing is done at all. Still, the kernel must know when to satisfy user read calls, since the carriage return is treated as an ordinary input character. It satisfies read system calls after a minimum number of characters are input at the terminal, or after waiting a fixed time from the receipt of any characters from the terminal. In the latter case, the kernel times the entry of characters from the terminal by placing entries into the callout table (Chapter 8). Both criteria (minimum number of characters and fixed time) are set by an foal call. When the particular criterion is met, the line discipline interrupt handler awakens all sleeping processes. The driver moves all characters from the raw clist to the canonical clist and satisfies the process read request, following the same algorithm as for the canonical case. Raw mode is particularly important for screen oriented applications, such as the screen editor vi, which has many commands that do not terminate with a carriage return. For example, the command dw deletes the word at the current cursor position.


Figure 10.17 shows a program that does an ioctl to save the current terminal settings of file descriptor 0, the standard input file descriptor. The ioctl command
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#include


<signall>


#include


<termio.h>


struct termio savetty;


main0


extern sigcatch0;


struct termio newtty;


int nrd;


char buf[32];


signal(SIGINT, sigcatch);


if (iocti(0, TCGETA, &savetty)


—1)


printf( sioctl failed: not a tty\n");


exit 0;


newtty .•• savetty;


newtty.ciflag


"KANON;


/* turn off canonical mode */


newtty.c_Iflag


"ECHO;


/* turn off character echo */


newtty.c_cciYMINI 5;


/* minimum 5 chars */


newtty.c_cc[VTIME] 100;


/* 10 sec interval */


if (ioct1(0, TCSETAF, &newtty)


—1)


printf("cannot put tty into raw mode\n");


exit 0;


for (;;)


nrd


read(0, buf, sizeof(buf));


buftnrdl 0;


printf("read %d chars '%s"\n", nrd, buf);


sigeatch0


ioct1(0, TCSETAF, &savetty);


exit();


Figure 10.17. Raw Mode — Reading 5-Character Bursts


TCGETA instructs the driver to retrieve th e settings and save them in the structure savetty in the user's address space. This command is commonly used to determine if a file is a terminal or not, because it does not change anything in the system: 1f it fails, processes assume the file is not a terminal. Here, the process does a second ioct/ call to put the terminal into raw mode: It turns off character echo and arranges to satisfy terminal reads when at least 5 characters are received from the
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terminal or when any number of characters are received and about 10 seconds elapse since the first was received. When it receives an interrupt signal, the process resets the original terminal options and terminates.


#include <fcntl.h>


main 0


register int i, n;


int fd;


char buf12561;


/* open terminal read—only with no—delay option •/


if ((fd open("/dev/tty", 0_RDONLY10_NDELAY))


—1)


exit();


n


1;


for (;;)


/* for ever */


for (i


0; i < n; i++)


if (read(fd, buf, sizeof(buf)) > 0)


printf("read at n %d\n", n);


n--;


else


" 1* no data read; returns due to no—delay */


n++;


Figure 10.18. Polling a Terminal


10.3.4 Terminal Polling


It is sometimes convenient to poll a device, that is, to read it if there is data present but to continue regular processing otherwise. The program in Figure 10.18


illustrates this case: By opening the terminal with the "no delay" option, subsequent reads will not sleep if there is no data present but will return immediately (refer to algorithm terminal read, Figure 10.15). Such a method also works if a process is monitoring many devices: it can open each device "no delay"


and poll all of them, waiting for input from any of them. However, this method wastes processing power.
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The BSD system bas a select system eau that allows device polling. The syntax of the call is


select(nfds, rfds, wfds, efds, timeout)


where nfds gives the number of file descriptors being selected, and rfds, wfds and efds point to bit masks that "select" open file descriptors. That is, the bit 1 << fd (1 shifted left by the value of the file descriptor) is set if a user wants to select that file descriptor. Timeout indicates how long select should sleep, waiting for data to arrive, for example; if data arrives for any file descriptors and the timeout value bas not expired, select returns, indicating in the bit masks which file descriptors were selected. For instance, if a user wished to sleep until receiving input on file descriptors 0, 1 or 2, /Yds would point to the bit mask 7; when select returns, the bit mask would be overwritten with a mask indicating which file descriptors had data ready. The bit mask wfds does a similar function for write file descriptors, and the bit mask efds indicates when exceptional conditions exist for particular file descriptors, useful in networking.


10.33 Establishment of a Control Terminal


The control terminal is the terminal on which a user logs into the system, and it controls processes that the user initiates from the terminal. When a process opens a terminal, the terminal driver opens the line discipline. If the process is a process group leader as the result of a prior setpgrp system call and if the process does not have an associated control terminal, the line discipline makes the opened terminal the control terminal. It stores the major and minor device number of the terminal device file in the u area, and it stores the process group number of the opening process in the terminal driver data structure. The opening process is the control process, typically the login shell, as wilt be seen later.


The control terminal plays an important role in handling signals. When a user presses the delete, break, rubout, or quit keys, the interrupt handler invokes the line which sends the appropriate signal to all processes in the control proeess greep. Similarly, if the user hangs up, the terminal interrupt handler receives a hangup indication from the hardware, and the line discipline sends a hangup signal to all processes in the process group. In this way, all processes initiated at a particular terminal receive the hangup signal; the default reaction of most processes is to exit on receipt of the signal; this is how stray processes are killed when a user suddenly shuts off a terminal. After sending the hangup signal, the terminal interrupt handler disassociates the terminal from the process group so that processes in the process group can no longer receive signals originating at the terminal.
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10.3.6 Indirect Terminal Driver


Processes frequently have a need to read or write data directly to the control terminal, even though the standard input and output may have been redirected to other files. For example, a shell script can send urgent messages directly to the terminal, although its standard output and standard error files may have been redirected elsewhere, UNIX systems provide "indirect" terminal access via the device file "idev/tty", which designates the control terminal for every process that has one. Users logged onto separate terminals can access "idevitty", but they access different terminals.


There are two common implementations for the kernel to find the control terminal from the file name "idevitty". First, the kernel can define a special device number for the indirect terminal file with a special entry in the character device switch table. When invoking the indirect terminal, the driver for the indirect terminal gets the major and minor number of the control terminal from the u area and invokes the real terminal driver through the character device switch table. The second implementation commonly used to find the control terminal from the name "idevitty" tests if the major number is that of the indirect terminal before calling the driver open routine. If so, it releases the mode for "idevitty", allocates the mode for the control terminal, resets the file table entry to point to the control terminal mode, and calls the open routine of the terminal driver. The file descriptor returned when opening "idev/tty" refers directly to the control terminal and its regular driver.


10.3.7 Logging In


As described in Chapter 7, process 1, init, executes an infinite loop, reading the file


"/etainittab" for instructions about what to do when entering system states such as


"single user" or "multi-user." In multi-user state, a primary responsibility of init is to allow users to log into terminals (Figure 10.19). It spawns processes called getty (for get terminal or get "tty") and keeps track of which getty process opens which terminal; each getty process resets its process group using the setpgrp system call, opens a particular terminal line, and usually sleeps in the open until the machine senses a hardware connection for the terminal. When the open returns, getty execs the login program, which requires users to identify themselves by login name and password. If the user logs in successfully, login finally execs the shell, and the user starts working. This invocation of the shell is called the login shell. The shell process has the same process ID as the original getty process, and the login shell is therefore a process group leader. If a user does not log in successfully, login exits after a suitable time limit, closing the opened terminal line, and init spawns another getty for the line. Init pauses until it receives a death of child signal. On waking up, it finds out if the zombie process had been a login shell and, if so, spawns another getty process to open the terminal in place of the one that died.
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algorithm login


I* procedure for logging in *I


getty process executes:


set process group (setpgrp system call);


open tty line;


I* sleeps until opened */


if (open successful)


exec login program:


prompt for user name;


tam off echo, prompt for password;


if (successful)


/* matches password in /etc/passwd al/


put tty in canonical mode (ioctl);


exec shell;


else


count login attempts, try again up to a point;


1


J


Figure 10.19. Algorithm for Logging In


10.4 STREAMS


The scheme for implementation of device drivers, though adequate, suffers from some drawbacks, which have become apparent over the years. Different drivers tend to duplicate functionality, particularly drivers that implement network protocols, which typically include a device-control portion and a protocol portion.


Although the protocol portion should be common for all network devices, this has not been the case in practice, because the kernel did not provide adequate mechanisms for common use. For example, clists would be useful for their buffering capability, but they are expensive because of the character-by-character manipulation. Attempts to bypass this mechanism for greater performance cause the modularity of the I/O subsystem to break down. The lack of commonality at the driver level percolates up to the user command level, where several commands may accomplish common logical functions but over different media. Another drawback of the clriver scheme is that network protocols require a line discipline-like capability, where each discipline implements one part of a protocol and the component parts can be combined in a flexible manner. However, it is difficult to stack conventional line disciplines together.


Ritchie bas recently implemented a scheme called streams to provide greater modularity and flexibility for the I/O subsystem, The description here is based on his work [Ritchie 84b], although the implementation in System V differs slightly.


A stream is a full-duplex connection between a process and a device driver. It consists of a set of linearly linked queue pairs, one member of each pair for input
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and the other for output. When a process writes data to a stream, the kernel sends the data down the output queues; when a device driver receives input data, it sends the data up the input queues to a reading process. The queues pass messages to neighboring queues according to a well-defined interface. Each queue pair is associated with an instance of a kernel module, such as a driver, line discipline, or protocol, and •the modules manipulate data-passed through its queues.


Each queue is a data structure that contains the following elements:


• An open procedure, called during an open system call


• A close procedure, called during a close system call


• A "put" procedure, called to pass a message into the queue


• A "service" procedure, called when a queue is scheduled to execute


• A pointer to the next queue in the stream


• A pointer to a list of messages awaiting service


• A pointer to a private data structure that maintains the state of the queue


• Flags and high- and low-water marks, used for flow control, scheduling, and maintaining the queue state


The kernel allocates queue pairs, which are adjacent in memory; hence, a queue can easily find the other member of the pair.


m ode of


device file


queue pair


Outpu


Input


Driver


queue


queue


Figure 10.20. A Stream after Open


A device with a streams driver is a character device; it has a special field in the character device switch table that points to a streams initialization structure, containing the addresses of routines and high- and low-water marks mentioned above. When the kernel executes the open system call and discovers that the device file is character special, it examines the new field in the character device switch table. If there is no entry there, the driver is not a streams driver, and the kernel follows the usual procedure for character devices. However, for the first open of a streams driver, the kernel allocates two pairs of queues, one for the stream-head
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and the other for the driver. The stream-head module is identical for all instances of open streams: It has generic put and service procedures and is the interface to higher-level kernel modules that implement the read, write, and ioctl system ealls The kernel initializes the driver queue structure, assigning queue pointers and copying addresses of driver routines from a per-driver initialization structure, and invokes the driver open procedure. The driver open procedure does the usual initialization but also saves information to recall the queue with which it is associated. Finally, the kernel assigns a special pointer in the in-core mode to indicate the stream-head (Figure 10.20). When another process opens the device, the kernel finds the previously allocated stream via the mode pointer and invokes the open procedure of all modules on the stream.


Modules communicate by passing messages to neighboring modules on a stream.


A message consists of a linked list of message block headers; each block header points to the start and end location of the block's data. There are two types of messages — control and data — identified by a type indicator in the message header. Control messages may result from ioctl system calls or from special conditions, such as a terminal hang-up, and data messages may result from write system calls or the arrival of data from a device.


Message I


Message 2


Message 3


Figure 10.21. Streams Messages


When a process writes a stream, the kernel copies the data from user space into message blocks allocated by the stream-head. The stream-head module invokes the put procedure of the next queue module, which may process the message, pass it immediately to the next queue, or enqueue it for later processing. In the latter case, the module links the message block headers on a linked list, forming a two-way linked list (Figure 10.21). Then it sets a flag in its queue data structure to indicate that it bas data to process, and schedules itself for servicing. The module places the queue on a linked list of queues requesting service and invokes a
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scheduling mechanism; that scheduler calls the service procedures of each queue on the list. The kernel could schedule modules by software interrupt, similar to how it invokes functions in the callout table (as described in Chapter 8); the software interrupt handler calls the individual service procedures.
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Figure 10.22. Pushing a Module onto a Stream


Processes can "push" modules onto an opened stream by issuing locii system calls. The kernel inserts the pushed module immediately below the stream head and connects the queue pointers to keep the structure of the doubly linked list.


Lower modules on the stream do not care whether they are communicating with the stream head or with a pushed module: The interface is the put procedure of the next queue on the stream; the next queue belongs to the module just pushed. For example, a process can push a line discipline module onto a terminal driver stream to do erase and kill character processing (Figure 10.22); the line discipline module does not have the same interfaces as the line disciplines described in Section 10.3, but its function is the same. Without the line discipline module, the terminal driver does not process input characters, and such characters arrive unaltered at the stream-head. A code segment that opens a terminal and pushes a line discipline may look like this:


fd open(sidevittyxy", ORDWR);


ioctl(fd, PUSH, TTYLD);


where PUSH is the command name and TTYLD is a number that identifies the line discipline module. There is no restriction to how many modules can be pushed onto a stream. A process can "pop" the modules off a stream in last-in-first-out order,
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using another focti system eau.


ioctl(fd, POP, 0);


Given that a terminal line discipline module implements regular terminal processing functions, the underlying device can be a network connection instead of a connection to a single terminal device. The line discipline module works the same way, regardless of the module below it. This example shows the greater derived from the combination of kernel modules.


10.4.1 A More Detailed Example of Streanas


Pike describes an implementation of multiplexed virtual terminals using streams (see [Pike 841). The user sees several virtual terminals, each occupying a separate window on a physical terminal. Although Pike's paper describes a scheme for an intelligent graphics terminal, it would work for dumb terminals, too; each window would occupy the entire screen, and the user would type a control sequence to switch between virtual windows.


sh 1 1


sh 2


mpx


User Level


Kernel Level


Figure 10.23. Windowing Virtual Terminals on a Physical Terminal Figure 10.23 shows the arrangement of processes and kernel modules. The user invokes a process, mpx, to control the physical terminal. Mpx reads the physical terminal line and waits for notification of control events, such as creation of a new window, switching control to another window, deletion of a window, and so on.
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assume file descriptors 0 and I already refer to physical tty /


(;)


/* loop */


select(input);


/* wait for some line with input *I


read input line;


switch (line with input data)


case physical tty:


/* input on physical tty line */


if (control command)


/* e.g. create new window */


open a free pseudo—tty;


fork a new process:


if (parent)


push a msg discipline on mpx side;


continue;


/* back to for loop */


i s child here */


close unnecessary file descriptors;


open other member of pseudo— tty pair, get


stdin, stdout, stderr;


push tty line discipline;


exec shell;


/* looks like virtual tty */


I* "regular" data from tty coming up for virtual tty */


demultiplex data read from physical tty, strip off


headers and write to appropriate pty;


continue;


/* back to for loop */


case logical tty:


/* a virtual tty is writing a window *V


encode header indicating what window data is for;


write header and data to physical tty;


continue;


/* back to for loop *I


Figure 10.24. Pseudo-code for Multiplexing Windows


When it receives notification that a user wants to create a new window, mpx creates a process to control the new window and communicates with it over a pseudo-terminal (abbreviated pty). A pty is a software device that operates in pairs: Output directed to one member of the pair is sent to the input of the other member; input is sent to the upstream module. To set up a window (Figure 10.24), mpx allocates a pty pair and opens one member, establishing a stream to it (the driver open insures that the pty was not previously allocated). Mpx forks, and the
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new process opens the other member of the pty pair. Mpx pushes a mes module onto its pty stream to convert control messages to data messages (explai in the next paragraph), and the child process pushes a line discipline module on its pty stream before execing the shell. That shell is now running on a virt terminal; to the user, it is indistinguishable from a physical terminal.


The mpx process is a multiplexer, forwarding output from the virtual terminah to the physical terminal and demultiplexing input from the physical terminal to the correct virtual terminal. Mpx waits for the arrival of data on any line, using the select system eau. When data arrives from the physical terminal, mpx decide4


whether it is a control message, informing it to create a new window or delete an old one, or whether it is a data message to be sent to processes reading a virtual terminal. In the latter case, the data has a header that identifies the target virtual terminal; mpx strips the header from the message and writes the data to the appropriate pty stream. The pty driver routes the data through the terminal line discipline to reading processes. The reverse procedure happens when a process writes the virtual terminal: mpx prepends a header onto the data, informing the physical terminal which window the data should be printed to.


If a process issues an ioctl on a virtual terminal, the terminal line discipline sets the necessary terminal settings for its virtual line; settings may differ for nel) virtual terminal. However, some information may have to be sent to the physical terminal, depending on the device. The message module converts the control messages that are generated by the ioctl into data messages suitable for reading and writing by mpx, and these messages are transmitted to the physical device.


10.4.2 Analysis of Stream


Ritchie mentions that he tried to implement streams only with put procedures or only with service procedures. However, the service procedure is necessary for flow control, since modules must sometimes enqueue data if neighboring modules cannot receive any more data temporarily. The put procedure interface is als° necessary, because data must sometimes be delivered to a neighboring module right away.


For example, a terminal line discipline must echo input data back to the terminal as quickly as possible. It would be possible for the write system call to invoke the put procedure of the next queue directly, which in turn would call the put procedure of the next queue, and so on, without the need for a seheduling mechanism. A process would sleep if the output queues were congested. However, modules cannot sleep on the input side, because they are invoked by an interrupt handler and an innocent process would be put to sleep. Intermodule


communication would not be symmetrie in the input and output directions, detracting from the elegance of the scheme.


It would also have been preferable to implement each module as a separate process, but use of a large number of modules could cause the process table to overfiow. They are implemented with a special scheduling mechanism — software interrupt — independent of the normal process scheduler. Therefore, modules





10.4


STREAMS


351


cannot go to sleep, because they would be putting an arbitrary process to sleep (the one that was interrupted). Modules must save their state information internally, making their code more cumbersome than it would be if sleeping were allowed.


Several anomalies exist in the implementation of streams.


• Process accounting is difficult under streams, because modules do not necessarily run in the context of the process that is using the stream. It is false to assume that all processes uniformly share execution of streams modules, because some processes may require use of complicated network protocols, whereas others may use simple terminal line disciplines.


• Users can put a terminal driver into raw mode, such that read calls return after a short time if no data is available (for example, if newtty.c cc[VMIN]


0; in


Figure 10.17). It is difficult to implement this feature with streams, unless special-case code is introduced at the stream-head level.


• Streams are linear connections and do not easily allow multiplexing in the kernel. For example, the window example in the previous section does the multiplexing in a user-level process.


In spite of these anomalies, streams holds great promise for improving the design of driver modules.


10.5 SUMMARY


This chapter presented an overview of device drivers on the UNIX system. Devices are either block devices or character devices; the interface between them and the rest of the kernel depends on the device type. The block device interface is the block device switch table, which consists of entry points for device open, close, and strategy procedures. The strategy procedure controls data transfer to and from the block device. The character device interface is the character device switch table, which consists of entry points for device open, close, read, write, and ioctl procedures. The foal system call uses the foal interface to character devices, which permits control information to be sent between processes and devices. The kernel calls device interrupt handlers on receipt of a device interrupt, based on information stored in the interrupt vector table and on parameters supplied by the interrupting hardware.


Disk drivers convert logical block numbers used by the file system to locations on the physical disk. The block interface allows the kernel to buffer data. The raw interface allows faster I/O to and from the disk but bypasses the buffer cache, allowing more chances for file system corruption.


Terminal drivers support the primary interface to users. The kernel associates three clists with each terminal, one for raw input from the keyboard, one for processed input to account for erase and kill characters and carriage returns, and one for output. The foal system call allows processes to control how the kernel treats input data, placing the terminal in canonical mode or setting various parameters for raw mode. The getty process opens terminal lines and waits for a
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connection: It sets its process group so that the login shell is eventually a process group leader, initializes terminal parameters via locti, and prompts the user through a login sequence. The control terminal thus set up sends signals to processes in the process group, in response to events such as when the user bangs up or presses the break key.


Streams are a scheme for improving the modularity of device drivers and protocols. A stream is a full-duplex connection between processes and device drivers, which may contain line disciplines and protocols to process data en route.


Streams modules are characterized by well-defined interfaces and by their fiexibility for use in combination with other modules. The fiexibility they offer has strong benefits for network protocols and drivers.


10.6 EXERCISES


* 1. Suppose a system contains two device files that have the same major and minor number and are both character devices. ff two processes wish to open the physical device simultaneously, show that it makes no difference whether they open the same device file or different device files. What happens when they close the device?


* 2. Recall from Chapter 5 that the mknod system call requires superuser permission to create a device special file. Given that device access is governed by the permission modes of a file, why must mknod require superuser permission?


3.


Write a program that verifies that the file systems on a disk do not overlap. The program should take two arguments: a device file that represents a disk volume and a descriptor file that gives section numbers and section lengths for the disk type. The program should read the super blocks to make sure that file systems do not overlap.


Will such a program always be correct?


4.


The program mkfs initializes a file system on a disk by creating the super block, leaving space for the Mode list, putting all the data blocks on a linked list, and making the root Mode directory. How would you program mkfs? How does the program change if there is a volume table of contents? How should it initialize the volume table of contents?


5. The programs mkfs and .fsck (Chapter 5) are user-level programs instead of part of the kernel. Comment.


6.


Suppose a programmer wants to write a data base system to run on the UNIX system.


The data base programs run at user level, not as part of the kernel. How should the system interact with the disk? Consider the following issues:


• Use of the regular file system interface versus the raw disk,


• Need for speed,


• Need to know when data actually resides on disk,


• Size of the data base: Does it fit into one file system, an entire disk volume, or several disk volumes?


7. The UNIX kernel tacitly assumes that the file system is contained on perfect disks.


However, disks could contain faults that incapacitate certain sectors although the remainder of the disk is still "good." How could a disk driver (or intelligent disk controller) make allowances for small numbers of bad sectors. How would this affect performance?
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8. When mounting a file system, the kernel invokes the driver open procedure but later releases the Mode for the device special file at the end of the mount call. When umounting a file system, the kernel accesses the mode of the device special file, invokes the driver close procedure, and releases the mode. Compare the sequence of Mode operations and driver open and close calls to the sequence when opening and closing a block device. Comment.


9.


Run the program in Figure 10.14 but direct the output to a file. Compare the contents of the file to the output when output goes to the terminal. You will have to interrupt the processes to stop them; let them run long enough to get a sufficient amount of output. What happens if the write call in the program is replaced with printf(output);


10. What happens when a user attempts to do text editing in the background: ed file &


Why?


11. Terminal files typically have access permissions set as in


crw--w--w — 2 mjb


lus


33, 11 Oct 25 20:27 tty6l


when a user is logged on. That is, read/write permission is permitted for user "mjb,"


but only write permission is allowed other users. Why?


12. Assuming you know the terminal device file name of a friend, write a program that allows you to write messages to your friend's terminal. What other information do you need to encode a reasonable facsimile of the usual write command?


13. I mplement the say command: with no parameters, it retrieves the values of terminal settings and reports them to the user. Otherwise, the user can set various settings interactively.


14. Encode a line discipline that writes the machine name at the beginning of each line of output.


15. In canonical mode, a user can temporarily stop output to a terminal by typing "control s" at the terminal and resume output by typing "control q." How should the standard line discipline implement this feature?


* 16. The init process spawns a getty process for each terminal line in the system. What would happen if two getty processes were to exist simultaneously for one terminal, waiting for a user to log in? Can the kernel prevent this?


17. Suppose the shell were coded so that it "ignored" the end of file and continued to read its standard input. What would happen when a user (in the login shell) hits end of file and continues typing?


* 18. Suppose a process reads its control terminal but ignores or catches hangup signals.


What happens when the process continues to read the control terminal after a hangup?


19. The getty program is responsible for opening a terminal line, and login is responsible for checking login and password information. What advantages are there for doing the two functions in separate programs?


20.


Consider the two methods for implementing the indirect terminal driver ("/devitty"), described in Section 10.3.6. What differences would a user perceive? (Hint: Think about the system calls stat and fstat.)


21.


Design a method for scheduling streams modules, where the kernel contains a special process that executes module service procedures when they are scheduled to execute.
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* 22. Design a scheme for virtual terminals (windows) using conventional (nonstrea drivers.


* 23. Design a method for implementing virtual terminals using streams such that a ke module, rather than a user process, multiplexes I/O between the virtual and physieg terminals. Describe a mechanism for c,onnecting the streams to allow fan-in and falb.


Out. Is it better to put a multiplexing module inside the kernel or construct it as a user process?


24. The command ps reports interesting information on process activity in a running system. In traditional implementations, ps reads the information in the process talie directly from kernel memory. Suil a method is unstable in a development environment where the size of process table entries changes and ps cannot easily find the correct fields in the process table. Encode a driver that is impervious to a changing environment.
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Interprocess communication mechanisms allow arbitrary processes to exchange data and synchronize execution. We have already considered several forms of interprocess communication, such as pipes, named pipes, and signals. Pipes (unnamed) suffer from the drawback that they are known only to processes which are descendants of the process that invoked the pipe system call: Unrelated processes cannot communicate via pipes. Although named pipes allow unrelated processes to communicate, they cannot generally be used across a network (see Chapter 13), nor do they readily lend themselves to setting up multiple communications paths for different sets of communicating processes: it is impossible to multiplex a named pipe to provide private channels for pairs of communicating processes. Arbitrary processes can also communicate by sending signals via the kill system call, but the "message" consists only of the signal number.


This chapter describes other forms of interprocess communication. It starts off by examining process tracing, whereby one process traces and controls the execution of another process and then explains the the System V IPC package: messages, shared memory, and semaphores. It reviews the traditional methods by which processes communicate with processes on other machines over a network and, finally, gives a user-level overview of BSD sockets. It does not discuss network-specific issues such as protocols, addressing, and name service, which are beyond the scope of this book.
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11.1 PROCESS TRACING


The UNIX system provides a primitive form of interprocess communication for tracing processes, useful for debugging. A debugger process, such as sdb, spawns a process to be traced and controls its execution with the ptrace system call, setting and clearing break points, and reading and writing data in its virtual address space, Process tracing thus consists of synchronization of the debugger process and the traced process and controlling the execution of the traced process.


if ((pid


fork0) ••«- 0)


/* child — traced process */


ptrace(0, 0, 0, 0);


exec("name of traced process here");


/* debugger process continues here */


for (;;)


wait((int *) 0);


read(input for tracing instructions)


ptrace(cmd, pid, ...);


if (quitting trace)


break;


Figure 11.1. Structure of Debugging Process


The pseudo-code in Figure 11.1 shows the typical structure of a debugger program. The debugger spawns a child process, which invokes the ptrace system call and, as a result, the kernel sets a trace bit in the child process table entry. The child now execs the program being traced. For example, if a user is debugging the program a.out, the child would exec a.out. The kernel executes the exec call as usual, but at the end notes that the trace bit is set and sends the child a "trap"


signal. The kernel checks for signals when returning from the exec system call, just as it checks for signals after any system call, finds the "trap" signal it had just sent itself, and executes code for process tracing as a special case for handling signals.


Noting that the trace bit is set in its process table entry, the child awakens the parent from its sleep in the walt system cal (as will be seen), enters a special trace state similar to the sleep state (not shown in the process state diagram in Figure 6.1), and does a context switch.


Typically, the parent (debugger) process would have meanwhile entered a user-level loop, waiting to be awakened by the traced process. When the traced process awakens the debugger, the debugger returns from wait, reads user input commands, and converts them to a series of ptrace calls to control the child (traced) process. The syntax of the ptrace system cal] is
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ptrace(cmd, pid, addr, data);


where cmd specifies various commands such as reading data, writing data, resuming execution and so on, pid is the process ID of the traced process, addr is the virtual address to be read or written in the child process, and data is an integer value to be written. When executing the ptrace system call, the kernel verifies that the debugger has a child whose ID is pid and that the child is in the traced state and then uses a global trace data structure to transfer data between the two processes.


It locks the trace data structure to prevent other tracing processes from overwriting it, copies crnd, addr, and data into the data structure, wakes up the child process and puts it into the "ready-to-run" state, then sleeps until the child responds.


When the child resumes execution (in kernel mode), it does the appropriate trace command, writes its reply into the trace data structure, then awakens the debugger.


Depending on the command type, the child may reenter the trace state and wait for a new command or return from handling signals and resume execution. When the debugger resumes execution, the kernel saves the "return value" supplied by the traced process, unlocks the trace data structure, and returns to the user.


If the debugger process is not sleeping in the wait system call when the child enters the trace state, it will not discover its traced child until it calls wait, at which time it returns immediately and proceeds as just described.


int data[32];


main()


int i;


for 0 •• 0; i < 32; i++)


printf("data[7odl


Tod\n", i, datalip;


printf("ptrace data addr 000x\n", data);


Figure 11.2. Trace — A Traced Process


Consider the two programs in Figures 11.2 and 11.3, called trace and debug, respectively. Running trace at the terminal, the array values for data will be 0; the process prints the address of data and exits. Now, running debug with a parameter equal to the value printed out by trace, debug saves the paratrieter in addr, creates a child process that invokes ptrace to make itself eligible for tracing, and execs trace. The kernel sends the child process (call it trace) a SIG TRAP


signal at the end of exec, and trace enters the trace state, waiting for a command from debug. If debug had been sleeping in wait, it wakes up, finds the traced child process, and returns from wait. Debug then calls ptrace, writes the value of the loop variable i into the data space of trace at address addr, and increments addr; in trace, addr is an address of an entry in the array data. Debug's last call to ptrace causes trace to run, and this time, the array data contains the values 0 to
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#define TR_SETUP 0


#define TR WRITE 5


#define TR:RESUME 7


int addr;


main(argc, argv)


int argc;


char *argv[];


int i, pid;


sscanf(argy[1:1„ "%x", &addr);


if ((pid


fork()) -- 0)


ptrace(TR_SETUP, 0, 0, 0);


execl("trace", "trace", 0);


exit();


for (i


0; i < 32; i++)


wait((int *) 0);


/* write value of i into address addr in proc pid */


if (ptrace(TR_WRITE, pid, addr, 1) -- —1)


exit();


addr


sizeof(int);


/* traced process should resurne execution */


ptrace(TR_RESUME, pid, 1, 0);


Figure 11.3. Debug — A Tracing Process


31. A debugger such as sdb has access to the traced process's symbol table, from which it determines the addresses it uses as parameters to ptrace calls.


The use of ptrace for process tracing is primitive and suffers several drawbacks.


• The kernel must do four context switches to transfer a word of data between a debugger and a traced process: The kernel switches context in the debugger in the ptrace call until the traced process replies to a query, switches context to and from the traced process, and switches context back to the debugger process with the answer to the ptrace call. The overhead is necessary, because a debugger bas no other way to gain access to the virtual address space of a traced process, but process tracing is consequently slow.
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• A debugger process can trace several child processes simultaneously, although this feature is rarely used in practice. More critically, a debugger can only trace child processes: If a traced child forks, the debugger has no control over the grandchild, a severe handicap when debugging sophisticated programs. If a traced process execs, the later execed images are still being traced because of the original ptrace, but the debugger may not know the name of the execed image, making symbolic debugging difficult.


• A debugger cannot trace a process that is already executing if the debugged process had not called ptrace to let the kernel know that it consents to be traced. This is inconvenient, because a process that needs debugging must be killed and restarted in trace mode.


• It is impossible to trace set uid programs, because users could violate security by writing their address space via ptrace and doing illegal operations. For example, suppose a setuid program calls exec with file name "privatefile". A clever user could use ptrace to overwrite the file name with "Thinish", executing the shell (and all programs executed by the shell) with unauthorized permission.


Exec ignores the setuid bit if the process is traced to prevent a user from overwriting the address space of a setuid program.


Killian [Killian 84] describes a different scheme for process tracing, based on the file system switch described in Chapter 5. An administrator mounts a file system, "iproc"; users identify processes by their PID and treat them as files in


"iproc". The kernel gives permission to open the files according to the process user ID and group ID. Users can examine the process address space by reading the file, and they can set breakpoints by writing the file. Stat returns various statistics about the process. This method removes three disadvantages of ptrace. First, it is faster, because a debugger process can transfer more data per system call than it can with ptrace. Second, a debugger can trace arbitrary processes, not necessarily a child process. Finally, the traced process does not have to make prior arrangement to allow tracing; a debugger can trace existing processes. As part of the regular file protection mechanism, only a superuser can debug processes that are setuid to root.


11.2 SYSTEM V IPC


The UNIX System V 1PC package consists of three mechanisms. Messages allow processes to send formatted data streams to arbitrary processes, shared memory allows processes to share parts of their virtual address space, and semaphores allow processes to synchronize execution. Implemented as a unit, they share common properties.


• Each mechanism contains a table whose entries describe all instances of the mechanism.


• Each entry contains a numeric key, which is its user-chosen name.
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• Each mechanism contains a "get" system call to create a new entry or to retrieve an existing one, and the parameters to the calls include a key and flags The kernel searches the proper table for an entry named by the key. Processes can call the "get" system calls with the key IPC PRIVATE to assure the return of an unused entry. They can set the IPC CREAT bit in the fiag field to create a new entry if one by the given key does not already exist, and they can force an error notification by setting the IPC EXCL and IPC_CREAT fiags, if an entry already exists for the key. The "get" system calls return a kernel-chosen descriptor for use in the other system calls and are thus analogous to the file system crew and open calls.


• For each 1PC mechanism, the kernel uses the following formula to find the index int° the table of data structures from the descriptor:


index descriptor modulo (number of entries in table)


For example, if the table of message structures contains 100 entries, the descriptors for entry 1 are 1, 101, 201, and so on. When a process removes an entry, the kernel increments the descriptor associated with it by the number of entries in the table: The incremented value becomes the new descriptor for the entry when it is next allocated by a "get" call. Processes that attempt to access the entry by its old descriptor fail on their access. Referring to the previous example, if the descriptor associated with message entry 1 is 201 when it is removed, the kernel assigns a new descriptor, 301, to the entry. Processes that attempt to access descriptor 201 receive an error, because it is no longer valid.


The kernel eventually recycles descriptor numbers, presumably after a long time lapse.


• Each 1PC entry has a permissions structure that includes the user ID and group ID of the process that created the entry, a user and group 1D set by the


"control" system call (below), and a set of read-write-execute permissions for user, group, and others, similar to the file permission modes.


• Each entry contains other status information, such as the process ID of the last process to update the entry (send a message, receive a message, attach shared memory, and so on), and the time of last access or update.


• Each meehanism contains a "control" system call to query status of an entry, to set status information, or to remove the entry from the system. When a proeess queries the status of an entry, the kernel verifies that the process has read permission and then copies data from the table entry to the user address.


Similarly, to set parameters on an entry, the kernel verifies that the user 1D of the process matches the user ID or the creator user ED of the entry or that the process is run by a superuser; write permission is not sufficient to set parameters. The kernel Copies the user data into the table entry, setting the user ID, group 1D, permission modes, and other fields dependent on the type of mechanism. The kernel does not change the creator user and group 1D fields, so the user who created an entry retains control rights to it. Finally, a user can remove an entry if it is the superuser or if its process ID matches either ID field
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in the entry structure. The kernel increments the descriptor number so that the next instance of assigning the entry will return a different descriptor. Hence, system calls will fail if a process attempts to access an entry by an old descriptor, as explained earlier.


11.2.1 Messages


There are four system calls for messages: msgget returns (and possibly creates) a message descriptor that designates a message queue for use in other system calls, msgcti has options to set and return parameters associated with a message descriptor and an option to remove descriptors, msgsnd sends a message, and msgrcv receives a message.


The syntax of the msgget system call is


msgqid msgget(key, flag);


where msgqid is the descriptor returned by the call, and key and flag have the semantics described above for the general "get" calls. The kernel stores messages on a linked list (queue) per descriptor, and it uses msgqid as an index into an array of message queue headers. In addition to the general IPC permissions field mentioned above, the queue structure contains the following fields:


• Pointers to the first and last messages on a linked list;


• The number of messages and the total number of data bytes on the linked list;


• The maximum number of bytes of data that can be on the linked list;


• The process IDs of the last processes to send and receive messages;


• Time stamps of the last rnsgsnd, msgrcv, and msgctl operations.


When a user calls msgget to create a new descriptor, the kernel searches the array of message queues to see if one exists with the given key. If there is no entry for the specified key, the kernel allocates a new queue structure, initializes it, and returns an identifier to the user. Otherwise, it checks permissions and returns.


A process uses the msgsnd system call to send a message:


msgsnd(msgqid, msg, count, flag);


where msgqid is the descriptor of a message queue typically returned by a msgget call, msg is a pointer to a structure consisting of a user-chosen integer type and a character array, count gives the size of the data array, and flag specifies the action the kernel should take if it runs out of internal buffer space.


The kernel checks (Figure 11.4) that the sending process has write permission for the message descriptor, that the message length does not exceed the system limit, that the message queue does not contain too many bytes, and that the message type is a positive integer. If all tests succeed, the kernel allocates space for the message from a message map (recall Section 9.1) and copies the data from user space. The kernel allocates a message header and puts it on the end of the linked list of message headers for the message queue. It records the message type and
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algorithm msgsnd


I* send a message */


input: (1) message queue descriptor


(2) address of message structure


(3) size of message


(4) flags


output: nurnber of bytes sent


check legality of descriptor, permissions;


while (not enough space to store message)


if (flags specify not to wait)


return;


sleep(until event enough space is available);


get message header;


read message text from user space to kernel;


adjust data structures: enqueue message header,


message header points to data,


counts, time stamps, process 1D:


wakeup all processes waiting to read message from queue;


Figure 11.4. Algorithm for Msgsnd


size in the message header, sets the message header to point to the message data, and updates various statistics fields (number of messages and bytes on queue, time stamps and proeess ID of sender) in the queue header. The kernel then awakens processes that were asleep, waiting for messages to arrive on the queue. 1f the number of bytes on the queue exeeeds the queues limit, the process sleeps until other messages are removed from the queue. 1f the process specified not to wait (Dag IPC_NOWAIT), however, it returns immediately with an error indieation.


Figure 11.5 depicts messages on a queue, showing queue headers, linked lists of message headers, and pointers from the message headers to a data area.


Consider the program in Figure 11.6: A process calls msgget to get a descriptor for MSGKEY. It sets up a message of length 256 bytes, although it uses only the first integer, copies its process ID into the message text, assigns the message type value 1, then calls msgsnd to send the message. We will return to this example later.


A process receives messages by


Count


msgrcv(id, msg, maxcount, type, 'lag);


where kl is the message deseriptor, msg is the address of a user structure to contain the received message, maxeount is the size of the data array in msg, type specifies the message type the user wants to read, and flag specifies what the kernel should
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Queue


Headers


Data Area


Figure 11.5. Data Structures for Messages


do if no messages are on the queue. The return value, count, is the number of bytes returned to the user.


The kernel checks (Figure 11.7) that the user has the necessary access rights to the message queue, as above. If the requested message type is 0, the kernel finds the first message on the linked list. If its size is less than or equal to the size requested by the user, the kernel copies the message data to the user data structure and adjusts its internal structures appropriately: It decrements the count of messages on the queue and the number of data bytes on the queue, sets the receive time and receiving process ID, adjusts the linked list, and frees the kernel space that had stored the message data. If processes were waiting to send messages because there was no room on the list, the kernel awakens them. If the message is bigger than maxcount specified by the user, the kernel returns an error for the System call and leaves the message on the queue. If the process ignores size constraints, however (bit MSG NOERROR  is set in flag), the kernel truncates the message, returns the requested number of bytes, and removes the entire message from the list.
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#include


<sys/types.h>


#include


<sys/ipc.h>


#include


<sysimsg.h>


#define MSGKEY


75


struct msgform


long


mtype;


char


mtext[2561;


I;


main()


struct msgform msg;


int msgid, pid, *pint;


msgid


sgget(MSGKEY, 0777);


pid = getpid();


pint


(int *) msg.mtext;


*pint


pid;


/* copy pid into message text */


msg.mtype


msgsnd(msgid, &msg, sizeof(int), 0);


msgrcv(msgid, &msg, 256, pid, 0);


/* pid is used as the msg type */


printf("client: receive from pid %d\n", *pint);


Figure 11.6. A Client Process


A process can receive messages of a particular type by setting the type parameter appropriately. If it is a positive integer, the kernel returns the first message of the given type. If it is negative, the kernel finds the lowest type of all messages on the queue, provided it is less than or equal to the absolute value of type, and returns the first message of that type. For example, if a queue contains three messages whose types are 3, 1, and 2, respectively, and a user requests a message with type — 2, the kernel returns the message of type 1. In all cases, if no messages on the queue satisfy the receive request, the kernel puts the process to sleep, unless the process had specified to return immediately by setting the IPC NO WAIT bit in flag.


Consider the programs in Figures 11.6 and 11.8. The program in Figure 11,8


shows the structure of a server  that provides generic service to client processes. For instance, it may receive requests from client processes to provide information from a database; the server process is a single point of access to the database, making consistency and security easier. The server creates a message structure by setting
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a gort h msgrcv


/ receive message */


input: (1) message descriptor


(2) address of data array for incoming message


(3) size of data array


(4) requested message type


(5) fiags


output: number of bytes in returned message


check permissions;


loop:


check legality of message descriptor;


/* find message to return to user */


if (requested message type


0)


consider first message on queue;


else if (requested message type > 0)


consider first message on queue with given type;


else


/* requested message type < 0 */


consider first of the lowest typed messages cm queue,


such that its type is <— absolute value of


requested type;


if (there is a message)


adjust message size or return error if user size too small;


copy message type, text from kernel space to user space;


unlink message from queue;


return;


no message */


if (fiags specify not to sleep)


return witij error;


sleep (event message arrives on queue);


goto loop;


Figure 11.7. Algorithm for Receiving a Message


the IPC CREAT flag in the msgget call and receives all messages of type 1


requests from client processes. It reads the message text, finds the process 1D of the client process, and sets the return message type to the client process ID. In this example, it sends its process ID back to the client process in the message text, and the dient process receives messages whose message type equals its process ID.


Thus, the server process receives only messages sent to it by client processes, and client processes receive only messages sent to them by the server. The processes cooperate to set up multiple channels on one message queue.
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#include


<sys/types.h>


#include


<sys/ipc.h>


#include


<sys/msg.h>


#define MSGKEY


75


struct msgform


long mtype;


char mtexti256];


msg;


int msgid;


main()


int i, pid, *pint;


extern cleanup 0;


for (i


0; i < 20; i++)


signal (I, cleanup);


msgid msgget(MSGKEY, 0777 I IPC_CREAT);


for (;;)


msgrcv(msgid, &msg, 256, 1, 0);


pint


(int *) msg.mtext;


pid — *pint;


printf("server: receive from pid %d\n", pid);


msg.mtype — pid;


*pint


getpid();


msgsnd(msgid, &msg, sizeof(int), 0);


cleanup 0


msgctl (msgid, /PC_RMID, 0);


exit 0;


Figure 11.8. A Server Process


Messages are formatted as type-data pairs, whereas file data is a byte stream.


The type prefix allows processes to select messages of a particular type, if desired, a Feature not readily available in the file system. Processes can thus extract messages of particular types from the message queue in the order that they arrive, and the kernel maintains the proper order. Although it is possible to implement a message
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passing scheme at user level with the file system, messages provide applications with a more efficient way to transfer data between processes.


A process can query the status of a message descriptor, set its status, and remove a message descriptor with the msgctl system cal'. The syntax of the call is msgetl(id, cmd, mstatbuf)


where id identifies the message descriptor, cmd specifies the type of command, and rnstatbuf is the address of a user data structure that will contain control parameters or the results of a query. The implementation of the system cal] is straightforward; the appendix specifies the parameters in detail.


Returning to the server example in Figure 11.8, the process catches signals and calls the function cleanup to remove the message queue from the system, 1f it did not catch signals or if it receives a SIGKILL signa' (which cannot be caught), the message queue would remain in the system even though no processes refer to it.


Subsequent attempts to create (exclusively) a new message queue for the given key would fail until it was removed.


11.2.2 Shared Memory


Processes can communicate directly with each other by sharing parts of their virtual address space and then reading and writing the data stored in the shared memory. The system calls for manipulating shared memory are similar to the system calls for messages. The shmget system call creates a new region of shared memory or returns an existing one, the shmat system call logically attaches a region to the virtual address space of a process, the shmdt system call detaches a region from the virtual address space of a process, and the shmctl system call manipulates various parameters associated with the shared memory. Processes read and write shared memory using the same machine instructions they use to read and write regular memory. After attaching shared memory, it becomes part of the virtual address space of a process, accessible in the same way other virtual addresses are; no system calls are needed to access data in shared memory.


The syntax of the shmget system call is


shmid shmget(key, size, fiag);


where size is the number of bytes in the region. The kernel searches the shared memory table for the given key: if it finds an entry and the permission modes are acceptable, it returns the descriptor for the entry. If it does not find an entry and the user had set the IPC CREAT flag to create a new region, the kernel verifies that the size is between system-wide minimum and maximum values and then allocates a region data structure using algorithm allocreg (Section 6.5.2). The kernel saves the permission modes, size, and a pointer to the region table entry in the shared memory table (Figure 11.9) and sets a flag there to indieate that no memory is associated with the region. It allocates memory (page tables and so on) for the region only when a process attaches the region to its address space. The
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kernel also sets a flag on the region table entry to indicate that the region should not be freed when the last process attached to it exits. Thus, data in shar memory remains intact even though no processes include it as part of their virt address space.


Shared


Process Table -


Memory


Region


Per Process


Table


Table


Region Table


(after


shmat)


Figure 11.9. Data Structures for Shared Memory


A process attaches a shared memory region to its virtual address space with the shmat system call:


virtaddr shmat(id, addr, flags);


Id, returned by a previous shin get system call, identifies the shared memory region, addr is the virtual address where the user wants to attach the shared memory, and flags specify whether the region is read-only and whether the kernel should round off the user-specified address. The return value, virtaddr, is the virtual address where the kernel attached the region, not necessarily the value requested by the process.


When executing the shmat system call, the kernel verifies that the process has the necessary permissions to access the region (Figure 11.10). It examines the address the user specifies: If 0, the kernel chooses a convenient virtual address.
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a lgorithm shmat


/* attach shared memory */


input: (1) shared memory descriptor


(2) virtual address to attach memory


(3) flags


output: virtual address where memory was attached


check validity of descriptor, permissions;


if (user specified virtual address)


round off virtual address, as specified by flags;


check legality of virtual address, size of region;


else


/* user wants kernel to find good address */


kernel picks virtual address: error if none available;


attach region to process address space (algorithm attachreg);


if (region being attached for first time)


allocate page tables, memory for region


(algorithm growreg);


return (virtual address where attached);


Figure 11.10. Algorithm for Attaching Shared Memory


The shared memory must not overlap other regions in the process virtual address space; hence it must be chosen judiciously so that other regions do not grow into the shared memory. For instance, a process can increase the size of its data region with the brk system eau, and the new data region is virtually contiguous with the previous data region; therefore, the kernel should not attach a shared memory region close to the data region. Similarly, it should not place shared memory close to the top of the stack so that the stack will not grow into it. For example, if the stack grows towards higher addresses, the best place for shared memory is immediately before the start of the stack region,


The kernel checks that the shared memory region fits into the process address space and attaches the region, using algorithm attaehreg. If the calling process is the first to attach the region, the kernel allocates the necessary tables, using algorithm growreg, adjusts the shared memory table entry field for "last time attached," and returns the virtual address at which it attached the region.


A process detaches a shared memory region from its virtual address space by shmdt (addr)


where addr is the virtual address returned by a prior shmat cal]. Although it would seem more logica' to pass an identifier, the virtual address of the shared memory is used so that a process can distinguish between several instances of a shared memory region that are attached to its address space, and because the
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identifier may have been removed. The kernel searches for the process region attached at the indicated virtual address and detaches it from the process address space, using algorithm detachreg (Section 6.5.7). Because the region tables have no back pointers to the shared memory table, the kernel searches the shared memory table for the entry that points to the region and adjusts the field for the ti me the region was last detached.


Consider the program in Figure 11.11: A process creates a 128K-byte shared memory region and attaches it twice to its address space at different virtual addresses. It writes data in the "first" shared memory and reads it from the


"second" shared memory. Figure 11.12 shows another process attaching the same region (it gets only 64K bytes, to show that each process can attach different amounts of a shared memory region); it waits until the first process writes a nonzero value in the first word of the shared memory region and then reads the shared memory. The first process pauses to give the second process a chance to execute; when the first process catches a signal, it removes the shared memory region.


A process uses the shmal system call to query status and set parameters for the shared memory region:


shmal(id, cmd, shmstatbuf);


Id identifies the shared memory table entry, and specifies the type of operation, and shmstatbuf is the address of a user-level data structure that contains the status information of the shared memory table entry when querying or setting its status.


The kernel treats the commands for querying status and changing owner and permissions similar to the implementation for messages. When removing a shared memory region, the kernel frees the entry and looks at the region table entry: If no process has the region attached to its virtual address space, it frees the region table entry and all its resources, using algorithm freereg (Section 6.5.6). If the region is still attached to some processes (its reference count is greater than 0), the kernel just clears the flag that indicates the region should not be freed when the last process detaches the region. Processes that are using the shared memory may continue doing so, but no new processes can attach it. When all processes detach the region, the kernel frees the region. This is analogous to the case in the file system where a process can open a file and continue to access it after it is unlinked.


11.2.3 Semaphores


The semaphore system calls allow processes to synchronize execution by doing a set of operations atomically on a set of semaphores. Before the implementation of semaphores, a process would create a lock file with the crew system call if it wanted to lock a resource: The crew fails if the file already exists, and the process would assume that another process had the resource locked. The major disadvantages of this approach are that the process does not know when to try again, and lock files may inadvertently be left behind when the system crashes or is
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#include


<sys/types.h>


#include


<sys/ipc.h>


#include


<sysishm.h>


#define SHMKEY


75


#define


K


1024


int shmid;


main()


int i, *pint;


char *addri, *addr2;


extern char *shmato;


extern cleanup();


for (1 — 0; i < 20; i++)


signal(i, cleanup);


shmid shmget(SHMKEY, 128 * K, 0777 TPC_CREAT);


1


addrl


shmat(shmid, 0, 0);


addr2 — shmat(shmid, 0, 0);


printf("addr1 Ox%x addr2 Ox%x\n", addrl, addr2);


pint — (int *) addr1;


for (i — 0; i <256;


*pint++


•


pint — (int *) addr1;


*pint


256;


pint


(int 5) addr2;


for (i — 0; i < 256; i++)


printf("index %d\tvaltie %d\n", i, *pint++);


pause();


cleanup0


shmctl(shmid, IPC_RM1D, 0);


exit();


Figure 11.11. Attaching Shared Memory Twice to a Process
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#include


<sysitypes.h>


#include


<sysiipc.h>


#include


<sys/shm.h>


#define SHMKEY 75


#define K 1024


int shmid;


main()


int i, *pint;


char *addr;


extern char *shmat


shmid •• shmget(SHMKEY, 64 * K, 0777);


addr shmat(shmid, 0, 0);


pint


(int *) addr;


while (*pint


0)


for (i 0; i < 256; i++)


printf("Tod\n", *pint++);


Figure 11.12. Sharing Memory Between Processes


rebooted.


Dijkstra published the Dekker algorithm that describes an implementation of semaphores, integer-valued objects that have two atomic operations defined for them: P and V (see [Dijkstra 681). The P operation decrements the value of a semaphore if its value is greater than 0, and the V operation increments its value.


Because the operations are atomic, at most one P or V operation can succeed on a semaphore at any time. The semaphore system calls in System V are a generalization of Dijkstra's P and V operations, in that several operations can be done simultaneously and the increment and decrement operations can be by values greater than I. The kernel does all the operations atomically; no other processes adjust the semaphore values until all operations are done. If the kernel cannot do all the operations, it does not do any; the process sleeps until it can do all the operations, as will be explained.


A semaphore in UNIX System V consists of the following elements:


• The value of the semaphore,


• The process ID of the last process to manipulate the semaphore,
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• The number of processes waiting for the semaphore value to increase,


• The number of processes waiting for the semaphore value to equal 0.


The semaphore system calls are semget to create and gain access to a set of semaphores, semctl to do various control operations on the set, and semop to manipulate the values of semaphores.


Semaphore


Semaphore Arrays


Table


0


r 3 1 4 1


Figure 11.13. Data Structures for Semaphores


The semget system call creates an array of semaphores:


id semget(key, count, flag);


where key, 'lag and id are similar to those parameters for messages and shared memory. The kernel allocates an entry that points to an array of semaphore structures with count elements (Figure 11.13). The entry also specifies the number of semaphores in the array, the time of the last semop call, and the time of the last semctl call. For example, the semget system call in Figure 11.14 creates a semaphore with two elements.


Processes manipulate semaphores with the semop system call: oldval


semop(id, oplist, count);


Id is the descriptor returned by semget, °pitst is a pointer to an array of semaphore operations, and count is the size of the array. The return value, oldval, is the value
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#include


<sysitypes.b>


#include


<sys/ipc.h>


#include


<sys/sem.h>


#define SEMKEY


75


int semid;


unsigned int count;


1* definition of sembuf in file sys/sem.h


* struct sembuf [


•


unsigned shortsem_num;


•


short sem op;


•


short sem_fig;


1; */


struct sembuf psembuf, vsembuf;


/* ops for P and V 5/


main(argc, argv)


int argc;


char *orgy[];


int i, first, second;


short initarray[2], outarray121;


extern cleanup();


if (argc


1)


for


0; i < 20; i++)


signal(i, cleanup);


semid semget(SEMKEY, 2, 0777 IPCSREAT);


initarray[0]


initarray[ 1]


1;


seinctl(semid, 2, SETALL, initarray);


semctl(semid, 2, GETALL, outarray);


printf("sem init vals %d %d\n", outarray[0], outarrayn I); pause();


PI sleep until awakened by a signal 5/


/* continued next page */


Figure 11.14. Locking and Unlocking Operations
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else if (argv(11[0]


'a')


first


0;


second — 1;


else


first — 1;


second — 0;


semid semget(SEMKEY, 2, 0777);


psembuf.sem_op


psembuf.sern_fig SEM_UNDO;


vsembuf.sern_op sir 1;


vsembuf.semllg SEM_UNDO;


for (count 0; ; count++)


psembuf.sem_num first;


semop(semid, &psembuf, 1);


psembuf.sem_num second;


semop(semid, &psembuf, 1);


printf("proc %d count %d\n", getpid(), count);


vsembuf.sern_num second;


semop(semid, &vsembuf, 1);


vsembuf.sem_num ai= first;


semop(sernid, &vsembuf, 1);


cleanup


semctl(semid, 2, IPC_RM1D, 0);


exit();


Figure 11.14. Locking and Unlocking Operations (continued)


The kernel reads the array of semaphore operations, oplist, from the user address space and verifies that the semaphore numbers are legal and that the process has the necessary permissions to read or change the semaphores (Figure 11.15). If permission is not allowed, the system call fails. If the kernel must sleep as it does the list of operations, it restores the semaphores it bas already operated on to their values at the start of the system eau; it sleeps until the event for which
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algorithm semop


/ semaphore operations /


inputs: (1) semaphore descriptor


(2) array of semaphore operations


(3) number of elements in array


output: start value of last semaphore operated on


check legality of semaphore descriptor;


start: read array of semaphore operations from user to kernel space; check permissions for all semaphore operations;


for (each semaphore operation in array)


if (semaphore operation is positive)


add "operation" to semaphore value;


if (UNDO flag set on semaphore operation)


update process undo structure;


wakeup all processes sleeping (event semaphore value increases);


else if (semaphore operation is negative )


if ("operation" + semaphore value > 0)


add "operation" to semaphore value;


if (UNDO flag set)


update process undo structure;


if (semaphore value 0)


/* continued next page */


Figure 11.15. Algorithm for Semaphore Operation


it is waiting occurs and then restarts the system call. Because the kernel saves the semaphore operations in a global array, it reads the array from user space again if it must restart the system call. Thus, operations are done atomically either all


at once or not at all.


The kernel changes the value of a semaphore according to the value of the operation. If positive, it increments the value of the semaphore and awakens all processes that are waiting for the value of the semaphore to increase, If the semaphore operation is 0, the kernel checks the semaphore value: If 0, it continues with the other operations in the array; otherwise, it increments the number of processes asleep, waiting for the semaphore value to be 0, and goes to sleep. If the semaphore operation is negative and its absolute value is less than or equal to the value of the semaphore, the kernel adds the operation value (a negative number) to the semaphore value. If the result is 0, the kernel awakens all processes asleep, waiting for the semaphore value to be 0. If the value of the semaphore is less than
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wakeup all processes sleeping (event


semaphore value becomes 0);


continue;


reverse all semaphore operations already done


this system call (previous iterations);


if (flags specify not to sleep)


return with error;


sleep (event semaphore value increases);


goto start;


/* start loop from beginning */


}


else


/* semaphore operation is zero */


{


if (semaphore value non 0)


{


reverse all semaphore operations done


this systern call;


if (flags specify not to sleep)


return with error;


sleep (event sernaphore value -...- 0);


goto start;


/* restart loop */


}


}


) /* for loop ends here */


I* semaphore operations all succeeded */


update time stamps, process ID's;


return value of last semaphore operated on before call succeeded;


}


Figure 11.15. Algorithm for Semaphore Operation (continued)


the absolute value of the semaphore operation, the kernel puts the process to sleep on the event that the value of the semaphore increases. Whenever a process sleeps in the middle of a semaphore operation, it sleeps at an interruptible priority; hence, it wakes up on receipt of a signal.


Consider the program in Figure 11.14, and suppose a user executes it (a.out) three times in the following sequence:


a.out &


a.out a 84.


a.out b &


When run without any parameters, the process creates a semaphore set with two elements and initializes their values to 1. Then, it pauses and sleeps until awakened by a signa', when it removes the semaphore in clearuip. When executing the program with parameter 'a', the process (A) does four separate semaphore
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operations in the loop: It decrements the value of semaphore 0, decrements the value of semaphore 1, executes the print statement, and then increments the values of semaphores 1 and 0. A process goes to sleep if it attempts to decrement the value of a semaphore that is 0, and hence the semaphore is considered lockedt Because the semaphores were initialized to I and no other processes are using the semaphores, process A will never sleep, and the semaphore values will oscillate between 1 and 0. When executing the program with parameter 'b', the process (B) decrements semaphores 0 and 1 in the opposite order from process A. When processes A and B run simultaneously, a situation could arise whereby process A has locked semaphore 0 and wants to lock semaphore 1, but process B has locked semaphore I and wants to lock semaphore 0. Both processes sleep, unable to continue. They are deadlocked and exit only on receipt of a signal.


To avoid such problems, processes can do multiple semaphore operations simultaneously. Using the following structures and code in the last example would give the desired effect.


strut sembuf psembuf[2];


psembuf[O].sem_num 0;


psembufill.sem_num — 1;


psembuflasem_op —1;


psembuffilsem_op —1;


semop(semid, psembuf, 2);


Psembuf is an array of semaphore operations that decrements semaphores 0 and I simultaneously. If either operation cannot succeed, the process sleeps until they both succeed. For instance, if the value of semaphore 0 is 1 and the value of semaphore 1 is 0, the kernel would leave the values intact until it can decrement both values.


A process can set the IPC NOWAIT flag in the semop system call; if the kernel arrives at a situation where the process would sleep because it must wait for the semaphore value to exceed a particular value or for it to have value 0, the kernel returns from the system call with an error condition. Thus, it is possible to implement a conditional semaphore, whereby a process does not sleep if it cannot do the atomic action.


Dangerous situations could occur if a process does a semaphore operation, presumably locking some resource, and then exits without resetting the semaphore value. Such situations can occur as the result of a programmer error or because of receipt of a signal that causes sudden termination of a process. If, in Figure 11.14


again, the process receives a kill signal after decrementing the semaphore values, it has no chance to reincrement them, because kill signals cannot be caught. Hence, other processes would find the semaphore locked even though the process that had locked it no longer exists. To avoid such problems, a process can set the SEM UNDO flag in the semop call; when it exits, the kernel reverses the effect of every semaphore operation the process had done. To implement this feature, the kernel maintains a table with one entry for every process in the system. Each entry
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Figure 11.16. Undo Structures for Semaphores


points to a set of undo structures, one for each semaphore used by the process (Figure 11.16). Each undo structure is an array of triples consisting of a semaphore ID, a semaphore number in the set identified by ID, and an adjustment value.


The kernel allocates undo structures dynamically when a process executes its first semop system call with the SEM UNDO flag set. On subsequent semop system calls with the SEM_UNDO flag set, the kernel searches the process undo structures for one with the same semaphore 1D and number as the semop operation: 1f it finds one, it subtracts the value of the semaphore operation from the adjustment value. Thus, the undo structure contains a negated summation of all semaphore operations the process had done on the semaphore for which the SEM UNDO flag was set. 1f no undo structure for the semaphore exists, the kernel creates one, sorting a list of structures by semaphore ID and number. 1f an adjustment value drops to 0, the kernel removes the undo structure. When a process exits, the kernel calls a special routine that goes through the undo structures associated with the process and does the specified action on the indicated semaphore.


Referring back to Figure 11.14, the kernel creates an undo structure every time the process decrements the semaphore value and removes the structure every time
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semaphore id


semid


semaphore id


semid semid


semaphore num


0


semaphore num


0


adjustment


adjustment


1


(a) After first operation


(b) After second operation


semaphore id


semid


semaphore num


0


empty


adjustment


(c) After third operation


(d) After fourth operation


Figure 11.17. Sequence of Undo Structures


the process increments a semaphore value, because the adjustment value of the undo structure is 0. Figure 11.17 shows the sequence when invoking the program with parameter 'a'. After the first operation, the process has one triple for semid with semaphore number 0 and adjustment value 1, and after the second operation, it bas a second triple with semaphore number 1 and adjustment value 1. If the process were to exit suddenly now, the kernel would go through the triples and add the value 1 to each semaphore, restoring their values to 0. In the regular case, the kernel decrements the adjustment value of semaphore 1 during the third operation, corresponding to the increment of the semaphore valure, and it removes the triple, because its adjustment value is 0. After the fourth operation, the process bas more triples, because the adjustment values would all be 0.


The array operations on semaphores allow processes to avoid deadlock problems, as illustrated above, but they are complicated, and most applications do not need their full power, Applications that require use of multiple semaphores should deal with deadlock conditions at user level, and the kernel should not contain such complicated system calls.


The sem& system call contains a myriad of control operations for semaphores: semctl(id, number, cmd, arg);
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arg;


The kernel interprets arg based on the value of cmd, similar to the way it interprets ioctl commands (Chapter 10). The expected actions take place for the cmds that retrieve or set control parameters (permissions and others), set one or all semaphore values in a set, or read the semaphore values. The appendix gives the details for each command. For the remove command, IPC_RMID, the kernel finds all processes that have undo structures for the semaphore and removes the appropriate triples. Then, it reinitializes the semaphore data structure and wakes up all processes sleeping until the occurence of some semaphore event: When the processes resume execution, they find that the semaphore ID is no longer valid and return an error to the caller.


11.2.4 General Comments


There are several similarities between the file system and the 1PC mechanisms.


The "get" system calls are similar to the creat and open system calls, and the


"control" system calls contain an option to remove descriptors from the system, similar to the unlink system call. But no operations are analogous to the file system close system call. Thus, the kernel has no record of which processes can access an 1PC mechanism, and, indeed, processes can access an IPC mechanism if they guess the correct ID and if access permissions are suitable, even though they never did a "get" call. The kernel cannot clean up unused IPC structures automatically, because it never knows when they are no longer needed. Errant processes can thus leave unneeded and unused structures cluttering the system.


Although the kernel can save state information and data in the !PC structures after the death of a process, it is better to use files for such purposes.


The IPC mechanisms introduce a new name space, keys, instead of the


traditional, all-pervasive files. It is difficult to extend the semantics of keys across a network, because they may describe different objects on different machines: In short, they were designed for a single-machine environment. File names are more amenable to a distributed environment as will be seen in Chapter 13. Use of keys instead of file names also means that the IPC facilities are an entity unto themselves, useful for special-purpose applications, but lacking the tool-building capabilities inherent in pipes and files, for example. Much of their functionality can be duplicated using other system facilities, so, esthetically, they should not be in the kernel. However, they provide better performance for closely cooperating application packages than standard file system facilities (see the exercises).
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11,3 NETWORK COMMUNICATIONS


Programs such as mail, remote file transfer, and remote login that wish communicate with other machines have historically used ad hoc methods to establish connections and to exchange data. For example, standard mail program%


save the text of a user's mail messages in a particular file, such as "iusrimailimir for user "mjb". When a person sends mail to another user on the same machine.


the mail program appends the mail to the addressee's file, using lock files and temporary files to preserve consistency. When a person reads mail, the mail program opens the person's mail file and reads the messages. To send mail to a user on another machine, the mail program must ultimately find the appropriate mail file on the other machine. Since it cannot manipulate files there directly, a process on the other machine must act as an agent for the local mail process; hence the local process needs a way to communicate with its remote agent across machine boundaries. The local process is called the client of the remote server process.


Because the UNIX system creates new processes via the fork system call, the server process must exist before the client process attempts to establish a connection. It would be inconsistent with the design of the system if the remote kernel were to create a new process when a connection request comes across the network. Instead, some process, usually init, creates a server process that reads a communications channel until it receives a request for service and then follows some protocol to complete the setup of the connection. Client and server programs typically choose the network media and protocols according to information in application data bases, or the data may be hard-coded into the programs.


For example, the uucp program allows file transfer across a network and remote execution of commands (see [Nowitz 80]). A client process queries a data base for address and routing information (such as a telephone number), opens an auto-dialer device, writes or ioctls the information on the open file descriptor, and calls up the remote machine. The remote machine may have special lines dedicated for use by uucp; its process spawns getty processes — the servers — to monitor the lines and wait for connection notification. After the hardware connection is established, the client process logs in, following the usual login protocol: getty execs a special command interpreter, uucico, specified in the "ietc/passwd" file.


and the client process writes command sequences to the remote, machine, causing the remote machine to execute processes on behalf of the local machine.


Network communications have posed a problem for UNIX systems, because messages must frequently include data and control portions. The control portion may contain addressing information to specify the destination of a message.


Addressing information is structured according to the type of network and protocol being used. Hence, processes need to know what type of network they are talking to, going against the principle that users do not have to be aware of a file type, because all devices look like files. Traditional methods for implementing network communications consequently rely heavily on the ioctl system call to specify control information, but usage is not uniform across network types. This has the unfortunate side effect that programs designed for one network may not be able to
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work for other networks.


There has been considerable effort to improve network interfaces for UNIX


systems. The streams implementation in the latest releases of System V provides an elegant mechanism for network support, because protocol modules can be combined flexibly by pushing them onto open streams and their use is consistent at user level. The next section briefly describes sockets, the BSD solution to the problem.


11.4 SOCKETS


The previous section showed how processes on different machines can communicate, but the methods by which they establish communications are likely to differ, depending on protocols and media. Furthermore, the methods may not allow processes to communicate with other processes on the same machine, because they assume the existence of a server process that sleeps in a driver open or read system call. To provide common methods for interprocess communication and to allow use of sophisticated network protocols, the BSD system provides a mechanism known as sockets (see [Berkeley 83]). This section briefly describes some user-level aspects of sockets.


Client Process


Server Process


Socket Layer


Socket Layer


TCP


Protocol Layer


Ethernet


Device Layer


Driver


Network


Figure 11.18. Sockets Model
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The kernel structure consists of three parts: the socket layer, the protocol layer and the device layer (Figure 11.18). The socket layer provides the interf co


abetween the system calls and the lower layers, the protocol layer


ntains the


protocol modules used for communication (TCP and IP in the figure), and the device layer contains the device drivers that control the network devices. Legal combinations of protocols and drivers are specified when configuring the system, a method that is not as fiexible as pushing streams modules. Processes communicate using the client-server model: a server process listens to a socket, one end point of a two-way communications path, and client processes communicate to the server process over another socket, the other end point of the communications path, w hich may be on another machine. The kernel maintains internal connections and routes data from client to server.


Sockets that share common communications properties, such as naming


conventions and protocol address formats, are grouped into domains. The 4.2 BSD


system supports the "UNIX system domain" for processes communicating on one machine and the "Internet domain" for processes communicating across a network using the DARPA (Defense Advanced Research Project Agency) communications protocols (see [Postel 80) and [Postel 81]). Each socket has a type — a virtual circuit (stream socket in the Berkeley terminology) or datagram. A virtual circuit allows sequenced, reliable delivery of data. Datagrams do not guarantee sequenced, reliable, or unduplicated delivery, but they are less expensive than virtual circuits, because they do not require expensive setup operations; hence, they are useful for some types of communication. The system contains a default protocol for every Iegal domain-socket type combination. For example, the Transport Conneet Protocol (TCP) provides virtual circuit service and the User Datagram Protocol (UDP) provides datagram service in the Internet domain.


The socket mechanism contains several system calls. The socket system call establishes the end point of a communications link.


sd


socket(format, type, protocol);


Format specifies the communications domain (the UNIX system domain or the Internet domain), type indicates the type of communication over the socket (virtual circuit or datagram), and protocol indicates a particular protocol to control the communication. Processes use the socket descriptor sd in other system calls. The close system call closes sockets.


The bind system call associates a name with the socket descriptor: bind(sd, address, length);


Sd is the socket descriptor, and address points to a structure that specifies an identifier specific to the communications domain and protocol specified in the socket system eau. Length is the length of the address structure; without this parameter, the kernel would not know how long the address is because it can vary across domains and protocols. For example, an address in the UNIX system domain is a file name. Server processes bind addresses to sockets and "advertise" their names
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to identify themselves to client processes.


The connect system call requests that the kernel make a connection to an existing socket:


connect(sd, address, length);


The semantics of the parameters are the same as for bind, but address is the address of the target socket that will form the other end of the communications line. Both sockets must use the same communications domain and protocol, and the kernel arranges that the communications links are set up correctly. If the type of the socket is a datagram, the connect call informs the kernel of the address to be used on subsequent send calls over the socket; no connections are made at the time of the call.


When a server process arranges to accept connections over a virtual circuit, the kernel must queue incoming requests until it can service them. The listen system call specifies the maximum queue length:


listen(sd, qlength)


where sd is the socket descriptor and glength is the maximum number of outstanding requests.


Client Process


Server Process


accept addr


Figure 11.19. A Server Accepting a Call


The accept call receives incoming requests for a connection to a server process: nsd accept(sd, address, addrlen);


where sd is the socket descriptor, address points to a user data array that the kernel fills with the return address of the connecting client, and addrlen indicates the size of the user array. When accept returns, the kernel overwrites the contents of addrlen with a number that indicates the amount of space taken up by the address. Accept returns a new socket descriptor nsd, different from the socket descriptor sd. A server can continue listening to the advertised socket while communicating with a client process over a separate communications channel (Figure 11.19).
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The send and recv system calls transmit data over a connected socket: count send(sd, msg, length, flags);


where sd is the socket descriptor, msg is a pointer to the data being sent, length


its length, and count is the number of bytes actually sent. The flags parameter may be set to the value SOF 00B to send data "out-of-band," meaning that data being sent is not considered part of the regular sequence of data exchange between the communicating processes. A "remote login" program, for instance, may send an "out of band" message to simulate a user hitting the delete key at a terminal.


The syntax of the recv system calls is


count


recv(sd, buf, length, flags);


where buf is the data array for incoming data, length is the expected length, and count is the number of bytes copied to the user program. Flags can be set to


"peek" at an incoming message and examine its contents without removing it from the queue, or to receive "out of band" data. The datagram versions of these system calis, sendto and recyfrom, have additional parameters for addresses. Processes can use read and write system calls on stream sockets instead of send and recv after the connection is set up. Thus, servers can take care of network-specific protocol negotiation and spawn processes that use read and write calls only, as if they are using regular files.


The shutdown system call doses a socket connection:


shutdown(sd, mode)


where mode indicates whether the sending side, the receiving side, or both sides longer allow data transmission. It informs the underlying protocols to close down the network communications, but the socket descriptors are still intact. The close system call frees the socket descriptor.


The getsockname system call gets the name of a socket bound by a previous bind eau:


g etsockname(sd, name, length);


The getsockopt and setsockopt calls retrieve and set various options associated with the socket, according to the communications domain and protocol of the socket.


Consider the server program in Figure 11.20. The process creates a stream socket in the "UNIX system domain" and binds the name sockname to it. Then it invokes the listen system call to specify the internal queue length for incoming messages and enters a loop, waiting for incoming requests. The accept cal] sleeps until the underlying protocol notices that a connection request is directed toward the socket with the bound name; then, accept returns a new descriptor for the incoming request, The server process forks a process to communicate with the client process: parent and child processes close their respective descriptors so that they do not interfere with communications traffic of the other process. The child process carries on its conversation with the client process, terminating, in this
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#include <sys/types.h>


#include <sys/socket.h>


main()


int sd, ns;


char bun2561;


struct sockaddr sockaddr;


int fromlen;


sd socket(AFJJNIX, SOCK _STREAM, 0);


/* bind name — don't include null char in the name */


bind(sd, "socknarne TM, sizeof("sockname")


1);


listen(sd, 1);


for (;;)


ns accept(sd, &sockaddr, &fromlen);


if (fork() --


/* child */


close(sd);


read(ns, buf, sizeof(buf));


printf("server read '%sAn", buf);


exit();


close(ns);


Figure 11.20. A Server Process in the UNIX System Domain


example, after return from the read system call. The server process loops and waits for another connection request in the accept call.


Figure 11.21 shows the client process that corresponds to the server process.


The client creates a socket in the same domain as the server and issues a connect request for the name sockname, bound to some socket by a server process. When the connect returns, the client process has a virtual circuit to a server process. In this example, it writes a single message and exits.


If the server process were to serve processes on a network, its system calls may specify that the socket is in the "Internet domain" by


socket(AF INET, SOCK STREAM, 0);
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#include <sysitypes.h>


#include <sys/socket.h>


main°


int sd, ns;


char bu11256];


struct sockaddr sockaddr;


int fromlen;


sd ocket(AF_UNIX, SOCK STREAM, 0);


/* connect to name — null char is not part of name *I


if (connect(sd, "sockname", sizeof("sockname") — 1)


—1)


exit();


write(sd, "hi guy", 6);


Figure 11.21. A Client Process in the UNIX System Domain


and bind a network address obtained from a name server. The BSD system has library calls that do these functions. Similarly, the second parameter to the client's connect would contain the addressing information needed to identify the machine on the network (or routing addresses to send messages to the destination machine via intermediate machines) and additional information to identify the particular socket on the destination machine. If the server wanted to listen to network and local processes, it would use two sockets and the select call to determine which client is making a connection.


11.5 SUMMARY


This chapter has presented several forms of interprocess communication. It considered process tracing, where two processes cooperate to provide a useful facility for program debugging. However, process tracing via ptrace is expensive and primitive, because a limited amount of data can be transferred during each call, many context switches occur, communication is restricted to parent-child processes, and processes must agree to be traced before execution. UNIX System V provides an 1PC package that includes messages, semaphores, and shared memory. Unfortunately, they are special purpose, do not mesh well with other operating system primitives, and are not extensible over a network. However, they are useful to many applications and afford better performance compared to other schemes.
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UNIX systems support a wide variety of networks. Traditional methods for i mplementing protocol negotiation rely heavily on the ioct/ system call but their usage is not uniform across network types. The BSD system bas introduced the socket system calls to provide a more genera' framework for network


communications. In the future, System V will use the streams mechanism described in Chapter 10 to handle network configurations uniformly.


11.6 EXERCISES


1.


What happens if the walt can is omitted by debug (Figure 113)? (Hint: There are two possibilities.)


2.


A debugger using ptrace reads one word of data from a traced process per call. What modifications should be made in the kernel to read many words with one call? What modifications would be necessary for ptrace?


3.


Extend the ptrace call such that pid need not be the child process of the caller.


Consider the security issues: Under what circumstances should a process be allowed to read the address space of another, arbitrary process? Under what circumstances should it be able to write the address space of another process?


4.


I mplement the set of message system calls as a user-level library, using regular files, named pipes, and locking primitives. When creating a message queue, create a control file that records status of the queue; the file should be protected with file locks or other convenient mechanisms. When sending a message of a given type, ereate a named pipe for all messages of that type if such a file does not already exist, and write the data (with a prepended byte count) to the named pipe. The control file should correlate the type number with the name of the named pipe. When reading messages, the control file directs the process to the correct named pipe. Compare this seheme to the implementation described in the chapter for performance, code complexity, functionality.


5.


What is the program in Figure 11.22 trying to do?


* 6. Write a program that attaches shared memory too close to the end of its stack, and let the stack grow into the shared memory region. When does it incur a memory fault?


7.


Rewrite the program in Figure 11.14 and use the IPC NOWA1T flag, so that the semaphore operations are conditional. Demonstrate how this avoids deadlocks.


8.


Show how Dijkstra's P and V semaphore operations could be implemented with named pipes. How would you implement a conditional P operation?


9.


Write programs that lock resources, using (a) named pipes, (b) the creat and unlink system calls, and (c) the message system calls. Compare their performance.


10. Write programs to compare the performance of the message system calls to read and write on named pipes.


11. Write programs to compare the data-transfer speed using shared memory and messages. The programs for shared memory should include semaphores to synchronize completion of reads and writes.
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#include


<sysitypes.h>


#include


<sysiipc.h>


#include


<sys/msg.h>


#define ALLTYPES 0


main()


(


struct msgform


{


long mtype;


char mtext[1024];


/ msg;


register unsigned int id;


for (id -. 0; ; id++)


while (msgrev(id, &msg, 1024, ALLTYPES, 1PC_NOWAIT) > 0)


;


i


Figure 11.22. An Eavesdropping Program
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SYSTEMS


The classic design of the UNIX system assumes the use of a uniprocessor architecture, consisting of one CPU, memory, and peripherals. A multiprocessor architecture contains two or more CPUs that share common memory and


peripherals (Figure 12.1), potentially providing greater system throughput, because processes can run concurrently on different processors. Each CPU executes independently, but all of them execute one copy of the kernel. Processes behave exactly as they would on a uniprocessor system — the semantics of each system call remain the same — but they can migrate between processors transparently.


Unfortunately, a process does not consume less CPU time. Some multiprocessor systems are called attached processor systems, because the peripherals may not be accessible to all processors. This chapter will not distinguish between attached processor systems and general multiprocessor systems, unless explicitly stated.


Allowing several processors to execute simultaneously in kernel mode on behalf of different processes causes integrity problems unless protection mechanisms are used. This chapter explains why the original design of the UNIX system cannot run unchanged on multiprocessor systems and considers two designs for running on a multiprocessor.
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Processor


ory


Peripherals


Figure 12.1. Multiprocessor Configuration


12.1 PROBLEM OF MULTIPROCESSOR SYSTEMS


Recall from Chapter 2 that the design of the UNIX system protects the integrity of kernel data structures by two policies: The kernel cannot preempt a process and switch context to another process while executing in kernel mode, and it masks out interrupts when executing a critical region of code if an interrupt handler could corrupt kernel data structures. On a multiprocessor, however, if two or more processes execute simultaneously in the kernel on separate processors, the kernel could become corrupt in spite of the protective measures that suffice for uniprocessor systems.


struct queue {


*bp, *bpl;


bp > forp — bp— > forp;


b 1 — >backp bp;


bp—> forp bpi;


/* consider possible context switch here */


bp 1 — > forp — > backp• bp 1 ;


Figure 12.2. Placing a Buffer on a Doubly Linked List


For example, reconsider the fragment of code from Chapter 2 (Figure 121) that places a data structure (pointer bpi) after an existing structure (pointer bp).


Suppose two processes execute the code simultaneously on different processors, such that processor A wants to place structure bpA after bp and processor B wants to place structure bpB after bp. No assumptions can be made about the relative processor execution speed: the worst case is possible, where processor B could execute the four C statements before processor A can execute another statement.
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For example, handling an interrupt can delay execution of a code sequence on processor A. Corruption could occur as was illustrated in Chapter 2, even though interrupts were blocked.


The kernel must make sure that such corruption can never occur, lf it were to leave a window open in which a corrupt situation could arise, no matter how rare, the kernel- would be unsafe and its behavior unpredictable. There are three methods for preventing such corruption (see [Holley 791):


1.


Execute all critical activity on one processor, relying on standard uniprocessor methods for preventing corruption;


2.


Serialize access to critical regions of code with locking primitives; 3.


Redesign algorithms to avoid contention for data structures.


This chapter describes the first two methods to protect the kernel from corruption, and an exercise explores the third.


12.2 SOLUTION WITH MASTER AND SLAVE PROCESSORS


Goble implemented a system on a pair of modified VAX 11/780 machines where one processor, called the master, can execute in kernel mode and the other processor, called the slave, executes only in user mode (see [Goble 811). Although Goble's implementation contained two machines, the technique extends to systems with one master and several slaves. The master processor is responsible for handling all system calls and interrupts. , Slave processors execute processes in user mode and inform the master processor when a process makes a system call.


The scheduler algorithm decides which processor should execute a process (Figure 12.3). A new field in the process table designates the processor ID that a process must run on; for simplicity, assume it indicates either master or slave.


When a process on a slave processor executes a system call, the slave kernel sets the processor 1D field in the process table, indicating that the process should run only on the master processor, and does a context switch to schedule other processes (Figure 12.4). The master kernel schedules the process of highest priority that must run on the master processor and executes it. When it finishes the system call, it sets the processor ID field of the process to slave, allowing the process to run on slave processors again.


If processes must run on the master processor, it is preferable that the master processor run them right away and not keep them waiting. This is similar to the rationale for allowing process preemption on a uniprocessor system when returning from a system eau, so that more urgent processing gets done sooner. 1f the master processor were executing a process in user mode when a slave processor requested service for a system eau, the master process would continue executing until the next context switch according to this scheme. The master processor could respond more quickly if the slave processor set a glabal flag that the master processor checked in the clock interrupt handler; the master processor would do a context switch in at most one doek tick. Alternatively, the slave processor could interrupt the master
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algorithm schedule ocess(modified)


input: none


output: none


while (no process picked to execute)


if (running on master processor)


for (every process on run queue)


pick highest priority process


that is loaded in memory;


else


/* running on a slave processor */


for (every process on run queue that need not run on master)


pick highest priority process that is loaded in memory;


if (no process eligible to execute)


idle the machine;


/* interrupt takes machine out of idle state */


remove chosen process from run queue;


switch context to that of chosen process, resume its execution;


Figure 12.3. Scheduler Algorithm


algorithm syscall


/* revised algorithm for invocation of system call */


input: system call number


output: result of system call


if (executing on slave processor)


set processor ID field in process table entry;


do context switch;


do regular algorithm for system call here;


reset processor ID field to "any" (slave);


if (other processes must run on master processor)


do context switch;


Figure 12.4. Algorithm for System Call Handler
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processor and force it to do a context switch immediately, but this assumes special hardware capability.


The clock interrupt handler on a slave processor makes sure that processes are periodically rescheduled so that no one process monopolizes the processor. Aside from that, the clock handler "wakes up" a slave processor from an idle state once a second." The slave processor schedules the highest priority process that need not run on the master processor.


The only chance for corruption of kernel data structures comes in the scheduler algorithm, because it does not protect against having a process selected for execution on two processors. For instance, if a configuration consists of a master processor and two slaves, it is possible that the two slave processors find one process in user mode ready for execution. If both processors were to sehedule the process si multaneously, they would read, write and corrupt its address space.


The system can avoid this problem in two ways. First, the master can specify the slave processor on which the process should execute, permitting more than one process to be assigned to a processor. Issues of bad balancing then arise: One processor may have lots of processes assigned to it, whereas others are idle. The master kernel would have to distribute the process bad between the processors.


Second, the kernel can allow only one processor to exeeute the scheduling loop at a time, using mechanisms such as semaphores, described in the next section.


12.3 SOLUTION WITH SEMAPHORES


Another method for supporting UNIX systems on multiprocessor configurations is to partition the kernel into critical regions such that at most one processor can execute code in a critical region at a time. Such multiprocessor systems were designed for use on the AT&T 3B20A computer and IBM 370, using semaphores to partition the kernel into critical regions (see [Bach 84]). The de,scription here will follow those implementations. There are two issues: How to implement semaphores and where to define critical regions.


As pointed out in Chapter 2, various algorithms in uniprocessor UNIX systems use a sleep-lock to keep other processes out of a critical region in case the first process later goes to sleep inside the critica! region. The mechanism for setting the lock is


white (lock is set)


/* test operation *1


sleep(condition until lock is free);


set lock;


and the mechanism for unlocking the lock is


free lock;


wake up all processes sleeping on condition lock set;


Sleep-locks delineate some critical regions, but they do not work en multiprocessor systems, as illustrated in Figure 12.5. Suppose a lock is free and two processes on
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Process A/Processor A


Process B/Processor B


Lock NOT Set


Use resource


Use resource


Time


Danger of Corruption!


Figure 123. Race Conditions in Sleep-Locks on Multiprocessors two processors simultaneously attempt to test and set it. They find that the lock is free at time t, set it, enter the critical region, and may corrupt kernel data structures. There is leeway in the requirement for simultaneity: the sleep-lock fails if neither process executes the lock operation before the other process executes the test operation. For example, if processor A handles an interrupt after finding that the lock is free and, while handling the interrupt, processor B checks the lock and sets it, processor A will return from the interrupt and set the lock. To prevent this situation, the locking primitive must be atomic: The actions of testing the status of the lock and setting the lock must be done as a single, indivisible operation, such that only one process can manipulate the lock at a time.


12.3.1 Definition of Semaphores


A semaphore is an integer valued object manipulated by the kernel that has the following atomic operations defined for it:


• Initialization of the semaphore to a nonnegative value;


• A P operation that decrements the value of the semaphore. If the value of the semaphore is less than 0 after decrementing its value, the process that did the P


goes to sleep;


• A V operation that increments the value of the semaphore. If the value of the semaphore becomes greater than or equal to 0 as a result, one process that had been sleeping as the result of a P operation wakes up;
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• A conditional P operation, abbreviated CP, that decrements the value of the semaphore and returns an indication of truc, if its value is greater than 0. 1f the value of the semaphore is less than or equal to 0, the value of the semaphore is unchanged and the return value is false.


The semaphores defined here are, of course, independent from the user-level semaphores described in Chapter 11.


12.3.2 Implementation of Semaphores


Dijkstra [Dijkstra 65] shows that it is possible to implement semaphores without special machine instructions. Figure 12.6 presents C functions to implement semaphores. The function Pprim locks the semaphore by checking the values of the array val; each processor in the system controls one entry in the array. When a processor locks a semaphore, it checks to see if other processors already locked the semaphore (their entry in val would be 2), or if processors with a lower ID are currently trying to lock it (their entry in val would be 1). 1f either condition is truc, the processor resets its entry in val to 1 and tries again. Pprim starts the outer loop with the loop variable equal to the processor 1D one greater than the one that most recently used the resource, insuring that no one processor can monopolize the resource (refer to [Dijkstra 651 or [Coffman 73] for a proof). The function Vprim frees the semaphore and allows other processors to gain exclusive access to the resource by clearing the entry of the executing processor in val and resetting lastid. The following code sequence would protect a resource.


Pprim(semaphore);


use resource here;


Vprim(semaphore);


Most machines have a set of indivisible instructions that do the equivalent locking operation more cheaply, because the loops in Pprim are slow and would drain performance. For instance, the IBM 370 series supports an atomic compare and swap instruction, and the AT&T 3820 computer supports an atomic read and clear instruction. When executing the read and clear instruction, for example, the machine reads the value of a memory location, clears its value (sets it to 0), and sets the condition code according to whether or not the original value was zero. If another processor uses the read and clear instruction simultaneously on the same memory locatfon, one processor is guaranteed to read the original value and the other process reads the value 0: The hardware insures atomicity. Thus, the function Pprirn can be implemented more simply with the read and clear instruction (Figure 12.7). A process loops using the read and clear instruction, until it reads a nonzero value. The semaphore lock component must be initialized to 1.


This semaphore primitive cannot be used in the kernel as is, because a process executing it keeps on looping until it succeeds: If the semaphore is being used to
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struct semaphore


int val[NUMPROCS);


/* lock---1 entry for each processor *1


int lastid;


/* ID of last processor to get semaphore */


int procid;


/* processor ID, unique per processor */


int lastid;


/* ID of last proc to get the semaphore 'V


INIT(semaphore)


struct semaphore semaphore;


int i;


for (1 — 0; < NUMPROCS; i++)


semaphore.valiil 0;


Pprim(semaphore)


struct semaphore semaphore;


int i, first;


loop:


first a... lastid;


semaphore.val[procidi


I;


/* continued next page */


Figure 12.6. Implementation of Semaphore Locking in C


lock a data structure, a process should sleep if it finds the semaphore locked, so that the kernel can switch context to another process and do useful work. Given Pprim and Vprim, it is possible to construct a more sophisticated set of kernel semaphore operations, P and V, that conform to the definitions in Section 12.3.1.


First, let us define a semaphore to be a structure that consists of a lock field to control access to the semaphore, the value of the semaphore, and a queue ot processes sleeping on the semaphore. The lock field controls access to the semaphore, allowing only one process to manipulate the other fields of the structure during P and V operations. It is reset when the P or V operation completes. The value field determines whether a process should have access to the critical region protected by the semaphore. At the beginning of the P algorithm (Figure 12.8).


the kernel does a Pprim operation to ensure exclusive access to the semaphore and then decrements the semaphore value. If the semaphore value is nonnegative, the executing process has access to the critical region: It resets the semaphore lock with the Vprirn operation so that other processes can access the semaphore and returns an indication of success. If, as a result of decrementing its value, the semaphore value is negative, the kernel puts the process to sleep, following
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forloop:


for (i — first; i < NUMPROCS; i++)


if (i


procid)


semaphore.val[i]


2;


for (i is. 1; i < NUMPROCS; i++)


if (i


procid && semaphore.val[i]


2)


goto loop;


lastid


procid;


return;


/* success! now use resource */


else if (semaphore.valtil)


goto loop;


1


first


1;


goto forloop;


Vprim (semaphore)


struct semaphore semaphore;


lastid (procid+1) % NUMPROCS;


/* reset to next processor *1


semaphore.val[procid]


Figure 12.6. Implementation of Semaphore Locking (continued)


semantics similar to those of the regular sleep algorithm (Chapter 6): It checks for signals according to the priority value, enqueues the executing process on a first-in-first-out list of sleeping processes, and does a context switch. The V function (Figure 12.9) gains exclusive access to the semaphore via the Pprim primitive and increments the semaphore value. If any processes were on the semaphore sleep queue, the kernel removes the first one and changes its state to "ready to run."


The P and V functions are similar to the sleep and wakeup functions: The major difference in implementation is that a semaphore is a data structure, whereas the address used for sleep and wakeup is just a convenient number. A process will always sleep when doing a P operation on a semaphore if the initial value of the semaphore is 0, so P can replace the sleep function. However, the V operation wakes up only one process, whereas the uniprocessor wakeup function wakes up all processes asleep on an event address.


Semantically, use of the wakeup function indicates that a given system condition is no langer truc, hence all processes that were asleep on the condition must wake up. For example, when a buffer is no longer in use, it is incorrect for processes to sleep on the event the buffer is busy, so the kernel awakens all processes that were
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struct semaphore


int lock;


1;


Init (semaphore)


struct semaphore semaphore;


semaphore.lock


I;


Pprim(semaphore)


struct semaphore semaphore;


while (read_and clear(semaphore.lock))


Vprim(semaphore)


struct semaphore semaphore;


semaphore.lock


I;


Figure 12.7. Semaphore Operations Using Read and Clear Instruction asleep on the event. As a second example, if multiple processes write data to a terminal, the terminal driver may put them to sleep because it cannot handle the high volume of data. Later, when the driver decides it can accept more data for output, it wakes up all processes that were asleep, waiting to output data. Use of the P and V operations is more applicable for locking operations where processes gain access to a resource one by one and other processes are granted access in the order they requested the resource. This is usually more efficient than the uniprocessor sleep-lock, because if all processes wake up on occurrence of an event, most may find the lock still set and return to sleep immediately. On the other hand, it is more difficult to use P and V for cases where all processes should be awakened at once.


Given a primitive that returns the value of a semaphore, would the following operation be the equivalent of the wakeup function?


while (value(semaphore) < 0)


V (semaphore);


Assuming no interference from other processors, the kernel executes the loop until the value of the semaphore is greater than or equal to 0, meaning that no processes are asleep on the semaphore. However, it is possible for process A on processor A
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algorithm P


/* P semaphore operation


input: (I) semaphore


(2) priority


output: 0 for normal return


—1 for abnormal wakeup due to signals catching in kernel


long jumps for signals not catching in kernel


Pprim(semaphore.lock);


decrement (semaphoresalue);


if (semaphoresalue >


Vprim (semaphore.lock);


return (0);


/* must go to sleep */


if (checking signals)


if (there is a signal that interrupts sleep)


increment (semaphore.va I ue);


if (catching signa' in kernel)


Vprim(semaphorelock);


return(-1);


else


Vprim(semaphore.lock);


longjmp;


1


enqueue process at end of sleep list of sernaphore;


Vprim(semaphore.lock);


do context switch;


check signals, as above;


return (0);


Figure 12.8. Algorithm for Implementation of P


to test the semaphore and find its value equal to 0 and for process B on processor B


to do a P, decrementing the value of the semaphore to — 1 (Figure 12.10) just after the test on A. Process A would continue executing, assuming that it had awakened every sleeping process on the semaphore. Hence, the loop does not insure that every sleeping process wakes up, because it is not atomic.
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algorithm V


I* V semaphore operation '1


input: address of semaphore


output: none


Pprim (semaphore.lock);


increment (semaphore.value);


if (semaphore.value


0)


remove first process from semaphore sleep list;


make it ready to run (wake it up);


Vprim (semaphore.lock);


Figure 12.9. Algorithm for Implementation of V


Consider another phenomenon in the use of semaphores on a uniprocessor system. Suppose two processes, A and B, contend for a semaphore: Process A finds the semaphore free and process B sleeps; the value of the semaphore is —1.


When process A releases the semaphore with a V, it wakes up process B and increments the semaphore value to 0. Now suppose process A, still executing in kernel mode, tries to lock the semaphore again: It will sleep in the P function, because the value of the semaphore is 0, even though the resource is still free! The system will incur the expense of an extra context switch. On the other hand, if the lock were implemented by a sleep-lock, process A would gain immediate reuse of the resource, because no other process could lock it in the meantime. In this case, the sleep-lock would be more efficient than a semaphore.


When locking several semaphores, the locking order must be consistent to avoid deadlock. For instance, consider two semaphores, A and B, and consider two kernel algorithms that must have both semaphores simultaneously locked. If the two algorithms were to lock the semaphores in reverse order, a deadlock could arise, as shown in Figure 12.11; process A on processor A locks semaphore SA while process B on processor B locks semaphore SB. Process A attempts to lock semaphore SB, but the P operation causes process A to go to sleep, since the value of SB is at most 0. Similarly, process B attempts to lock semaphore SA, but its P puts process B to sleep. Neither process can proceed.


Deadlocks can be avoided by implementing deadlock detection algorithms that determine if a deadlock exists and, if so, break the deadlock condition. However, implementation of deadlock detection algorithms would complicate the kernel code.


Since there are only a finite number of places in the kernel where a process must simultaneously lock several semaphores, it is easier to implement the kernel algorithms to avoid deadlock conditions before they occur. For instance, if particular sets of semaphores were always locked in the same order, the deadlock condition could never arise. But if it is impossible to avoid locking semaphores in
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Process A/Processor A


Process B/Processor 13


Semaphore value


test (value(semaphore) < 0) ?


(yes)


V (semaphore)


FVemaphore value .• 0 1


test (value(semaphore) < 0) ?


P(semaphore)


Semaphore value


(no)


WRONG!!


Time


Figure 12.10. Failed Simulation of Wakeup with V


reversed order, the CP operation prevents the deadlock, as shown in Figure 12.12: 1f the CP fails, process B releases its resources to avoid the deadlock and reenters the algorithm at a later time, presumably when process A completes use of the resource.


An interrupt handler may have to lock a semaphore to prevent processes from using a resource simultaneously, but it cannot go to sleep, as explained in Chapter 6, and therefore cannot use a P operation. Instead, it can execute a spin lock to avoid going to sleep as in the following:


while (! CP(semaphore))


The operation loops as long as the semaphore value is less than or equal to 0; the handler does not sleep, and the loop terminates only when the semaphore value becomes positive, at which time CP decrements the semaphore value.


To avoid a deadlock, the kernel must block out interrupts that execute a spin lock. Otherwise, a process could lock a semaphore and be interrupted before it unlocks the semaphore; if the interrupt handler attempts to lock the same semaphore using a spin lock, the kernel deadlocks itself. In Figure 12.13, for
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Process A/Processor A


Process B/Processor B


P(semaphore SA);


P(semapiiore SB);


P(semaphore SA);


sleeps


P(semaphore SB);


sleeps


Time


Deadlock !!


Figure 12.11. Deadlock because of Reversed Order of Locking


example, the value of the semaphore is at most 0 when the interrupt occurs, so the CP in the interrupt handler will always be false. The situation is avoided by blocking out interrupts while the process has the semaphore locked.


12.3.3 Some Algorithms


This section reviews four kernel algorithms as implemented with semaphores. The buffer allocation algorithm illustrates a complicated locking scenario, the wait algorithm illustrates process synchronization, a driver-locking scheme illustrates an elegant approach for locking device drivers, and finally, the method for processor idling shows how an algorithm was changed to avoid contention.


12.3.3.1 Buffer Allocation


Recall the algorithm getblic for buffer allocation in Chapter 3. The three major data structures for buffer allocation are the buffer header, the hash queue of buffers, and the free list of buffers. The kernel associates a semaphore with each instance of every data structure. In other words, if the kernel contains 200 buffers, each buffer header contains a semaphore for locking the buffer; when a process does a P on the buffer header semaphore, other processes that do a P sleep until the first process does a V. Each hash queue of buffers also has a semaphore that locks access to the hash queue. The uniprocessor system did not require a lock for the
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Process A/Processor A


Process B/Processor B


P(semaphore SA);


P(semapliore SB);


if ( CP(sem'aphore SA))


V(semaphore SB);


reenter algorithm


P (semaphore SB);


sleeps


Time


Figure 12.12. Use of Conditional P to Avoid Deadlock


hash queue, because a process would never go to sleep and leave the hash queue in an inconsistent state. In a multiprocessor system, however, two processes could manipulate the linked list of the hash queue; the semaphore for the hash queue permits only one process at a time to manipulate the linked list. Similarly, the free list requires a semaphore because several processes could otherwise corrupt it.


Figure 12.14 depicts the first part of the getblk algorithm as implemented with semaphores on a multiprocessor system (recall Figure 3.4). To search the buffer cache for a given block, the kernel locks the hash queue semaphore with a P


operation. If another process had already done a P operation on the semaphore, the executing process sleeps until the original process does a V. When it gains exclusive control of the hash queue, it searches for the appropriate buffer. Assume that the buffer is on the hash queue. The kernel (process A) attempts to lock the buffer, bul if it were to use a P operation and if the buffer was already locked, it would sleep with the hash queue locked, preventing other processes from accessing the hash queue, even though they were searching for other buffers. Instead, process A attempts to lock the buffer using the CP operation; if the CP succeeds, it can use the buffer. Process A locks the free list semaphore using CP in a spin loop, because the expected time the lock is held is short, and hence, it does not pay to sleep with a P operation. The kernel then removes the buffer from the free list, unlocks the free list, unlocks the hash queue, and returns the locked buffer.
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P(semaphore);


(Semaphore value now 0)


Interrupt


CP(semaphore) fails---


semaphore locked.


Semaphore not unlocked until return from interrupt.


Cannot return from interrupt, without servicing it.


Deadlocked


Ti


Figure 12.13. Deadlock in Interrupt Handler


Suppose the CP operation on the buffer fails because another process had locked the buffer semaphore. Process A releases the hash queue semaphore and then sleeps on the buffer semaphore with a P operation. The P operates on the semaphore that just caused the CF to fail! It does not matter whether process A sleeps on the semaphore: After completion of the P operation, process A controls the buffer. Because the rest of the algorithm assumes that the buffer and the hash queue are locked, process A now attempts to lock the hash queue) Because the locking order here (buffer semaphore, then hash queue semaphore) is the opposite of the locking order explained above (hash queue semaphore, then buffer semaphore), the CF semaphore operation is used. The obvious processing happens if the lock fails. But if the lock succeeds, the kernel cannot be sure that it has the correct buffer, because another process may have found the buffer on the free list and changed the contents to those of another block before relinquishing control of the buffer semaphore. Process A, waiting for the semaphore to become free, had no idea that the buffer it was waiting for was no longer the one in which it was interested and must therefore check that the buffer is still valid; if not, it restarts the algorithm. If the buffer contains valid data, process A completes the algorithm.


1. The algorithm could avoid locking the hash queue here by setting a flag and testing it before the V


later on, but this method illustrates the technique for locking semaphores in reversed order.
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algorithm getblk


/* multiprocessor version */


input: file system number


block number


output: locked buffer that can now be used for block


while (buffer not found)


P(hash queue semaphore);


if (block in hash queue)


if (CP(buffer sernaphore) fails)


/* buffer busy */


V(hash queue semaphore);


P(buffer semaphore);


/* sleep until free */


if (CP(hash queue semaphore) fails)


V(buffer sernaphore);


continue;


/* to while loop */


else if (dev or block num ehanged)


V(buffer sernaphore);


V(hash queue semaphore);


while (CP(free list semaphore) fails)


/* spin loop 'V


mark buffer busy;


remove buffer from free list;


V(free list semaphore);


V(hash queue semaphore);


return buffer;


else


1* buffer not in hash queue */


I* remainder of algorithm continues here */


Figure 12.14. Buffer Allocation with Semaphores





408


MULTIPROCESSOR SYSTEMS


multiprocessor algorithm wait


for (;;)


/* loop */


search all child processes:


if (status of child is zombie)


return;


P(zombiesemaphore);


/* initialized to 0 */


Figure 12.15. Multiprocessor Algorithm for Wait/Exit


The remainder of the algorithm is left as an exercise.


12.3.3.2 Wait


Recall from Chapter 7 that a process sleeps in the wait system call until a child exits. The problem on a multiprocessor system is to make sure that a parent does not miss a zombie child as it executes the wait algorithm; for example, if a child exits on one processor as the parent executes wait on another processor, the parent must not sleep waiting for a second child to exit. Each process table entry contains a semaphore zombie semaphore, initialized to 0, where a process sleeps in wait until a child exits (Figure 12.15). When a process exits, it does a V on the parent semaphore, awakening the parent if it was sleeping in wait. If the child process exits before the parent executes wait, the parent finds the child in the zombie state and returns. If the two processes execute exit and wait simultaneously but the child exits after the parent already checked its status, the child V will prevent the parent from sleeping. At worst, the parent will make an extra iteration through the loop.


12.3.3.3 Drivers


The multiprocessor i mplementation for the AT&T 3B20A computer avoided inserting semaphores into driver code by doing P and V operations at the driver entry points (see [Bach 84]). Recall from Chapter 10 that the interface to device drivers is well defined with only a few entry points (about 20, in practice). Drivers are protected by bracketing the entry points, as in;


P(driver _semaphore);


open (driver) ;


V (driver_semaphore);
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By using the same semaphore for all entry points to a driver and using different semaphores for each driver, at most one process can execute critical code in the driver at a time. The semaphores can be configured per device unit or for classes of devices. For example, a semaphore may be associated with each physical terminal, or one semaphore may be associated with all terminals. The former case is potentially faster, because processes accessing one terminal do not lock the semaphore for other terminals, as in the latter case. However, some device drivers interact internally with other device drivers; in such cases, specifying one semaphore for a class of devices is easier to understand. Alternatively, the 3B20A i mplementation allows particular devices to be configured such that the driver code runs on specified processors.


Problems could occur when a device interrupts the system when its semaphore is locked: the interrupt handler cannot be invoked, because otherwise there would be danger of corruption. On the other hand, the kernel must make sure that it does not lose an interrupt. The 3B20A queues interrupts until the semaphore is unlocked and it is safe to execute the interrupt handler, and it calls the interrupt handler from the code that unlocks drivers, if necessary.


12.3.3.4 Dummy Processes


When the kernel does a context switch on a uniprocessor, it executes in the context of the process relinquishing control, as explained in Chapter 6. If no processes are ready to run, the kernel idles in the context of the process that last ran. When interrupted by the doek or by other peripherals, it handles the interrupt in the context of the process it had been idling in.


In a multiprocessor system, the kernel cannot idle in the context of the process executed most recently on the processor. For if a process goes to sleep on processor A, consider what happens when the process wakes up: It is ready to run, but it does not execute immediately even though its context is already available on processor A. If processor B now chooses the process for execution, it would do a context switch and resume execution. When processor A emerges from its idle loop as the result of another interrupt, it executes in the context of process A again until it switches context. Thus, for a short period of time, the two processors could be writing the identical address space, particularly, the kernel stack.


The solution to this problem is to create a dummy process per processor; when a processor has no work to do, the kernel does a context switch to the dummy process and the processor idles in the context of its dummy process. The dummy process consists of a kernel stack oniy; it cannot be scheduled. Since only one processor can idle in its dummy process, processors cannot corrupt each other.
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12.4 THE TUNIS SYSTEM


The Tunis system has a user interface that is compatible to that of the U jx system, but its nucleus, written in the language Concurrent Euclid, consists of kernel processes that control each part of the system. The Tunis system solves the mutual exclusion problem because only one instance of a kernel process can run at a time, and because kernel processes do not manipulate the data structures of other processes. Kernel processes are activated by queuing messages for input, and Concurrent Euclid implements monitors to prevent corruption of the queues. A monitor is a procedure that enforces mutual exclusion by allowing only one process at a time to execute the body of the procedure. They differ from semaphores because they force modularity (the P and V are at the entry and exit points of the monitor routine) and because the compiler generates the synchronization primitives.


Holt notes that such systems are easier to construct using a language that supports the notion of concurrency and monitors (see page 190 of [Holt 831). However, the internal structure of the Tunis system differs radically from traditional implementations of the UNIX system.


12.5 PERFORMANCE LIMITATIONS


This chapter has presented two methods that have been used to implement multiprocessor UNIX systems: the master-slave configuration, where only one processor can execute in kernel mode, and a semaphore method that allows all processors to execute in kernel mode simultaneously. The implementations of multiprocessor UNIX systems described in this chapter generalize to any number of processors, but system throughput will not increase at a linear rate with the number of processors. First, there is degradation because of increased memory contention in the hardware, meaning that memory accesses takes longer. Second, in the semaphore scheme, there is increased contention for semaphores; processes find semaphores locked more frequently, more processes queue waiting for semaphores to become free, and therefore processes have to wait a longer period of ti me to gain access to the semaphore. Similarly, in the master-slave scheme, the master processor becomes a system bottleneck as the number of processors in the system grows, because it is the only processor that can execute kernel code.


Although careful hardware design can reduce contention and provide nearly linear increase in system throughput with additional processors for some loads (see [Beck 85), for example), all multiprocessor systems built with current technology reach a limit beyond which the addition of more processors does not increase system throughput.


12.6 EXERCISES


1. Implement a solution to the multiprocessor problem such that any processor in a multiprocessor configuration can execute the kernel but only one processor can do so at
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a time. This differs from the first solution discussed in the text, where one processor is designated the master to handle all kernel services. How could such a system rnake sure that only one processor is in the kernel? What is a reasonable strategy for handling interrupts and still make sure that only one processor is in the kernel?


2.


Use the shared memory system calls to test the C code for implementation of semaphores, shown in Figure 12.6. Several independent processes should execute P-V


sequences on a semaphore. How would you demonstrate a bug in the code?


3.


Design an algorithm for CP (conditional P) along the lines of the algorithm for P.


4.


Explain why the algorithms for P and V in Figure 12.8 and 12.9 must block interrupts.


At what points should they be blocked?


5.


1f a semaphore is used in a spin-lock, as in


while CP(semaphore));


why can the kernel never use an unconditional P operation on it? (Hint: If a process sleeps on the P operation, what happens in the spin-lock?)


6.


Refer to the algorithm getblk in Chapter 3 and describe a multiprocessor implementation for the case that the block is not in the buffer cache.


* 7.


In the buffer allocation algorithrn, suppose there is too much contention for the buffer free list semaphore. Implement a scheme to cut down the contention by partitioning the free list into two free lists.


* 8.


Suppose a terminal driver bas a semaphore, initialized to 0, where processes sleep if they fiood the terminal with output. When the terminal can accept more data, it wakes up every process sleeping on the semaphore. Design a scheme to wake up all processes using P and V. Define other fiags and driver locking semaphores, as necessary. If the wakeup results from an interrupt and a processor cannot block interrupts on other processors, how safe can the scheme be?


* 9.


When protecting driver entry points with semaphores, provision must be made to release the semaphore when a process sleeps in the driver. Describe an implementation. Similarly, how should the driver handle interrupts that occur when the driver semaphore is locked?


10. Recall the system calls in Chapter 8 for setting and accessing system time. A system cannot assurne identical doek rates for different multiprocessors. How should the time system calls work?
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The previous chapter examined tightly coupled multiprocessor systems that share common memory and kernel data structures and schedule processes from a common pool. However, it is frequently desirable to pool computers to allow resource sharing such that each computer retains autonomy over its environment. For example, a user of a personal computer wants to access files that are stored on a larger machine but wants to retain control of the personal computer. Although several programs such as uucp allow file transfer and other applications across a network, their use is not transparent because the user is aware of the network.


Furthermore, programs such as text editors do not work on remote files as they do for local files. Users would like to do the normal set of UNIX system calls and, except for a possible degradation in performance, not be aware that they cross a machine boundary. Specifically, system calls such as open and read should work for files on remote machines just as they do for files on local systems.


Figure 13.1 shows the architecture of a distributed system. Each computer, shown in a circle, is an autonomous unit, consisting of a CPU, memory and peripherals. A computer can fit the model even though it does not have local file storage: It must have peripherals to communicate with other machines, but all its regular files can be on another machine. Most critically, the physical memory available to each machine is independent of activity on other machines. This feature distinguishes distributed systems from the tightly coupled multiprocessor systems described in the last chapter. Consequently, the kernels on each machine 412





13.0


DISTRIBUTED UNIX SYSTEMS


413


Figure 13.1. Model of Distributed Architectures


are independent, subject to the external constraints of running in a distributed environment.


Many implementations of distributed systems have been described in the literature, falling into the following categories.


• Satellite systems are tightly clustered groups of machines that center on one (usually larger) machine. The satellite processors share the process bomt with the central processor and refer all system calls to it. The purpose of a satellite system is to increase system throughput and, possibly, to allow dedicated use of a processor for one process in a UNIX system environment. The system runs as a unit; unlike other models of distributed systems, satellites do not have real autonomy except, sometimes, in process scheduling and in local memory allocation.


• "Newcastle" distributed systems allow access to remote systems by recognizing names of remote files in the C library. (The name comes from a paper entitled


"The Newcastle Connection" — see [Brownbridge 821.) The remote files are designated by special characters embedded in the path name or by special path
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component sequences that precede the file system root. This method can be implemented without making changes to the kernel and is therefore easier to implement than the other implementations described in this chapter, but it is less flexible.


• Fully transparent distributed systems allow standard path names to refer to files on other machines; the kernel recognizes that they are remote. Path names cross machine boundaries at mount points, much as they cross file system mount points on disks.


This chapter examines the architecture of each model; the descriptions here are not based on particular implementations but on information published in various technical papers. They assume that low-level protocol modules and device drivers take care of addressing, routing, flow control, and error detection and correction and, thus, assume that each model is independent of the underlying network. The system call examples given in the next section for the satellite processor systems work in similar fashion for the Newcastle and transparent models presented in later sections; hence, they will be explained in detail once, and the sections on the other models will concentrate on particular features that most distinguish them.


13.1 SATELLITE PROCESSORS


Figure 13.2 shows the architecture for a satellite processor configuration. The purpose of such a configuration is to improve system throughput by offloading processes from the central processor and executing them on the satellite processors.


Each satellite processor has no local peripherals except for those it needs to communicate with the central processor: The file system and all devices are on the central processor. Without loss of generality, assume that all user processes run on a satellite processor and that processes do not migrate between satellite processors; once a process is assigned to a processor, it stays there until it exits. The satellite processor contains a simplified operating system to handle local system calls, interrupts, memory management, network protocols, and a driver for the device it uses to communicate with the central processor.


When the system is initialized, the kernel on the central processor downloads a local operating system into each satellite processor, which continues to run there until the system is taken down. Each process on a satellite processor has an associated stub process on the central processor (see [Birrell 841); when a process on a satellite processor makes a system call that requires services provided only by the central processor, the satellite process communicates with its stub on the central processor to satisfy the request. The stub executes the system call and sends the results back to the satellite processor. The satellite process and its stub enjoy a client-server relationship similar to those described in Chapter 11: The satellite is the client of the stub, which provides file system services. The term stub emphasizes that the remote server process serves only one client process. Section 13.4 considers server processes that serve several client processes. For convenience,
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the term satellite process will refer to a process running on a satellite processor.


When a sa tellite process makes a system call that can be handled locally, the kernel does not have to send a request to the stub process. For example, it can execute the sbrk system call locally to obtain more memory for a process. But if it needs to obtain service from the central processor, such as when opening a fik, it encodes the parameters of the system call and the process environment into a message that it sends to the stub process (Figure 133). The message consists of a taken that specifies the system cal the stub should make on behalf of the client, parameters to the system call, and environmental data such as user 1D and group 1 D, which may vary per system call. The remainder of the message contains variable length data, such as a file path name or data for a write system call.


The stub waits for requests from the satellite process; when it receives a request, it decades the message, determines what system call it should invoke, executes the system call, and encodes the results of the system call into a response for the satellite process. The response contains the return values to be returned to the
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Message Format


Token


Syscall


Path Name


for


Environment


Parameters


or


Syscall


Data


Data Stream


Response


Syscall


Error


Signal


..............


Return


Code


Number


Data Stream ............


Values


Figure 13.3. Message Formats


calling process as the result of the system call, an error code to report errors in the stub, a signal number, and a variable length data array to contain data read from a file, for example. The satellite process sleeps in the system call until it receives the response, decodes it, and returns the results to the user. This is the general scheme for handling system calls; the remainder of this section examines particular system calls in greater detail.


To explain how the satellite system works, consider the following system calls: getppid, open, write, fork, exit and signal. The getppid system call is simple, because it requires a simple request and response between the satellite and central processors. The kernel on the satellite processor forms a message with a token that indicates that the system call was getppid, and sends the request to the central processor. The stub on the central processor reads the message from the satellite processor, decodes the system call type, executes the getppid system call, and finds its parent process ID. It then forms a response and writes it to the satellite process, which had been waiting, reading the communication link. When the satellite receives the answer from the stub, it returns the result to the process that had originally invoked the getppid system call. Alternatively, if the satellite process retains data such as the parent process ID locally, it need not communicate with its stub at all.


For the open system call, the satellite process sends an open message to the stub process, including the file name and other parameters. Assuming the stub does the open call successfully, it allocates an mode and file table entry on the central processor, assigns an entry in the user file descriptor table in its u area, and returns the file descriptor to the satellite process. Meanwhile, the satellite process had been reading the communications link, waiting for the response from the stub process.


The satellite process has no kernel data structures that record information about
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Central Processor


Satellite


Figure 13.4. Open Cali from a Satellite Process


the open file; the file descriptor returned by the open is the index into the user file descriptor table of the stub process. Figure 13,4 depicts the results of an open system call.


For the write system eau, the satellite processor formulates a message, containing a write token, file descriptor and data count. Afterwards, it copies the data from the satellite process user space and writes it to the communications link.


The stub process decodes the write message, reads the data from the communications link, and writes it to the appropriate file, following the file descriptor to the file table entry and mode, all on the centra' processor. When done, the stub writes an acknowledgment message to the satellite process, including the number of bytes successfully written. The read eau is similar: The stub informs the satellite process if it does not return the requested number of bytes, such as when reading a terminal or a pipe. Both read and write may require the transmission of multiple data messages across the network, depending on the amount of data and network packet sizes.


The only system call that needs internal modification on the central processor is the fork system call. When a process on the central processor executes the fork system call, the kernel selects a satellite to execute the process and sends a message to a special server process on the satellite, informing it that it is about to download a process. Assuming the server accepts the fork request, it does a fork to create a new satellite process, initializing a process table entry and a u area. The central processor downloads a copy of the forking process to the satellite processor, overwriting the address space of the process just created there, forks a local stub process to communicate with the new satellite process, and sends a message to the satellite processor to initialize the program counter of the new process. The stub process (on the centra' processor) is the child of the forking process; the satellite process is technically a child of the server process, but it is logically a child of the process that forked. The server has no logical relationship with the child process after the for* completes; the only purpose of the server process is to assist in
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Central Processor


Satellite


Fork Server )


Child Process )


Figure 13.5. Fork on the Central Processor


downloading the child. Because of the tight coupling of the system (the satellite processors have no autonomy), the satellite and stub processes have the same process ID. Figure 13.5 illustrates the relationship between the processes: the solid line shows parent-child relationships and dotted lines depict peer-to-peer communication lines, either parent process to satellite server or child process to its stub.


When a process on a satellite processor forks, it sends a message to its stub on the central processor, which then goes through a similar sequence of operations.


The stub finds a new satellite processor and arranges to download the old process i mage: It sends a message to the parent satellite process requesting to read the process image, and the satellite responds by writing its process image to the communications link. The stub reads the process image and writes it to the child satellite. When the satellite is completely downloaded, the stub forks, creating a child stub on the central processor, and writes the program counter to the child satellite so that it knows where to start execution. Obvious optimizations can occur if the child process is assigned to the same satellite as its parent, but this design allows processes to run on other satellite processors besides the one on which they were forked. Figure 13.6 depicts the process relationships after the fork. When a satellite process exits, it sends an exit message to the stub, and the stub exits. The stub cannot initiate an exit .sequence.
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Central Processor


Figure 13.6. Fork on a Satellite Processor


A process must react to signals in the same way that it would react on a uniprocessor: Either it finishes the system call before it checks for the signal or it awakens immediately from its sleep and abruptly terminates the system eau, depending on the priority at which it sleeps. Because a stub process handles system calls for a satellite, it must react to signals in concert with the satellite process. 1f a signal causes a process on a uniprocessor to finish a system call abnormally, the stub process should behave the same way. Similarly, if a signal causes a process to exit, the satellite exits and sends an exit message to the stub process, which exits


naturally.


When a satellite process executes the signal system call, it stores the usual information in local tables and sends a message to the stub process, informing it whether it should ignore the particular signal or not. As will be seen, it makes no difference to the stub whether a process catches a signa' or does the default operation. A process reacts to signals based on the combination of three factors (see Figure 13.7): whether the signa' occurs when the process is in the middle of a system call, whether the process had called the signa] system call to ignore the signal, or whether the signal originates en the satellite processor or on another processor. Let us consider the various possibilities.


Suppose a satellite process is asleep as the stub process executes a system cal'


on its behaif. lf a signal originates on another processor, the stub sees the signal
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send signal message to satellite process;


else


1* satellite process */


1* whether in middle of system call or not */


send signal to clone process;


if (system call interrupted)


send message to satellite telling about interrupt, signal;


else


/* system call not interrupted */


send system call reply: include flag indicating arrival


of signal;


Figure 13.7. Handling Signals on Satellite System


before the satellite process. There are three cases.


1.


If the stub does not sleep on an event where it would wake up on occurrence of a signal, it completes the system call, sends the appropriate results in a message to the satellite process, and indicates which signal it had received.


2.


If the process was ignoring the signal, the stub continues the system call algorithm without doing a longimp out of an interruptible sleep — the usual behavior for ignored signals. When the stub replies to the satellite process, it does not indicate that it had received a signal.


3.


If the stub process had done a longjmp out of the system call because of receipt of a signal, it informs the satellite process that the system call was interrupted and indicates the signal number.
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The satellite process checks the response to see if signals have occurred and, if they have, handles them in the usual fashion before returning from the system eau.


Thus, a process behaves exactly as it would on a uniprocessor: It exits without returning from the kernel, or it calls a user signa' handEng function, or it ignores the signal and returns from the system eau.


Make read system call


Send read message to stub


Sleep until stub reply


Receive read message


read terminal


sleep waiting for input


signal (user hit break key)


wake up


long jump from system call


send reply to satellite:


interrupted system call


Wake up


Analyze reply


Take care of signa]


Figure 13.8. Interrupt in Middle of a System Cali


For example, suppose a satellite process reads a terminal, which is connected to the centra] processor, and sleeps 'while the stub process executes the system cal'


(Figure 13.8). If a user hits the break key, the stub kernel sends an interrupt signa] to the stub process. If the stub was sleeping, waiting for input, it immediately wakes up and terminates the read call. In its response to the satellite process, the stub sets an error code (interrupted from the system call) and the signa] number for interrupt. The satellite process examines the response and, because the message shows that an interrupt signa l was sent, posts the signal to itself. Before returning from the read call, the satellite kernel checks for signals, finds the interrupt signal returned by the stub process, and handles it in the usual way. If the satellite process exits as a result of the interrupt signal, the exit system
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call takes care of killing the stub process. If it is catching interrupt signals, it calls the user signal catcher function and later returns from the read call, giving the user an error return. On the other hand, if the stub process was executing a stat system call on behalf of the satellite process, it does not terminate the system call on receipt of a signal (stat is guaranteed to wake up from all sleeps because it never has to wait indefinitely for a resource). The stub completes the system call and returns the signal number to the satellite process. The satellite process posts the signal to itself and discovers the signal when it returns from the system call.


If the process had been in the middle of a system call and a signal originates on the satellite processor, the satellite process has no idea whether the stub will return soon or sleep indefinitely. The satellite process sends a special message to the stub, informing it of the occurrence of the signal. The kernel on the central processor reads the message and sends the signal to the stub, which now reacts as described in the previous paragraphs: Either it interrupts the system call or it completes it.


The satellite process cannot send the message to the stub directly, because the stub is in the middle of a system call and is not reading the communications line. The central processor kernel recognizes the special message and posts the signal to the appropriate stub.


Repeating the read example explained above, the satellite process has no idea whether the stub process is waiting for input from a terminal or whether it is doing other processing. It sends the stub process a signal message: If the stub was asleep at an interruptible priority, it wakes up immediately and terminates the system call; otherwise, it completes the system call normally.


Finally, consider the cases where a signal arrives when a process is not in the middle of a system call. If the signal originates on another processor, the stub receives the signal first and sends a special signal message to the satellite process, regardless of how the satellite process wishes to dispose of the signal. The satellite kernel deciphers the message and sends the signal to the process, which reacts to it in the usual manner. If the signal had originated on the satellite processor, the satellite process does the usual processing and does not require special communication to the stub process.


When a satellite process sends a signal to other processes, it encodes a message for the kill system call and sends it to the stub, which executes the kill system call locally. If some processes that should receive the signal are on other satellite processors, their stubs receive the signal and react as described above.


13.2 THE NEWCASTLE CONNECTION


The previous section explored a tightly coupled system configuration where all file subsystem calls on a satellite processor are trapped and forwarded to a remote (central) processor. This view extends to more loosely coupled systems, where each machine wants to access files on the other machines. In a network of personal computers and work stations, for example, users may want to access files stored on a mainframe. The next two sections consider system configurations where local
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systems execute all system calls but where calls to the file subsystem may access files on other machines.


These systems use one of two ways to identify remote files. Some systems insert a special character into the path name: The component name preceding the special character identifies a machine, and the remainder of the path name identifies a file on that machine. For example, the path name


"sftiglifslimjb/rje"


identifies the file "ifsl/mjbirje" on the machine "sftig". This file naming scheme follows the convention established by the uucp program for transferring files between UNIX systems. Other naming schemes identify remote files by prepending a special prefix such as


/../sftig/fs 1 imjb/rje


where the "/.." informs the parser that the file reference is remote, and the second component name gives the remote machine name. The 'atter naming scheme uses the syntax of conventional file names on the UNIX system, so user software need not be converted to cope with "irregularly constructed names" as in the farmer scheme (see [Pike 85D.
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Figure 13.9. Formulation of File Service Requests


The remainder of this section deseribes a system modeled after the Newcastle connection, where the kernel does not participate in determining that a file is remote; instead, the C library functions that provide the kernel interface detect that
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Ile access is remote and take the appropriate action. For both naming entions, the C library parses the first components of a path name to determine


...iat a file is remote. This departs from usual implementations where the library does not parse path names. Figure 13.9 depicts how requests for file service are formulated. If a file name is local, the local kernel handles the request in the usual way. But consider execution of the system call


open (l../sftigifs 1 /nip/de/file", ORDONLY);


The C library routine for open parses the first two components of the path name and recognizes that the file should be on the remote machine "sftig". It maintains a data structure to keep track of whether the process had previously established communication to machine "sftig" and, if not, establishes a communications link to a file server process on the remote machine. When a process makes its first remote request, the remote server validates the request, mapping user and group ID fields as necessary, and creates a stub process to act as the agent for the client process.


The stub, executing requests for the client process, should have the same access rights to files that the client user would have on the remote machine. That is, user


"mjb" should access remote files according to the same permissions that govern access to local files. Unfortunately, the client user ID for "mjb" may be that of a different user on the remote machine. Either the system administrators of the various machines must assign unique identifiers to all users across the network, or they must assign a transformation of user IDs at the time of request for network service. Failing the above, the stub process should execute with "other"


permissions on the remote machine.


Allowing superuser access permission on remote files is a more ticklish situation.


On the one hand, a client superuser should not have superuser rights on the remote system, because a user could thereby circumvent security measures on the remote system. On the other hand, various programs would not work without remote superuser capabilities. For instance, recall from Chapter 7 that the program mkdir, which creates a new directory, runs as a setuid program with superuser permissions. The remote system would not allow a client to create a new directory, because it would not recognize remote superuser permissions. The problem of creating a remote directory provides a strong rationale for implementing a mkdir system call, which would automatically establish all necessary directory links.


Nevertheless, execution of setuid programs that access remote files as superuser is still a general problem that must be dealt with. Perhaps this problem could best be solved by providing files with a separate set of access permissions for remote superuser access; unfortunately, this would require changes to the structure of the disk mode to save the new permission fields and would thus cause too much turmoil in existing systems.


When an open call returns successfully, the local library makes an appropriate notation in a user-level library data structure, including a network address, stub process ID, stub file descriptor, and other appropriate information. The library routines for the read and write system calls examine the file descriptor to see if the
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original file reference was remote and, if it was, send a message to the stub. The client process communicates with its stub for all system calls that need service on that machine. If a process accesses two files on a remote machine, it uses one stub, but if it accesses files on two remote machines, it uses two stubs: one on each machine. Similarly, if two processes access a file on a remote machine, they use two stubs. When executing a system call via a stub, the process formulates a message including the system call nurnber, path name, and other relevant information, similar to the type of message described for satellite processors.


Manipulation of the current directory is more complicated. When a process changes directory to a remote directory, the library sends a message to the stub, which changes its current directory, and the library remembers that the current directory is remote. For all path names not beginning with a slash character, the library sends the path name to the remote machine, where the stub process resolves the path name from the current directory. If the current directory is local, the library simply passes the path name to the Iocal kernel. Handling a chroot system call to a remote directory is similar, but the local kernel does not find out that the process had done a chroot; strictly speaking, a process can ignore a chroot to a remote directory, because only the library has a record of it. Exercise 13.9


considers the case of ".." over a mount point.


When a process fbrks, the fork library routine sends each stub a fork message.


The stub processes fork and send their child process IDs to the client parent process. The client process then invokes the (kernel) fork system call, and on its return to the child process, the library routine stores the appropriate address information about the child stub process; the local child process carries on its dialogue with the remote child stub. This treatment of the fork system call makes it easy for the stubs to keep track of open files and current directories. When a process with remote files exits, the library routine sends a message to the remote stubs, which exit in response. The exercises explore the exec system call and the exit system call in greater detail.


The advantage of the Newcastle design is that processes can access remote files transparently, and no changes need be made to the kernel. However, there are several disadvantages with this design. System performance may be degraded.


Because of the larger C library, each process takes up more memory even though it makes no remote references; the library duplicates kernel functions and takes up more space. Larger processes take longer to start up in exec and may cause greater contention for memory, inducing a higher degree of paging and swapping on a system. Local requests may execute more slowly because they take longer to get into the kernel, and remote requests may also be slow because they have to do more processing at user level to send requests across a network. The extra user-level processing provides more opportunities for context switches, paging, and swapping.


Finally, programs must be recompiled with the new libraries to access remote files; old programs and vender supplied object modules do not work for remote fiks unless recompiled. The scheme described in the next section does not have these disadvantages.
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a file access is remote and take the appropriate action. For both naming conventions, the C library parses the first components of a path name to determine that a file is remote. This departs from usual implementations where the library does not parse path names. Figure 13.9 depicts how requests for file service are formulated. If a file name is local, the local kernel handles the request in the usual way. But consider execution of the system call


open("Lisftigifslimjb/rjeffile", O_RDONLY);


The C library routine for open parses the first two components of the path name and recognizes that the file should be on the remote machine "sftig". It maintains a data structure to keep track of whether the process had previously established communication to machine "sftig" and, if not, establishes a communications link to a file server process on the remote machine. When a process makes its first remote request, the remote server validates the request, mapping user and group ID fields as necessary, and creates a stub process to act as the agent for the client process.


The stub, executing requests for the client process, should have the same access rights to files that the client user would have on the remote machine. That is, user


"mjb" should access remote files according to the same permissions that govern access to local files. Unfortunately, the client user ID for "mjb" may be that of a different user on the remote machine. Either the system administrators of the various machines must assign unique identifiers to all users across the network, or they must assign a transformation of user IDs at the time of request for network service. Failing the above, the stub process should execute with "other"


permissions on the remote machine.


Allowing superuser access permission on remote files is a more ticklish situation.


On the one hand, a client superuser should not have superuser rights on the remote system, because a user could thereby circumvent security measures on the remote system. On the other hand, various programs would not work without remote superuser capabilities. For instance, recall from Chapter 7 that the program mkdir, which creates a new directory, runs as a set uid program with superuser permissions. The remote system would not allow a client to create a new directory, because it would not recognize remote superuser permissions. The problem of creating a remote directory provides a strong rationale for implementing a mkdir system call, which would automatically establish all necessary directory links.


Nevertheless, execution of setuid programs that access remote files as superuser is still a general problem that must be dealt with. Perhaps this problem could best be solved by providing files with a separate set of access permissions for remote superuser access; unfortunately, this would require changes to the structure of the disk mode to save the new permission fields and would thus cause too much turmoil in existing systems.


When an open call returns successfully, the local library makes an appropriate notation in a user-level library data structure, including a network address, stub process ID, stub file descriptor, and other appropriate information. The library routines for the read and write system calls examine the file descriptor to see if the
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13.3 TRANSPARENT DISTRIBUTED FILE SYSTEMS


The term transparent distribution means that users on one machine can access files on another machine without realizing that they cross a machine boundary, similar to crossing a mount point from one file system to another on one machine. Path names that access files on the remote machine look like path names that access local files: They contain no distinguishing symbols. Figure 13.10 shows a configuration where directory "iusr/src" on machine 13 is mounted on the directory


"/usr/src" on machine A. This configuration is convenient for systems that wish to share one copy of system source code, conventionally found in "/usr/src". Users on machine A can access files on machine 13 with the regular file name syntax, such as


"iusr/src/cmd/login.c", and the kernel decides internally whether a file is remote or local. Users on machine B access local files without being aware that users on machine A can access them, too, but they cannot access files on machine A. Of course, other scenarios are possible where all remote systems are mounted at root of the local system, giving users access to all files on all systems.


Machine A
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usr


bin


etc


Figure 13.10. File Systems after Remote Mount


Because of the analogy between mounting local file systems and providing access to remote file systems, the mount system call is adapted for remote file systems. The kernel contains an expanded mount table: When executing a remote
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mount system call, the kernel establishes a network connection to the remote machine and stores the connection information in the mount table.


An interesting problem arises for path names that include ".." (dot-dot): If a process changes directory to a remote file system, subsequent use of ".." should return the process to the local file system rather than allow it to access files above the remotely mounted directory. Referring to Figure 13.10 again, if a process on machine A, whose current directory is in the (remote) directory "iusr/sre/cmd", executes


cd


its new current directory should be root on machine A, not root on machine B.


Algorithm namei in the remote kernel therefore checks all ".." sequences to see if the calling process is an agent for a client process, and if so, checks the current working directory to see if that client treats the directory as the root of a remotely mounted file system.


Communication with a remote machine takes on one of two forms: remote procedure call or remote system call. In a remote procedure call design, each kernel procedure that deals with modes recognizes whether a particular mode refers to a remote file and, if it does, sends a message to the remote machine to perform a specific mode operation. This scheme fits in naturally to the abstract file system types presented at the end of Chapter 5. Thus, a system call that accesses a remote file may cause several messages across the network, depending on how many internal mode operations are involved, with correspondingly higher response time due to network latency. Carried to an extreme, the remote operations include manipulation of the mode lock, reference count, and so on. Various optimizations to the pure model have been implemented to combine several logical mode operations into a single message and to cache important data (see [Sandberg 851).
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Figure 13.11. Opening a Remote File
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Consider a process that opens the remote file "iusr/src/cmd/login.c", where


"src" is the mount point. As the kernel parses the path name in namei-iget, it detects that the file is remote and sends a request to the remote machine to return a locked mode. On receipt of a successful response, the local kernel allocates an in-core mode that corresponds to the remote file. It then checks file modes for necessary permissions (permission to read, for instance), by sending another message to the remote machine. It continues executing the open algorithm as presented in Chapter 5, sending messages to the remote machine when necessary, until it completes the algorithm and unlocks the inode. Figure 13.11 illustrates the relationship of the kernel data structures at conclusion of the open.


For a read system call, the client kernel locks the local mode, sends a message to lock the remote mode, sends a message to read data, copies the data into local memory, sends a message to unlock the remote mode, and unlocks the remote m ode. This scheme conforms to the semantics of existing, uniprocessor kernel code, but the frequency of network use (potentially several times per system eau) hurts performance. Several operations can be combined into one message to reduce network traffic, however. In the read example, the client can send one "read"


message to the server, which knows that it has to lock and unlock its mode while doing the read operation. Implementation of remote caches can further reduce network traffic, as mentioned above, but care must be taken to maintain the semantics of file system calls.


In a remote system call design, the local kernel recognizes that a system call refers to a remote file, as above, and sends the parameters of the system call to the remote system, which executes the system call and returns the results to the client.


The client machine receives the results of the remote system call and longjmps out of the system call. Most system calls can be executed with only one network message, resulting in reasonably good system response, but several kernel operations do not fit the model. For instance, the kernel creates a "core" file for a process en receipt of various signals (Chapter 7). Creation of a core file does not correspond to one system call but entails several mode operations, such as creation of a file, checking acc•ss permissions, and doing several write operations.


For an open system call, the remote system call message consists of the remainder of the path name (the path name string after the component where the remote path name was detected) and the various fiags. Repeating the earlier example for a process that opens the file "usr/src/cmd/login.c", the kernel sends the path name "cmd/login.c" to the remote machine. The message also contains identifying information, such as user 1D and group ID, needed to determine file access capabilities on the remote machine. When the remote machine responds that the open cal succeeded, the local kernel allocates a free, local, in-core mode, marks it "remote," saves the information needed to identify the remote machine and the remote mode, and allocates a new fik table entry in the usual manner. The m ode on the local machine is a dummy for the real mode on the remote machine, resulting in the same configuration as the remote procedure call model (Figure 13.11). When a process issues a system call that accesses a remote file by its file
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descriptor, the local kernel recognizes that the file is remote by examining its (local) inode, formulates a message encapsulating the system call, and sends the message to the remote machine. The message contains the remote mode index so that the stub can identify the remote file.


For all system calls, the local kernel may execute special code to take care of the response and may eventually Iongjmp out of the system call, because subsequent local processing, designed for a uniprocessor system, may be irrelevant.


Therefore, the semantics of kernel algorithms may change to support a remote system call model. However, network traffic is kept to a minimum, allowing system response to be as fast as possible.


13.4 A TRANSPARENT DISTRIBUTED MODEL WITHOUT STUB


PROCESSES


Use of stub processes in the transparent distributed system model makes it easy for the remote system to keep track of remote files, but the process table on the remote system becomes cluttered with stubs that are idle most of the time. Other schemes use special server processes on the remote machine to handle remote requests (see


[Sandberg 85] and [Cole 85]). The remote system has a pool of server processes and assigns them temporarily to handle each remote request as it arrives. After handling a request, the server process reenters the pool and is available for reassignment to other requests: The server does not remember the user context (such as user ID) between system calls, because it may handle system calls for several processes. Consequently, each message from a client process must include data about its environment, such as UIDs, current directory, disposition of signals, and so on. Stub processes acquire this data at setup time or during the normal course of system call execution.


When a process opens a remote file, the remote kernel allocates an mode for later reference to the file. The local machine has the usual entries in the user file descriptor table, file table, and mode table, and the mode entry identifies the remote machine and inode. For system calls that use a file descriptor, like read, the kernel sends a message that identifies the previously allocated remote mode and passes over process-specific information, such as the user ID, the maximum allowed file size, and so on. When the remote machine dispatches a server, communication with the client process is similar to what was described previously, but the connection between the client and server exists only for the duration of the system call.


Handling flow control, signals, and remote devices is more difficult using server processes instead of stubs. If a remote machine is flooded with requests from many machines, it must queue the requests if it does not have enough server processes.


This requires a higher-level protocol than the one already provided with the underlying network. In the stub model, on the other hand, a stub cannot be flooded with requests, because all transactions with a client are synchronous: A client can have at most one outstanding request.
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Handling signals that interrupt a system call is also more complicated with server processes, because the remote machine must find the correct server process that is executing the system call. It is even possible that the system cal request is still waiting for service if all server processes were busy. Similarly, race conditions are possible if the server returns the result of the system call to the calling process, and the response passes the signal message en route through the network. Each message must be tagged so that the remote system can locate it and interrupt server processes, if necessary. Using stub processes, the process servicing the dient system call is automatically identified, and it is easy to determine if it already finished handling a system call when a signal arrives.


Finally, if a process issues a system call that causes the server process to sleep indefinitely (reading a remote terminal, for example), the server process cannot handle other requests, effectively removing it from the server process pool. 1f many processes access remote devices and if there is an upper bound on the number of server processes, this can be a severe bottleneck. This cannot happen when using stub processes, because the stubs are allocated per client process. Exercise 13.14


explores another problem in using server processes for remote devices.


In spite of the advantages for using process stubs, the need for process table slots is so critical in practice that most schemes use a pool of service processes to handle remote requests.
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Figure 13.12. Conceptual Kernel Layer for Remote File Access


13.5 SUMMARY


This chapter has described three schemes for allowing processes to access files stored on remote machines, treating the remote file systems as an extension of the local file system. Figure 13.12 illustrates the architectural difference between them.


These systems are distinguished from the multiprocessor systems described in the previous chapter, because processors do not share physical memory. The satellite
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processor scheme consists of a tightly coupled set of processors that share the file resources of a central processor. The Newcastle connection gives the appearance of transparent, remote file access, but remote access is provided by a special implementation of the C library, not by the kernel. Consequently, programs must be recompiled to use the Newcastle connection, sometimes a serious drawback.


Remote files are designated by special character sequences that identify the machine that stores the file, another factor that can limit portability.


A transparent distributed system uses a variation of the mount system call to give access to a remote file system, much as the usual mount system call extends the local file system to newly mounted disk units. bodes on the local system indicate that they refer to remote files, and the local kernel sends messages to the remote kernel, describing the kernel algorithm (system call), its parameters, and the remote mode. Two designs support the remote transparent, distributed operations: a remote procedure call model, where the messages instruct the remote machine to execute mode operations, and a remote system call model, where the messages instruct the remote machine to execute system calls. Finally, the chapter examined the issues involved with serving remote requests with stub processes or with server processes from a general pool.


13.6 EXERCISES


* 1. Describe an implementation of the exit system call on a satellite processor system.


How is this different from the case where a process exits as a result of receipt of an uncaught signal? How should the kernel dump the "core" file?


2. Processes cannot ignore the SIGKILL signal; describe what happens on a satellite system when a process receives this signal.


* 3. Describe an implementation of the exec system call on a satellite processor system.


* 4. How should a central processor assign processes to satellite processors to balance the execution load?


* 5. What happens if a satellite processor does not contain enough memory for the processes downloaded to it? How should it handle swapping or paging across a network?


6.


Consider a system that allows access to remote file server machines by recognizing path names by special prefaces. Suppose a process executes


execl(7../sftigibinish", "sh", 0);


The executable image is on the remote machine but should execute on the local machine. Describe how the local system brings the remote executable file to the local system to do the exec.


7.


If an administrator wishes to add new machines to a Newcastle system, what is the best way to inform the C library modules?


* 8. The kernel overwrites the address space of a process during exec, including the library tables used by a Newcastle-style implementation to keep track of remote file references. The process must still be able to access these files by their old file descriptors after the exec. Describe an implementation.
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* 9. As described in Section 13.2, execution of the exit system call on Neweastle syst results in a message being sent to the stub process that causes it to exit. This is at the library level. What happens if the local process receives a signa' that ca to exit from the kernel?


* 10. In a Newcastle-style system, where remote files are designated by special prefa"


how should the system allow a user to use the ".." (parent directory) componen t to back up over a remote mount point?


11. Recall from Chapter 7 that various signals cause a process to dump a core file in iu current directory. What should happen if the current directory is in a remote fik system? What happens on a Newcastle system?


* 12. 1f someone on a remote processor kills all stub or server processes, how should the local processes hear the good news?


* 13. In the transparent distribution system, discuss implementations of link, which has twn possibly remote path names, and exec, which bas several internal read operations.


Consider the two designs: remote procedure call and remote system call.


* 14. When a (nonstub) server process accesses a device, it may have to sleep until the device driver wakes it up. Given a fixed number of servers, it is conceivable that a system would be unable to satisfy any more requests from a loc& machine, because all servers are sleeping in a device driver. Devise a scheme that is safe, in that not all servers can sleep, waiting for device I/O. A system call should not fail because all servers are currently busy.
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Figure 13.13. A Terminal Server Configuration


* 15. When a user logs into a system, the terminal line discipline saves information that the terminal is a control terminal, noting the process group. In this way, processes receive interrupt signals when a user hits the break key at the terminal. Consider a system configuration where all terminals are physically eonnected to one machine, but users log in logically on other machines (Figure 13.13). Specifically, a system spawns a getty process for a remote terminal. 1f a pool of server processes handle remote system calls, a server sleeps in the driver open procedure, waiting for a connection. When the server cornpletes the open system cal!, it goes back into the process pool, severing its
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connection to the terminal. If a user hits the break key, how is the interrupt signal sent to processes in the process group executing on the client machine?


* 16. The shared memory feature is inherently a local-machine operation. Logically, it would be possible for processes on different machines to access a common piece of physical memory, whether the memory is local


or remote.


Describe an


implementation,


* 17. The demand paging and swapping algorithms examined in Chapter 9 assume the use of a local swap device. What modifications must be made to these algorithms to support remote swap devices?


* 18. Suppose a remote machine crashes (or the network goes down) and the local network protocol can recognize this fact. Design recovery schemes for a local system that makes requests of a remote, server system. Conversely, design recovery schemes for a server system that loses its connection with client machines.


* 19. When a process accesses a remote file, the path name may stretch across several machines until it is completely resolved. Following the path name


"/usr/srciuts/3b2/os" for example, "iusr" may be on machine A, the root of machine B may be mounted on "iusr/src", and the root of machine C may be mounted on


" /usr/srchits/3b2". Moving through several machines to get to the final destination is called multihop. If a direct network connection exists between A and C, however, it is inefficient to transfer data between the machines via machine B. Describe a design for multi-hop in the Newcastle and transparent distribution models.





APPENDIX


SYSTEM CALLS


This appendix contains a brief synopsis of the UNIX system calls. Refer to the UNIX System V User Programmer's Manual for a complete specification of these calls. The specification here is sufficient for reference when reading the various program examples in the book.


The specified file names are null terminated character strings, whose individual components are separated by slash characters. All system calls return —1 on error, and the external variable errno indicates the specific error. Unless specified otherwise, system calls return 0 on success. Some system calls are the entry point for several functions: this means that the assembly language interface for the functions is the same. The list here follows the usual conventions for UNIX system manuals, but the programmer should not care whether a system call entry point handles one or many system calls.


access


access(filename, mode)


char *filename;


int mode;


Access checks if the calling process has read, write, or execute permission for the file, according to the value of mode. The value of mode is a combination of the bit 434
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patterns 4 (for read), 2 (for write), and I (for execute). The real-user ID is checked instead of the effective user ID.


acct


acct (filename)


char *filename;


Acct enables system accounting if filename is non-null, and disables it otherwise.


alarm


unsigned alarm (seconds)


unsigned seconds;


Alarm schedules the occurrence of an alarm signal for the calling process in the indicated number of seconds. It returns the amount of time remaining until the alarm signal at the time of the call.


brk


int brk(end data seg)


char *end data seg;


Brk sets the highest address of a process's data region to end data seg. Another function, sbrk, uses this system call entry point and changes the highest address of a process's data region according to a specified increment.


chdir


chdir (filename)


char *filename;


Chdir changes the current directory of the calling process to filename.


chmod


chmod(filename, mode)


char *filename;


Chmod changes the access permissions of the indicated file to the specified mode, which is a combination of the following bits (in octal):


04000 setuid bit


02000 set group ID bit
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01000


sticky bit


00400


read for owner


00200


write for owner


00100


execute for owner


00040


read for group


00020


write for group


00010


execute for group


00004


read for others


00002


write for others


00001


execute for others


chown


chown(filename, owner, group)


char *filename;


int owner, group;


Chown changes the owner and group of the indicated file to the specified owner and group IDs.


chroot


chroot(filename)


char *filename;


Chroot sets the private, changed-root of the calling process to filename.


close


close(fildes)


int fildes;


Close closes a file descriptor obtained from a prior open, creat, dup, pipe, or fentl system call, or a file descriptor inherited from a fork eau.


creat


creat (filename, mode)


char *filename;


int mode;


Creat creates a new file with the indicated file name and access permission modes.


Mode is as specified in access, except that the sticky-bit is cleared and bits set via umask are cleared. If the file already exists, creat truncates the file. Creat returns a file descriptor for use in other system calls.
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dup


dup(fildes)


int fildes;


Dup duplicates the specified file descriptor, returning the lowest available file descriptor. The old and new file descriptors use the same file pointer and share other attributes.


exec


execve(filename, argv, envp)


char *filename;


char *asp[];


char *envp[];


Execve executes the program file filename, overlaying the address space of the executing process. Argv is an array of character strings parameters to the execed program, and envp is an array of character strings that are the environment of the new process.


exit


exit (status)


int status;


Exit causes the calling process to terminate, reporting the 8 low-order bits of status to its waiting parent. The kernel may call exit internally, in response to certain signals.


fcnti


fcntl(fildes, cmd, arg)


int fildes, cmd, arg;


Fent/ supports a set of miscellaneous operations for open files, identified via the file descriptor fildes. The interpretation of cmd and arg is as follows (manifest constants are defined in file "/usaincludeifentl.h"):


F_DUPFD return lowest numbered file descriptor > arg


F SETFD


set close-on-exec flag to low order bit of arg


(if 1, file is closed in exec)


F GETFD return value of close-on-exec flag


F SETFL set file status flags (0 NDELAY do not sleep for I/O and
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O_APPEND append written data to end of file)


F_GETFL get file status fiags


struct flock


short l_type;


/* F_RDLCK for read lock, F_WRLCK for write lock,


F_UNLCK for unlock operations */


short I_whence; /* lock offset is from beginning of file (0), current position of file pointer (1), or end of file (2) */


long l_start;


/* byte offset, interpreted according to l_whence */


long 1 jen;


/* number of bytes to lock. If 0, lock from l_start to end of file */


long l_pid;


/41 ID of process that locked file */


long l_sysid;


/* sys ID of process that locked file */


F_GETLK


get first lock that would prevent application of the lock specified by arg and overvvrite arg If no such lock exists, change l_type in arg to F_UNLCK


F_SETLK


lock or unlock the file as specified by arg. Return -1 if unable to lock.


F_SETLKW


lock or unlock data in a file as specified by arg. Sleep if unable to lock.


Several read locks can overlap in a file. No locks can overlap a write lock.


fork


fork0


Fork creates a new process. The child process is a logica! copy of the parent process, except that the parent's return value from the /ark is the process ID of the child, and the child's return value is 0.


getuid


getuid()


Getuid returns the real user 1D of the calling process. Other calls that use this system call entry point are geteuid, which returns the effective user ID, getgid, which returns the group ID, and getegid,  which returns the effective group ID of the calling process.
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ioct1


ioctl(fildes, cmd, arg)


int fildes, cmd;


loctl does device-specific operations on the open device whose file descriptor is fl/des. Cmd specifies the command to be done on the device, and arg is a parameter whose type depends on the command.


kill


kill (pid, sig)


int pid, sig;


Kill sends the signal sig to the processes identified by pid.


pid positive


send signal to process whose PID is pid.


pid 0


send signal to processes whose process group ID is ND of sender.


pid —I


if effective UID of sender is super user, send signal to all processes otherwise, send signal to all processes whose real UID equals


effective UID of sender.


pid < —1


send signal to processes whose process group ID is pid.


The effective UID of the sender must be superuser, or the sender's real or effective UID must equal the real or effective UID of the receiving processes.


link


link(filenamel, filename2)


char *filenamel, *filename2;


Link gives another name, filename2, to the file fl/enamel. The file becomes accessible through either name.


Iseek


lseek(fildes, offset, origin)


int fildes, origin;


long offset;


Lseek changes the position of the read-write pointer for the file descriptor fildes and returns the new value. The value of the pointer depends on origin:


0 set the pointer to offset bytes from the beginning of the file.


I


increment the current value of the pointer by offset.


2 set the pointer to the size of the file plus offset bytes.
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mknod


mknod(filename, modes, dev)


char *filename;


int mode, dev;


Mknod creates a special file, directory, or FIFO according to the type of modes: 010000 FIFO (named pipe)


020000 character special device file


040000 directory


060000 block special device file


The 12 low order bits of modes have the same meaning as described above for chmod. If the file is block special or character special, dev gives the major and minor numbers of the device.


mount(specialfile, dir, rwflag)


char *specialfile, *dir;


int rwflag;


Mount mounts the file system specified by specialfile onto the directory dir. 1f the low-order bit of rwflag is 1, the file system is mounted read-only.


msget1


#include <systtypes.h>


#include <sysiipc.h>


#include <sysfrnsg.h>


msgctl(id, cmd, bun


int id, cmd;


struct msgid_ds *buf;


Msgctl allows processes to set or query the status of the message queue id, or to remove the queue, according to the value of and. The structure msgid ds is defined as follows:


struct ipc_perm (


ushort


uid;


/* current user id */


ushort


gid;


/* current group id *I


ushort


cuid;


is creator user id V


ushort


cgid;


/* creator group id */


ushort


mode;


/* access modes */


short


pad1;


/* used by system */


long


pad2;


/* used by system */





APPENDIX — SYSTEM CALLS


441


struct msqid ds


struct ipc_perm


msg_perm;


/* permission struet */


short


pad1171;


/* used by system */


ushort


msg qnum;


/* number of messages on q */


ushort


msg_qbytes;


max number of bytes on q *1


ushort


msg_Ispid;


1* pid of last msgsnd operation */


ushort


msg jrpid;


/* pid of last msgrcv operation *1


ti me_t


msg_stime;


I* last msgsnd time */


ti me_t


msg_rtime;


/* last msgrcv time */


time_t


msg_ctime;


/* last change time */


1;


The commands and their meaning are as follows:


IPC_STAT


Read the message queue header associated with id into buf.


IPC_SET


Set the values of msg_perm.uid, msg_perm.gid, msg_perm.mode (9


low-order bits), and msg_qbytes from the corresponding values in buf.


IPC RMID Remove the message queue for id.


msgget


#include <sysitypes.h>


#include <sysiipc.h>


#include <sysimsg.h>


msgget(key, flag)


key_t key;


int flag;


Msgget returns an identifier to a message queue whose name is key. Key can specify that the returned queue identifier should refer to a private queue (IPC PRIVATE), in which case a new message queue is created. Flag specifies if the queue should be created (IPC_CREAT), and if creation of the queue should be exclusive (IPC EXCL). In the latter case, msgget fails if the queue already exists.


magand and ninny


#include <sysitypes.h>


#include <sysiipc.h>


#include <sysimsg.h>


msgsnd (id, msgp, size, flag)


int id, size, flag;


struct msgbuf *msgp;
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msgrcv(id, msgp, size, type, fiag)


int id, size, type, fiag;


struct msgbuf *msgmp;


Msgsnd sends a message of size bytes in the buffer msgp to the message queue id.


Msgbuf is defined as


struct msgbuf


long mtype;


char mtext[];


1f the IPC NOWAIT bit is off in flag, msgsnd sleeps if the number of bytes on the message queue exceeds the maximum, or if the number of messages system-wide exceeds a maximum value. 1f IPC NOWAIT is set, msgsnd returns immediately in these cases.


Msgrcv receives messages from the queue identified by id. If type is 0, the first message on the queue is received; if positive, the first message of that type is received; if negative, the first message of the lowest type less than or equal to type is received. Size indicates the maximum size of message text the user wants to receive. 1f MSG NOERROR  is set in flag, the kernel truncates the received message if its size is larger than size. Otherwise it returns an error. If IPC NOWAIT is not set in flag, msgrcv sleeps until a message that satisfies type is sent. If IPC NOWAIT is set, it returns immediately. Msgrcv returns the number of bytes in the message text.


niee


nice(increment)


int increment;


Nice adds increment to the process nice value. A higher nice value gives the process lower scheduling priorities.


open


#include <fcritl.h>


open(filename, flag, mode)


char *filename;


int flag, mode;


Open opens the specified file according to the value of flag. The value of flag is a combination of the following bits (exactly one of the first three bits must be used).
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O RDONLY


open for reading only.


O WRONLY


open for writing only.


O RDWR


open for reading and writing.


O NDELAY


For special devices, open returns without waiting for carrier,


if set. For named pipes, open will return immediately (with an


error if 0 WRONLY set), instead of waiting for another process to


open the named pipe.


O APPEND


causes all writes to append data to the end of the file.


O CREAT


create the file if it does not exist. Mode specifies permissions


as in creat system call. The flag has no meaning if the file


already exists.


O_TRUNC


Truncate length of file to 0.


O_EXCL


Fail the open call if this bit and O_CREAT are set and file exists.


This is a so-called exclusive open.


Open returns a file descriptor for use in other system calls.


pause


pause()


Pause suspends the execution of the calling process until it receives a signal.


pit*


pipe(fildes)


int fildes[2];


Pipe returns a read and write file descriptor (fildes[0] and fildesin, respectively).


Data is transmitted through a pipe in first-in-first-out order; data cannot be read twice.


pluck


#include <sysilock.h>


plock(op)


int op;


Plock locks and unlocks process regions in memory according to the value of op: PROCLOCK lock text and data regions in memory.


TXTLOCK


lock text region in memory.


DATLOCK


lock data region in memory.


UNLOCK


remove locks for all regions.
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profil


profil(buf, size, offset, scale)


char *buf;


int size, offset, scale;


Prof! requests that the kernel give an execution profile of the process. Buf is an array in the process that accumulates frequency counts of execution in different addresses of the process. Size is the size of the buf array, offset is the starting address in the process that should be proffied, and scale is a scaling factor.


ptrace


ptrace(cmd, pid, addr, data)


int cmd, pid, addr, data;


Ptrace allows a process to trace the execution of another process, pid, according to the value of cmd.


0


enable child for tracing (called by child).


1,2


return word at focation addr in traced process pid.


3


return word from offset addr in traced process u area.


4,5


write value of data into location addr in traced process.


6


write value of data into offset addr in u area.


7


cause traced process to resume execution,


8


cause traced process to exit.


9


machine dependent — set bit in PSW for single-stepping execution.
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semctl(id, num, cmd, arg)


int id, num, cmd;


union semun


int val;


struct semid ds *buf;


ushort *array;


arg;


Sernal does the specified cmd on the semaphore queue indicated by id.


GET VAL


return the value of the semaphore whose index is num.


SET VAL


set the value of the semaphore whose index is num to arg.val.


GETPID


return value of last PID that did a semop on the semaphore


whose index is num.


GETNCNT return number of processes waiting for semaphore value to


become positive.


GETZCNT return number of processes waiting for semaphore value to become 0.


GETALL


return values of all semaphores into array arg.array.


SETALL


set values of all semaphores according to array arg.array.


IPC STAT


read structure of semaphore header for id into arg.buf.


IPC_SET


set sem_perm.uid, sem_per.gid, and sem_perm.mode (low-order 9 bits)


according to arg.buf.


IPC RMID


remove the semaphores associated with id.


Num gives the number of semaphores in the set to be processed. The structure semidis is defined by:


The structure ipefierm is the same as defined in msgctl.


semget


#include <sysitypes.h>


#include <sysiipc.h>


#include <sysisem.b>


semget(key, nsems, flag)


key_t key;


int nsems, flag;
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Semget creates an array of semaphores, corresponding to key. Key and flag take on the same meaning as they do in msgget.


semop


semop(id, ops, num)


int id, num;


struct sembuf **ops;


Semop does the set of semaphore operations in the array of structures ops, to the set of semaphores identified by id. Num is the number of entries in ops. The structure of sembuf is:


struct sembuf {


short


sem_num; /* semapbore number */


short


sem op;


/* semaphore operation */


short


sem flg;


/* flag */


1;


Sem_num specifies the index in the semaphore array for the particular operation, and semjig specifies fiags for the operation. The operations sem op for semaphores are:


negative if sum of semaphore value and sem op


0, add sem_op to


to semaphore value. Otherwise, sleep, as per flag.


positive


add sem_op to sernaphore value.


zero


continue, if semaphore value is 0. Otherwise, sleep as per flag.


1f IPC NOWAIT is set in sem_flg for a particular operation, semop returns immediately for those occasions it would have slept. 1f the SEM_UNDO flag is set, the operation is subtracted from a running sum of such values. When the process exits, this sum is added to the value of the semaphore. Semop returns the value of the last semaphore operation in ops at the time of the call, setpgrp


setpgrp()


Setpgrp sets the process group ID of the calling process to its process 1D and returns the new value,


setuid


setuid (uid)


int uid;
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setgid (gid)


int gid;


Set uid sets the real and effective user ID of the calling process. If the effective user ID of the caller is superuser, setuid resets the real and effective user IDs.


Otherwise, if its real user ID equals uid, setuid resets the effective user ID to uid.


Finally, if its saved user ID (set by executing a setuid program in exec) equals uid, setuid resets the effective user ID to uid. Setgid works the same way for real and effective group IDs.


slimed


#include <sysitypes.h>


#include <sysiipc.h>


#include <sysishm.h>


shmetl(id, cmd, buf)


int id, cmd;


struct shmid ds *buf;


Shmcti does various control operations on the shared memory region identified by Id. The structure shmid ds is defined by:


struct shmid_ds


struct ipc_perm shm_perm;


/* permission struct */


int


shm segsz;


/* size of segment */


int •


pad 1;


/* used by system */


ushort


shm jpid;


/* pid of last operation */


ushort


shm_cpid;


1* pid of creator */


ushort


shm_nattch; /* number currently attached */


short


pad2;


/* used by system */


time_t


shm_atime;


/* last attach time *1


time_t


shm dtime;


/* last detach time */


time_t


shm ctirne;


/* last change time */


.1;


The operations are:


1PC STAT


read values of shared memory header for id into buf.


1PC_SET


set shm_perm.uid, shm_perm.gid, and shm_perm.mode (9 low-order


bits) in shared memory header according to values in buf.


IPC RM1D


remove shared memory region for id.


shmget


#include <sysitypes.1.>


#include <sysiipc.h>


#include <sysishm.h>
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shmget(key, size, fiag)


key_t key;


int size, fiag;


Shrrtget accesses or creates a shared memory region of size bytes. The parameters key and flag have the same meaning as they do for msgget.


shmop


#include <sys/types.h>


#include <sys/ipc.h>


#include <sys/shm.h>


shmat(id, addr, fiag)


int id, fiag;


char *addr;


shmdt (addr)


char *addr;


Shmat attaches the shared memory region identified by id to the address space of a process. 1f addr is 0, the kernel chooses an appropriate address to attach the region. Otherwise, it attempts to attach the region at the specified address. 1f the SHM RND bit is on in flag, the kerne rounds off the address, if necessary. Shmat returns the address where the region is attached.


Shrndt detaches the shared memory region previously attached at addr.


signa!


#include <signal.h>


signal(sig, function)


int sig;


void (*func)();


Signal allows the calling process to control signa] processing. The values of sig are: SIGHUP


hangup


SIGINT


interrupt


SIGQUIT


guit


SIGILL


illegal instruction


SIGTRAP


trace trap


SIGIOT


IOT instruetion


SIGEMT


EMT instruction


SIGFPE


floating point exception


SIGKILL


kin
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SIGBUS


bus error


SIGSEGV


segmentation violation


SIGSYS


bad argument in system call


SIGPIPE


write on a pipe with no reader


SIGALRM


alarm


SIGTERM


software termination


SIGUSRI


user-defined signal


SIGUSR2


second user-defined signal


SIGCLD


death of child


SIGPWR


power failure


The interpretation of function is as follows:


SIG DFL default operation. For all signals except SIGPWR and SIGCLD, process terminates. It creates a core image for signals SIGQUIT,


SIGILL, SIGTRAP, SIGIOT, SIGEMT, SIGFPE, SIGBUS, SIGSEGV, and


SIGSYS.


SIG_IGN


ignore the occurrence of the signal.


function


an address of a procedure in the process. The kernel


arranges to call the function with the signal number as argument


when it returns to user mode. The kernel automatically resets


the value of the signal handler to SIG_DFL for all signals


except SIGILL, SIGTRAP, and SIGPWR. A process cannot catch


SIGKILL signals.


stat


stat (filename, statbuf)


char *filename;


struct stat *statbuf;


fstat(fd, statbuO


int fd;


struct stat *statbuf;


Stat returns status information about the specified file. Fstat does the same for the open file whose descriptor is fd. The structure of statbuf is: struct stat


dev t


st_dev;


/* device number for dev containing file 'V


ino_t


st jno;


/* Mode number */


ushort


st_mode;


/* file type (see mknod) and perms (see chmod) */


short


st_nlink;


/* number of links for file */


ushort


st_uid;


/* user ID of file's owner */


ushort


stigid;


/* group ID of file's group 'V


dev_t


stidev;


/* major and minor device numbers *I


off t


st_size;


/* size in bytes •/
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ti met


st_atime;


/* time of last access */


ti met


st_mtime; /* time of last modification


ti met


st_ctime;


/* time of last status change *I


stirne


stime(tptr)


long *tptr;


Stime sets the system time and date, according to the value pointed to by tptr.


Times are specified in seconds since 00:00:00 January, 1, 1970, GMT.


syne


sync0


Syne fiushes file system data in system buffers onto disk.


time


ti me(tloc)


long *tloc;


Time returns the number of seconds since 00:00:00 January 1, 1970, GMT. 1f doe is not 0, it will contain the return value, too.


times


#include <sysitypes.h>


#include <sysitimes.h>


ti mes(tbuf)


struct tms *tbuf;


Times returns the elapsed real time in clock ticks from an arbitrary fixed time in the recent past, and fills tbuf with accounting information:


struct t ms


ti met


tms_utime;


I* CPU time spent in user mode */


ti met tms_stime;


I* CPU time spent in kernel mode */


ti met tms_cutime; /* Sum of tms_utime and tms_cutime of children */


timet


tms_sutime;


/* Sum of trns_stime and tms_sutime of children *1
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ulimit


ulimit(cmd,


int cmd;


long limit;


Ulimit allows a process to set various limits according to the value of cmd: 1


return maximum file size (in 512 byte blocks) the process can write 2


set maximum file site to li mit.


3


return maximum possible break value (highest possible address in data region).


umask


urnask(mask)


int mask;


Set the file mode creation mask and return the old value. When creating a file, permissions are turned off if the corresponding bits in mask are set.


umount


umount(specialfile)


char *specialfile;


Unmount the file system in the block special device specialfile, miame


#include <sysiutsname.h>


uname(name)


struct utsname *name;


Uname returns system-specific information according to the following structure:
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unlink


unlink(filename)


char *filename;


Remove the directory entry for the indicated file.


ustat


#include <sysitypes.h>


#include <ustat.h>


ustat(dev, ubuf)


int dev;


struct ustat *ubuf;


Ustat returns statistics about the file system identified by dev (the major and minor number). The structure ustat is defined by:


utime


#include <sysitypes.h>


utime(filename, times)


char *filename;


struct utimbuf *times;


Utime sets the access and modification times of the specified file according to the value of times. If 0, the current time is used. Otherwise, times points to the following structure:


struct utimbuf


timet


axtime;


/* access time */


timet


modtime; /* modification time */


All times are measured from 00:00:00 January 1, 1970 GMT.
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wait


wait (wait stat)


int *wait_stat;


Wait causes the process to sleep until it discovers a child process that had exited or a process asleep in trace mode. If wait slat is not 0, it points to an address that contains status information on return from the call. Only the 16 low order bits are written. If wait returns because it found a child process that had exited, the low order 8 bits are 0, and the high order 8 bits contain the low order 8 bits the child process had passed as a parameter to exit. If the child exited because of a signal, the high order 8 bits are 0, and the low order 8 bits contain the signal number. In addition, bit 0200 is set if core was dumped. If wait returns because it found a traced process, the high order 8 bits (of the 16 bits) contain the signal number that caused it to stop, and the low order 8 bits contain octal 0177.


write


write(fd, buf, count)


int fd, count;


char *buf;


Write writes count bytes of data from user address buf to the file whose descriptor is fd.





BIBLIOGRAPHY


[Babaoglu 811 Babaoglu, Q, and W. Joy, "Converting a Swap-Based System to do Paging in an Architecture Lacking Page-Referenced Bits," Proceedings of the 8th Symposium on Operating Systems Principles, ACM Operating Systems Review, Vol.


15(5), Dec. 1981, pp. 78-86.


[Bach 841 Bach, M. J., and S. J. Buroff, "Multiprocessor UNIX Systems," AT&T Bel!


Laboratories Technical Journal, Oct. 1984, Vol 63, No. 8, Part 2, pp. 1733-1750.


[Barak 80] Barak, A. B. and A. Shapir, "UNIX with Satellite Processors," Software -


Practice and Experience, Vol. 10, 1980, pp. 383-392.


Weck 85] Heck, B. and B. Kasten, "VLSI Assist in Building a Multiprocessor UNIX


System," Proceedings of the USENIX Association Summer Conference, June 1985, pp. 255-275.


[Berkeley 83] UNIX Programmer's Manual, 4.2 Berkeley Software Distribution, Virtual VAX-I I Version, Computer Science Division, Department of Electrical Engineering and Computer Science, University of California at Berkeley, August 1983.


[Birrell 84] Birrell, A.D. and B.J. Nelson, "Implementing Remote Procedure Calls," ACM


Transactions on Computer Systems, Vol. 2, No. 1, Feb. 1984, pp. 39-59.


[Bodenstab 84] Bodenstab, D. E., T. F. Houghton, K. A. Kelleman, G. Ronkin, and E. P.


Schan, "UNIX Operating System Porting Experiences," AT&T Bel! Laboratories Technical Journal, Vol. 63, No. 8, Oct. 1984, pp. 1769-1790.


[Bourne 78] Bourne, S. R., "The UNIX Shell," The Bel! System Technical Journal, July-August 1978, Vol. 57, No. 6, Part 2, pp. 1971-1990.


454





BIBLIOGRAPHY


455


[Bourne 831 Bourne, S.R., The UNIX System,  Addison-Wesley, Reading, MA, 1983.


[Brownbridge 821 Brownbriclge, D. R., L. F. Marshall, and B. Randell, "The Newcastle Connection or UNIXes of the World Unite!" in Software Practice and Experience, 


Vol. 12, 1982, pp. 1147-1162.


[Bunt 761 Bunt, R.B, "Scheduling Techniques for Operating Systems," Computer, Oct.


1976, pp. 10-17.


[Christian 831 Christian, K., The UNIX Operating System, John Wiley & Sons Inc., New York, NY, 1983.


[Coffman 73] Coffman, E.G., and P.J. Denning, Operating Systems Theory, Prentice-Hall Inc., Englewood Cliffs, NJ, 1973.


[Cole 85] Cole, C.T., P.R. Flinn, and A.B. Atlas, "An Implementation of an Extended File System for UNIX," Proceedings of the USENIX Conference, Summer 1985, pp.


131-149.


[Denning 681 Denning, Pi., "The Working Set Model for Program Behavior, Communications of the ACM, Volume 11, No. 5, May 1968, pp. 323-333.


[Dijkstra 65] Dijkstra, E.W., "Solution of a Problem in Concurrent Program Control," CA CM, Vol.


8, No. 9, Sept. 1965, p. 569.


[ Dijkstra 681 Dijkstra, E.W., "Cooperating Sequential Processes," in Programming Languages, ed. F. Genuys, Academic Press, New York, NY, 1968.


[Felton 84] Felton, W. A., G. L. Miller, and J. M. Milner, "A UNIX Implementation for System/370," AT&T Bell Laboratories Technical Journal, Vol. 63, No. 8, Oct. 1984, pp. 1751-1767.


[Goble 81] Goble, G.H. and M.H. Marsh, "A Dual Processor VAX 11/780," Purdue University Technical Report, TR-EE 81-31, Sept. 1981.


[ Henry 84] Henry, G. J., "The Fair Share Scheduler," AT&T Bell Laboratories Technical


Journal, Oct. 1984, Vol 63, No. 8, Part 2, pp. 1845-1858.


[Holley 791 Holley, L.H., R.P. Parmelee, C.A. Salisbury, and D.N. Saul, "VM/370


Asymmetric Multiprocessing," IBM Systems Journal, Vol. 18, No. 1, 1979, pp. 47-70.


[Holt 83] Holt, R.C., Concurrent Euclid, the UNIX System, and Tunis, Addison-Wesley, Reading, MA, 1983.


[Horning 73] Horning, I J., and B. Randell, "Process Structuring," Computing Surveys, Vol. 5, No. 1, March 1973, pp. 5-30.


[Hunter 84] Hunter, C.B. and E. Farquhar, "Introduction to the NS16000 Architecture,"


IEEE Micro, April 1984, pp. 26-47.


[Johnson 78] Johnson, S. C. and D. M. Ritchie, "Portability of C Programs and the UNIX


System," The Bell System Technical Journal, Vol. 57, No. 6, Part 2, July-August, 1978, pp. 2021-2048.


[Kavaler 831 Kavaler, P. and A. Greenspan, "Extending UNIX to Local-Area Networks,"


Mini-Micro Systems, Sept. 1983, pp. 197-202.


[Kernighan 781 Kernighan, B. W., and D. M. Ritchie, The C Programming Language, 


Prentice-Hall, Englewood Cliffs, NJ, 1978.


[Kernighan 84] Kernighan, B.W., and R. Pike, The UNIX Programming Environment, Prentice-Hall, Englewood Cliffs, NJ, 1984.


[Killian 84] Killian, TJ., "Processes as Files," Proceedings of the USENIX Conference, Summer 1984, pp. 203-207.





456


BIBLIOGRAPHY


[Levy 801 Levy, H.M., and R.H. Eckhouse, Computer Programming and Architecture: The VAX-11, Digital Press, Bedford, MA, 1980.


[Levy 821 Levy, H.M., and P.H. Lipman, "Virtual Memory Management in the VAX/VMS


Operating System," Computer, Vol. 15, No. 3, March 1982, pp. 35-41.


[Lu 831 Lu, P.M., W. A. Dietrich, et. al., "Architecture of a VLSI MAP for BELLMAC-32


Microprocessor," Proc. of IEEE Spring Compcon, Feb. 28, 1983, pp. 213-217.


[Luderer 811 Luderer, G.W.R., H. Che, J.P. Haggerty, P.A. Kirslis, and W.T. Marshall, "A Distributed UNIX System Based on a Virtual Circuit Switch," Proceedings of the Eighth Symposium on Operating Systems Principles, Asilomar, California, December 14-16, 1981.


[Lycklama 78a1 Lycklama, H. and D. L. Bayer, "The MERT Operating System," The Bell System Technical Journal, Vol. 57, No. 6, Part 2, July-August 1978, pp. 2049-2086.


[Lycklama 78b1 Lycklama, H. and C. Christensen, "A Minicomputer Satellite Processor System," The Bell System Technical Journal, Vol. 57, No. 6, Part 2, July-August 1978, pp. 2103-2114.


[ McKusick 84] McKusick, M.K., W.N. Joy, S.J. Leffler, and R.S. Fabry, "A Fast File System for UNIX," ACM Transactions on Computer Systems, Vol. 2(3), August 1984, pp. 181-197.


[ Mullender 841 Mullender, S.J. and A.S. Tanenbaum, "Immediate Files," Software -


Practice and Experience, Vol. 14(4), April 1984, pp. 365-368.


[ Nowitz 80] Nowitz, D.A. and M.E. Lesk, "Implementation of a Dial-Up Network of UNIX


Systems," IEEE Proceedings of Fall 1980 COMPCON, Washington, D.C., pp. 483-486.


[Organick 721 Organick, E.J., The Multics System: An Examination of Its Structure, The MIT Press, Cambridge, MA, 1972.


[Peachey 841 Peachey, D.R., R.B. Bunt, C.L. Williamson, and T.B. Brecht, "An Experimental Investigation of Scheduling Strategies for UNIX," Performance Evaluation Review, 1984 SIGMETRICS Conference on Measurement and Evaluation of Computer Systems, Vol. 12(3), August 1984, pp. 158-166.


[Peterson 83] Peterson, James L. and A. Silberschatz, Operating System Concepts, Addison-Wesley, Reading, MA, 1983.


[Pike 841 Pike, R., "The Blit: A Multiplexed Graphics Terminal," AT&T Bell Laboratories Technical Journal, Oct. 1984, Vol 63, No. 8, Part 2, pp. 1607-1632.


[Pike 851 Pike, R., and P. Weinberger, "The Hideous Name," Proceedings of the USEN1X


Conference, Summer 1985, pp. 563-568.


[Postel 801 Poste!, J. (ed.), "DOD Standard Transmission Control Protocol," ACM


Computer Communication Review, Vol. 10, No. 4, Oct. 1980, pp. 52-132.


[Postel 81] Postel, J., C.A. Sunshine, and D. Cohen, "The ARPA Internet Protocol,"


Computer Networks, Vol. 5, No, 4, July 1981, pp. 261-271.


[Raleigh 761 Raleigh, T.M., "Introduction to Scheduling and Switching under UNIX,"


Proceedings of the Digital Equipment Computer Users Society, Atlanta, Ga., May 1976, pp. 867-877.


[Richards 69] Richards, M., "BCPL: A Tool for Compiler Writing and Systems Programming," Proc. AF1PS SJCC 34, 1969, pp. 557-566.


[Ritchie 78a] Ritchie, D. M. and K. Thompson, "The UNIX Time-Sharing System," The Bell System Technical Journal, July-August 1978, Vol. 57, No, 6, Part 2, pp. 1905-1930.





BIBLIOGR,APHY


457


(Ritchie 78b] Ritchie, D. M., "A Retrospective," The Bel! System Technical Journal, July-August 1978, Vol. 57, No. 6, Part 2, pp. 1947-1970.


(Ritchie 81) Ritchie, D.M. and K. Thompson, "Some Further Aspects of the UNIX Time-Sharing System," Mini-Micro Software, Vol. 6, No. 3, 1981, pp. 9-12.


[Ritchie 84a) Ritchie, D. M., "The Evolution of the UNIX Time-sharing System," AT&T


Ben Laboratories Technical Journal, Oct. 1984, Vol 63, No. 8, Part 2, pp. 1577-1594.


[Ritchie 84b] Ritchie, D. M., "A Stream Input Output System," AT&T Bel! Laboratories Technical Journal, Oct. 1984, Vol 63, No. 8, Part 2, pp. 1897-1910.


[Rochkind 851 Rochkind, Mi., Advanced UNIX Programming, Prentice-Hall, 1985.


[Saltzer 66] Saltzer, J. H., Traffic Control in a Multiplexed Computer System, Ph.D.


Thesis, MIT, 1966.


(Sandberg 85) Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, "Design and I mplementation of the Sun Network Filesystem" Proceedings of the USENIX


Conference, Summer 1985, pp. 119-131.


[SVID 851 System V Interface Definition, Spring 1985, Issue 1, AT&T Custorner Information Center, Indianapolis, IN.


[SystemV 84a] UNIX System V User Reference Manual.


iSystemV 84b1 UNIX System V Administrator's Manual.


(Thompson 74) Thompson, K. and D.M. Ritchie, "The UNIX Time-Sharing System,"


Communications of the ACM, Vol. 17, No. 7, July, 1974, pp. 365-375 (revised and reprinted in [Ritchie 78a]).


[Thompson 781 Thompson, K., "UNIX Implementation," The Bel! System Technical Journal, Vol. 57, No. 6, Part 2, July-August, 1978, pp. 1931-1946.


[ Weinberger 841 Weinberger, P.J., "Cheap Dynamic Instruction Counting," The AT&T


Bel! Laboratories Technical Journal, Vol. 63, No. 6, Part 2, October 1984, pp.


1815-1826.





INDEX


A


Block device, 21, 23, 122, 134, 139, 313,


314


Abortive return, 170


buffer cache and, 323


Accept system call, 385


close procedure, 320


Ada, 4


interface to disk, 326, 327


Address space, 171, 277


Block device special file, 88, 108


Address translation, 18, 151, 154-157, 160,


Block device switch table, 314-317, 327


181, 189


Block number, 39, 41-43, 289, 325


Administration, 34, 41, 276, 295, 314, 325,


Bmap algorithm, 68-70, 89


328


use of, 75, 97, 102


Age bit, 287, 288


Bodenstab, 4


Alarm signal, 150, 201, 260


Boot block, 24, 119, 235, 326


Alarm system call, 258, 260, 261, 270


Boot system, 24, 109, 134, 156, 235, 236,


algorithm, 84-86


268


use of, 92, 101


Bootstrap, 24, 235


Allocreg algorithm, 172, 173, 224


Bourne, Steve, 12, 13


use of, 178, 179, 220, 223, 367


Bread algorithm, 54, 60


Architecture, 5, 19


strategy procedure and, 322


Asynchronous execution, 11, 233, 235


use of, 65, 75, 83, 98


Asynchronous I/O, 46, 54


Breada algorithm, 54, 55


Asynchronous write, 48, 55


use of, 60, 98, 100


AT&T 382 computer, 189


Break key, 201, 204, 210, 245, 342


AT&T 3B20 computer, 223, 230, 267, 336,


Brelse algorithm, 46


397


use of, 48, 54, 55, 56, 75


AT&T 3820A computer, 395, 408, 409


Brk system call, 21, 229


AT&T, 1, 3, 256


algorithm, 229-231


Atomic operation, 134, 142, 370, 378, 397,


shared memory and, 369


401


swap and, 276, 279


Attachreg algorithm, 173, 174


use of, 243


use of, 178, 194, 220, 223, 369


Brownbridge, 413


BSD, 3, 72, 141, 209, 240, 271, 291, 292,


309, 342, 383, 384, 388


Bss, 25, 220, 293


B language, 2


Buffer, 21, 39, 41, 42, 46


Bach, 395, 408


alignment, 56


Background execution, 12, 37, 233, 353


allocation, 44-52, 92,


Basic, 4


See also getblk


allocation in m


BCPL, 2


ultiprocessor, 404


comparison to mode, 65


Beck, 410


busy, 40, 43, 46, 48, 51


Bell Laboratories, I, 3


no reference count, 63


Berkeley, University of California at, 3,


Buffer cache, 38-57


See also BSD


Bind system call, 384


advantages and disadvantages 56, 57


Birrell, 414


analogous to page cache, 289


disk interface, 328


458





INDEX


459


driver close procedure, 320


sticky bit and, 225, 226


not used in swapping, 276


Chown system call, 21, 110


umount and, 127


read-only file system and, 144


used for block device, 314


Chroot system call, 74, 109, 110, 143


Buffer header, 39, 40, 48


fork and, 194


driver strategy procedure and, 322


in Newcastle connection, 425


Buffer queue, 41-43, 48


Client process, 382, 388, 424


Building block primitives, 13


Clist, 331-334, 344


command, 232


Clock, 260, 265-268


Bwrite algorithm, 56


restarting, 262


strategy procedure and, 322


Clock handler, 251, 254, 262, 269, 280


use of, 107


in multiprocessor, 395


Byte offset, 68, 325


Clock interrupt, 247, 251, 253, 265


Byte stream, 4, 7


Clock tick, 247, 268


Close system call, 21, 103-105


C


driver interface, 314, 318-320


dup and, 119


C, 2, 4


m ode and, 65


C library, 165, 167


pipe and, 115


in Newcastle connection, 413, 423-425,


relation to mode lock, 100


430, 431


sockets, 386


Callout talie, 263, 264


use of, 198, 234


Canonical mode, 329, 334, 336


Cobol, 4


Catch signa!, See Signa', catch


Coffman, 397


Cblock, 331-334


Cole, 429


Central processor, in satellite system, 414


Command, 11


Change directory, See chdir system call,


Command line, 11, 234


109


Compare and swap instruction, 397


Change mode, See chmod system eau, 110


Computing Science Research Center, 2


Change owner, See chown system eau, 110


Concurrent Euclid, 410


Change root, See chroot system call, 109


Conditional P sernaphore operation, See CP


Changed root, 213


semaphore operation


Changing (execution) mode, 157


Conditional semaphore, 1PC, 378


Character device, 21, 313, 352, See also


Configuration, 41, 57, 313, 314


Raw device


Connect system eau, 385


close procedure, 320


Consent Decree, 3


Character device special file, 88, 108


Consistency


Character device switch table, 314-317,


file data, 101


327


file system, 133, 139


Chdir systern cal!, 109, 144


kernel, 168


use of, 123


link and, 129


Checking signals, 202


Context, 16, 29, 156, 160, 161, 195


Child process, 25, 192


definition, 159


Chmod command, 89, 243


exec and, 220


Chmod system call, 21, 110


fork and, 196


devices and, 323


saving, 162


read-only file system and, 144


Context layer, 160-165, 168, 169, 183, 195,


207





460


INDEX


Context switch, 29, 31, 33, 160, 168-170,


Delayed write, 39, 40, 43, 48, 49, 55-60,


189, 190, 248, 254


102


sleep and, 186


umount and, 126


tracing and, 358


Delete key, 201, 204, 210, 245, 329, 342


Contiguous file, 67


Demand fill, 288, 293, 300, 303


Contiguous swap space, 272


Demand paging, 21, 152, 189, 190, 271,


Control q character, 353


272, 285-307


Control s character, 353


in distributed system, 433


Control terminal, 150, 213, 342, 343, 353


on less sophisticated hardware, 306


standard input and, 96


Demand paging policy, 310


Cooked input, 334


Demand paging system, defintion, 15


Copy on write bit, 287, 290, 303-306, 309


Demand zero, 289, 293, 300, 303


Core dump, 204, 205, 239


Denning, 286


in distributed system, 428


Detachreg algorithm, 180, 181


Corruption, 134, 392, 393


use of, 213, 220, 223, 370


CP semaphore operation, 397, 403, 405,


Device, 4, 8, 15, 312


411


in distributed system, 429, 432


Crash, 57, 133, 134, 139, 140, 370


open procedure, 122


Creat system call, 105-107, 143, 144


Device driver, 21, 312-324


and directory, 74


interface, 313, 315


locks and, 370


multiprocessor, 408


read-only file system and, 144


Device file, See Device special file


use of, 8, 13, 22, 234


Device interrupt, 315, 324


Critical region of code, 30, 32, 33, 393


Device number, 23, 39, 43, 63, 64, 120,


Current directory, 7, 12, 29, 74, 213, 245


123, 289, 322, 325


fork and, 194


parameter to getblk, 44


in Newcastle connection, 425


Device special file, 6, 10, 60, 313, 315


initial, 109, 235


See also Character device special


Current root, 29


file


and block device special file


Dijkstra, 372, 389, 397


Direct block, See Inode, direct block


Directory, 6,7, 23, 60, 75, 76, 90, 108, 109,


Daemon process, 238


133


DARPA, 384


access permission, 74


Data region, 25, 229


creat system call and, 74, 107


Data section, 24, 151


creation of, 107


Datagram, 384, 386


linear search, 75, 76, 90


Deadlock, 142, 169, 242, 380, 403


link system call and, 74, 129


in multiprocessor, 402, 404, 406


mknod system call and, 74


link and, 130, 131


structure, 73, 74, 89


swap and, 285


unlink system call and, 74


Death of child signal, 200, 201, 203, 209,


Directory hierarchy, 73, 137


210, 213-217, 239, 241


Disk, 52-56


DEC, 325


configuration, 326


Defense Advanced Research Project


raw interface, 352


Agency, See DARPA


Disk block


Dekker, 372


allocation, 84, 86, 85, 87, 102





INDEX


461


buffer and, 42


Execl, 217


free, 132


Execle, 217


Disk block descriptor, 286, 288-290, 293,


Execlp, 245


298-301


Executable file


Disk driver, 52-54, 325


layout, 218, 219


Disk section and file system, 121


page from, 293


Distributed systems, 412, 413


Execv, 217


DMA, 289, 322


Execve, 217


Domain, 384


Execvp, 245


Dot, 10, 73, 108, 142, 241


Exit system cal!, 21, 147, 212, 216, 225,


link and, 132


242


Dot-dot, 73, 108, 142, 241


algorithm 212, 213


in distributed system, 427


context switch and, 168, 169, 254


in Newcastle connection, 432


current directory and, 109


rnount point and, 126


receipt of signal and, 203


Double fault, 302


in muliprocessor, 408


Driver, See Device driver


in satellite system, 419, 431


Dummy process, 409


use of, 8, 10


Dup system call, 117-119


Expansion swap, 279


comparison to fork, 194


reference count and, 104


shared pointer and, 96


use of, 198, 199, 234


Fair share scheduler, 255, 257, 269


Dup2 system call, 144


Fault handler, 307


Dupreg, 182


Felose, 140


use of, 194


Fentl system call, 142, 313


DZ1 I Controller, 321


Feedback, 248


Felton, 4


E


Fflush, 57


FIFO, 88


Echo, 329, 340


File, 21,68


Effective user 1D, 150, 211, 227, 228


access permission, 8, 22, 60, 61, 65, 67,


End-of-file, 100, 213, 339, 353


93, 108, 151, 227


Erase character, 334, 337


access permission and chdir, 109


Erase key, 329


access time, 61, 67


Event, See Sleep event


group, 8, 61, 74, 110


Exception condition, 16, 156, 200


link count, 129


context and, 162


links, 62, 65


Exec environment, 217, 218


offset and pipe, 113


Exec system call, 21, 25, 200, 217


owner, 8, 60, 61, 65, 67, 74, 110, 227


algorithm, 218-225, 242


size, 60, 62, 65, 151


disk block descriptor and, 288


structure, 60, 69


in paging system, 290, 293


type, 61, 65, 83, 86


in satellite system, 431


File descriptor, 8, 23, 29, 92-98, 101, 103,


of setuid program, 229


104, 107, 117, 118, 135, 200, 316,


signals and, 200


318


use of, 10, 233, 234


in satellite system, 417





462


INDEX


File locking, 100, 103, 135, 142


buffer, 41, 43, 46, 48, 56, 60


File subsystem, 19, 21, 22


disk block, 139


File system, 15, 23, 43, 84, 91, 119-122


m ode, 63, 64, 67


address, 325


page, 300


disk section and, 352


Freereg algorithm, 179-181, 225, 370


hierarchy, See File system tree


Fsck command, 134, 139, 326, 328, 352


initialization, 73


Fstat system call, 110, 111


link and, 128


Fubyte, 171


maintenance, 122, 134, 139, 140


Fwrite, 140


root 6, 109, 110


structure, 24, 92


tree, 4, 6, 121, 92, 120, 139


user perspective 6-10


GECOS, 2


File system abstraction, 138, 145


General Electric 1


File system calls, 92


General-purpose registers, 159


File system type, 138, 139


Getblk algorithm, 43, 44


File table, 22, 93-98, 101, 104, 105, 107,


comparison to iget, 64


112, 117, 118, 194, 316, 318, 323


in multiprocessor, 40-407, 411


analogous to pregion, 152


use of, 46-56, 122


driver close procedure, 319


Geteuid system call, 227


in satellite system, 416


Getpgrp system call, 211


offset, 93, 97-99, 101, 103


Getpid system call, 211


First-fit, 272


Getppid in satellite system, 416


First-in-first-out buffer replacement, 57, 58


Getsockname system call, 386


Flow control, 320, 350, 429


Getsockopt system call, 386


Fopen, 140


Getty, 212, 238, 246, 318, 343, 353, 382


Fork system call, 21, 25, 147, 192


Getuid system call, 227


algorithm, 193-198


Goble, 393


copy on write and, 303


Growreg algorithm, 174-176, 177


current directory and, 109


use of, 174, 178, 179, 220, 229


in Newcastle connection, 425


Gtty system call, 323


in paging system, 289, 290, 291, 297,


309


in satellite system, 417-419


reference count and, 104


Handling signals, See


shared pointer and, 96


Signal handler


Hangup signal, 213, 353


swap and, 276, 278, 279


Hash function, 41, 42, 58


use of, 10, 199, 233, 234


Henry, 256


usually followed by exec, 226


History, I


Fortran, 2, 4


Holley, 393


Fragmentation, 67, 68, 72, 141, 142, 272,


Holt, 410


297


Honeywell 635,


Fread, 140


2


Hybrid system, 307


Free algorithm, 85


use of, 92, 107, 132


Free library routine, 243


Free list


I/O parameters, 29





1/0 Subsystem, 312


buffer cache, 46


Ialloc algorithm, 77-84, 122


file system, 57


use of, 92, 107, 112


kernel, 168


IBM System/370, 4, 322, 395, 397


Intelligent terminal, 339


IBM 7900, 25


Interactive Systems Corporation, 3


lfree algorithm, 80


Internet dornain, 384, 387


use of, 92, 132


Interprocess communication, 21, 22, 355,


Iget algorithm, 64-66, 89 123, 124


359-381 genera! comments, 381


comparison to getblk, 64


Interrupt, 16, 22, 29, 30, 46, 190, 314


mount point and, 122-124


disk, 54, 56


use of, 75, 76, 82, 109, 132, 223


Interrupt handler, 31-33, 163, 164, 324


Inconsistency, 100, 139


context and, 160, 162


Indirect block, See m ode, indirect block


context switch and, 168, 169


Indirect terminal driver, 343, 353


disk, 56


Init, 25, 212, 213, 216, 235-237, 245, 246,


in multiprocessor, 403, 406


343, 353, 382


terminal, 337


Inittab, 236, 237


Interrupt level, 161


m ode, 22, 23, 24, 38, 60, 62, 65, 68-71,


Interrupt stack, 163


74-76, 81, 88, 93-96, 100, 102, 105,


Interrupt vector, 162, 163, 315, 324


107-109, 118, 121, 123, 126, 139,


Interruptible priority, 201, 209, 215, 252,


225, 316, 318


377


accessing, 64


Ioctl system call, 313, 314, 323, 330


assignment of, 77-86


networks, 382


close system cal! and, 65


streams, 347, 348, 350


comparison to region, 152


terminal, 339, 340


definition of, 61


1PC, See Interprocess communication


direct block, 68-71, 74, 102, 114, 132


!put algorithm, 66, 89


exec system call and, 220


use of, 75, 76, 109, 110, 126, 129, 132,


file system type and, 138


179, 221, 223


in distributed systern, 428, 429


Issig algorithm, 201, 203


in region, 173


in wait, 214


in satellite system, 416


indirect block„ 68-71, 74, 100-102, 132


K


link count, 129-135, 139


lock, 63


Kernel, 4


mount system call and, 353


introduction to, 19


open system cal! and, 65


data structures, 34


pipe system call and, 114


layout, 156


reference count, 63, 65-67, 104, 109,


Kernel mode, 15, 16, 26, 30, 31, 147, 157


112, 121, 126, 129, 130, 132, 135,


Kernel priority, 249, 250, 252


145, 192, 194, 223-225, 316


Kernel process, 238


releasing, 67


Kernel profiler, 312


m ode cache, 66, 67


Kernel running state, 30, 147-150, 182


m ode list, 24, 65, 76, 77, 80, 119


Kernel stack, 26, 27, 160-163, 168, 189,


m ode number, 63, 73, 77, 79-81, 89, 107,


195, 220


108, 132, 139


swap and, 278


Integrity, 135


Kernighan, Brian, 2





464


INDEX


Key, IPC, 359, 360, 381


Login terminal, 150, 204 See also Control


Kill character, 329, 334, 337


terminal


Kill system call, 200, 201, 210, 211, 239


Longjmp algorithm, 170, 171, 240


comparison to IPC, 355


use of, 188, 209, 318, 420


effective user ID and, 227


Lseek system call, 71, 103, 104


use of, 207


adjusts file offset, 98


Killian, 138, 359


devices and, 323


pipe and, 113


signals and, 200


Lycklama, 3, 4


Least-frequently-used buffer replacement,


57, 58


Least-recently-used, 40, 41


Levy, 306, 307, 321


Major number, 88, 108, 121, 218, 219,


Library, 20, 26, 165, 168


316, 322, 352


Library interface, 19


MaHoc algorithm, 273


Line break, 329


MaHoc library routine, 243


Line discipline, 329-334, 336, 339, 342,


Mandatory file lock, 142


347, 350, 353


Map, 272, 273, 277, 308


Link count, See File link count


messages, 361


Link system call, 22, 128-131, 135


Massachusetts Institute of Technology, 1


across file systems, 120


Master processor, 393, 410


directory, 74


MC 68451 memory management unit, 189


read-only file system and, 144


McKusick, 72


use of, 241


Memory contention, 410


Lisp, 4


Memory fault, 231


Listen system call, 385


Memory management, 21, 17, 154


Loadreg algorithm, 176-178


Memory management policy, 152, 271


use of, 179, 220, 223


Memory management register triple, 155-


Locality principle, 286


158, 174


Lock, 33


Memory management subsystem, 151


buffer, 40, 46, 50, 53, 54


Memory mapped I/O, 321


m ode, 64-66, 97, 100, 316


MERT, 3,4


region, 172


Message, 22, See also Streams message


sleep, 395


descriptor, 361, 362, 367


super block, 77, 84


header, 362


Lock file, 370


in distributed system, 415, 416


Logging in, 343, 344


IPC, 359, 361-366, 389


Logical block, 23, 24


queue, 361


Logical block number, 100


type, 361-366


Logical device number, See Device number


Mfree algorithm, 308


Logical device, 23


Minor number, 88, 108, 121, 316, 322, 352


Logical disk block, 39


Mkdir command, 145, 229, 241, 424


Login, 229, 238, 353


link and, 129


algorithm, 344


Mkdir system call, 129, 424


Login shell, 343


Mkfs command, 73, 84, 326, 352


process group and, 210


Mknod command, 314





INDEX


465


Mknod system call, 10, 107, 108, 143, 314,


Nice command, 269


352, 353


Nice systern cal', 254


directory, 74


use of, 207, 208


use of, 241


Nice value, 255, 282


Modify bit, 287, 288, 296, 303, 305, 306


fork and, 194


Monitor, 410


swap and, 280, 285


Motorola 68000, 166, 167, 189


No delay


Mount command, 123


driver open procedure, 318


Mount point, 63, 120-127, 144


narned pipe and, 115


crossing, 122, 123


terminal, 341


Mount system call, 24, 119-123, 145, 235


Non-preemption, 30


buffers and, 52


Nowitz, 382


device and, 314


NSC Series 32000, 189


disk sections and, 325


Nucleus, 410


in distributed system, 426, 427


Mount table, 120-123, 126


0


Msgctl system cal!, 361, 367


Msgget system call, 361


Open system call, 21, 22, 92-96


use of, 365


comparison to chdir, 109


Msgrcv system eau, 361


eomparison to creat, 106


algorithm, 365


comparison to shared memory, 370


use of, 390


driver interface, 314, 316-318


Msgsnd system cal], 361


in distributed system, 427, 428


algorithm, 362


in Newcastle conneetion, 424


Mullender, 72


in satellite system, 416


Milities, 2, 190


m ode and, 63, 65


Multihop, 433


multiple calls, 101


Multilevel feedback, 248


named pipe and, 111, 113, 115


Multiplexing, 348-350


sticky bit and, 226


Multiprocessor systems, 391, 392, 395


terminal, 343


performance, 410


unlink and, 135, 137


Mutual exclusion, 30, 77, 410


use of, 8


Operating system services, 14


N


Operating system trap, 165, 166


Organiek, 2


Named pipe, 111-117, 144


creation of, 107


P


Namei algorithm, 74, 75, 90, 125, 126


chroot and, 110


P semaphore operation, 372, 389, 396-402,


in distributed system, 427


408, 411


mount point and, 122-126


Page, 152-154, 230, 272, 286, 289, 300


unlink and, 135


aging, 295, 296


use of, 92, 93, 106, 129, 221, 223


cache, 289


Network communications, 23, 382, 383


fault, 190, 293, 298


1PC and, 381


Page frame data table, See Pfdata


Newcastle connection, 413, 414, 422-425,


Page stealer, 238, 294-297, 300, 307, 309,


430-432


310





466


INDEX


Page table, 153-160, 175-177, 189, 193,


Primary header, 218, 219


277, 286, 288, 290, 291, 296, 301,


Priority queue, 252


302, 305, 308


Priority, 21, 169, 187, 194, 247, 249, 250,


Paging, See Demand paging


252, 253, 255, 268, 269, 282, 305


Parent process, 25, 192


Prober instruction, 171


Pascal 4


Process


Password, 242


creation, 192


Path name, 6, 7, 60, 73-76, 134


definition, 10


conversion to mode, 74, 75


environment, 10


in distributed system, 423


overview, 24


unlink and, 137


scheduling, 14, 21, 33


PATH, 245


structure, 146


Pause system call, 211, 270


synchronization, 21


PDP, 223, 271


Process accounting, 213, 260, 267


PDP 11/23,284


streams and, 351


PDP 11/70, 219


Process control subsystem, 19, 21


PDP 7, 2


Process group, 210, 213, 241


Peachey, 282, 284


Process I D, See PID


Per process region table, See Pregion


Process state, 30, 147-149


PfauIt algorithm, See Protection fault


Process state diagram, See State


handler


transition diagram


Pfdata, 286, 289, 291, 297, 301-303, 305,


Process state transition, See State


309


transition


Physical memory, 151, 278


Process table, 26, 28, 29, 150, 192, 246


P10, 25, 150, 192-194, 214


context and, 160


Pike, 348, 423


definition, 149


Pipe, 13, 60, 88, 108, 111, 116, 117, 144,


ps and, 354


226, 239, 245


shared memory and, 368


consistency and, 139


Process tree, pipes and, 111


delayed write and, 102


Process 0, 25, 74, 109, 147, 212, 235, 238,


signal and, 200


280, See also Swapper


Pipe system call, 112, 143


Process 1, 25, 212, 235, 343, See also


comparison to IPC, 355


Init


Processor execution level, 17, 32, 33, 46,


standard input and, 96


58, 89, 162, 186, 190


use of, 198, 199, 234


Processor priority, See


Pipe device, 112


Processor execution


level


Pipeline, 245


Processor status register, 159


Plock system call, 310


Profil system call, 265, 266


Pop streams module, 347


Profile driver, 264


Poste!, 384


Profiling, 260, 264, 265


Preempt state, 147-150, 248


P


Program counter, 159


reemption, 100, 254, 392


Program, 10


Pregion, 26, 28, 152, 155, 161, 173, 177,


Programmed I/O, 322


179, 181, 291


Programmed interrupt, 162, 264


context and, 160


Prolog, 4


shared memory, 368


Protection bits, 286, 305, 310


Prepaging, 309


Protection fault, 223, 298, 303-305





I NDEX


467


Protection fault handler, 303


Real user 1D, 150, 227, 228


algorithtn, 304


Real-time processing, 257, 258


interaction with validity fault handler,


Record Locking, 100, 103, 135, 142


306


Recovery of distributed system, 433


Ps command, 312, 354


Recv system call, 386


PS register, 159, 166, 167


Recvfrom system call, 386


Pseudo-terminal, 349


Redirect 1/0, 13, 234


Ptrace system call, 356-359, 389


Reference bit, 286-288, 294, 295, 306


Push streams module, 347


software, 307


Put procedure, 345, 350


Reference count, See m ode reference count


Reference count, See Region reference


Q


count


Region, 25, 26, 28, 153-157, 174, 181, 213,


Quit key, 342


222, 276, 291


Quit signal, 205


allocation, 172


attaching, 173, 175


context and, 160


definition, 152, 172


Race condition, 77


detaching, 181


assignment of inodes, 82-84


duplication, 181


buffer, 51, 53


exec, 28


in distributed system, 430


exit, 28


in multiprocessor, 396


fork, 28, 194


link and, 135


freeing, 179


signals and, 207-209


m ode pointer, 172


umount, 144


loading, 176


unlink, 134, 136


reference count, 172, 179, 181, 192,


Raw device interface, 327, See als.°


225, 290


Character device


shared, 223, 225


Raw disk interface, 134, 139, 326, 328,


shared memory, 367-369


329, 352


size, 174


Raw 1/0, 322


type, 172


Raw mode, See Terminal, raw mode


Register context, 159, 162-165, 168, 195,


Read ahead, 54-56, 98-100, 141


205, 207, 220


Read and clear instruction, 397, 400


Regular file, 6, 7, 23, 60, 74


Read system eau, 21, 96-101, 140


delayed write and, 102


disk interface, 327, 328


reading, 96


driver interface, 314, 320, 328


structure, 62-71


fork and, 197


writing, 101


in distributed system, 428


Remote file system, 23, 138


page fault and, 293


Remote procedure cal!, 427-430


pipe and, 113-115, 143


Remote systern call, 427-430


terminal, 187, 188, 336-341


Response time, 57, 249


terminal and satellite system, 421, 422


Restartable instruction, 285


use of, 8, 233


Richards, 2


Read-only file system, 119, 122, 144


Ritehie, Dennis, 2-4, 103, 142, 201, 209,


Ready to run state, 33, 147-150, 182, 183,


226, 330, 344, 350


190, 195, 248, 254, 279, 281, 307,


399





468


INDEX


Rmdir command, 134


Shared memory, 151, 189, 359, 367-370,


Root directory, 73, 74


372, 389


Root mode, 24, 76, 120, 122, 123, 127, 145


attaching, 371


Root mode number, 73, 123


in distributed system, 433


Round robin, 248, 251, 255


region, 181


RP07 disk, 325, 326


Shared memory table, 368


Rubout key, 342


Shell, 11, 12, 15, 336, 343, 353


dup and, 119


exec and, 226


implementation, 232-235, 244, 245


Sandberg, 427, 429


Shell pipeline, dup and, 118


Satellite process, 415


Shmat system call, 367-369


Satellite system, 413-422


Shmctl system call, 367, 370


Saved user ID, 227, 229


Shmdt system call, 367, 369


Sbrk system call, 174


Shmget system call, 367, 368


Scheduler, 21, 150, 169, 186, 187, 190,


Shutdown system call, 386


247-249, 253, 255, 257, 272


Signal, 21, 22, 130, 150, 187, 200-210,


algorithm, 248


239-241, 245, 249


clock and, 260


catching, 205-209, 220


in multiprocessor, 393, 394


checking, 305


Sdb, 356, 358


driver open procedure, 318


Section header, 218, 219


fault causes, 300


Security, 135, 243


handler, 202-205, 210, 240


Select system call, 342


ignoring, 203


use of, 388


in distributed system, 429, 430


Semaphore


in satellite system, 419-422, 431


contention, 410


pipe and, 200


IPC, 359, 370-381


recognition, 203


multiprocessor, 395-397, 402


sleep and, 188


primitives coded in C, 398-400


from terminal, 329, 342


Semctl system call, 373, 380


Signal system call, 200-210, 240


Semget system call, 373


in satellite system, 419


Semop system call, 373, 376-379


Sixth Edition, 269


SEM-UNDO flag, 378


(Slash) iproc, 359


Send system call, 386


Slave processor, 393, 410


Sendto system call, 386


Sleep, 30, 31, 33, 37, 201, 249


Server process, 382, 387, 429-432


address, 183, 184


Service procedure, 345, 347, 350


algorithm, 150, 182-190, 209


Setjmp, algorithm, 170, 171


comparison to P operation, 399


use of, 188, 318


context switch and, 169, 254


Setpgrp system call, 210, 211


event, 28, 33, 34, 37, 150, 183, 184,


terminal, 342


187


use of, 343


in wait, 214


Setuid program, 227-229, 243, 424


lock, 395, 396


tracing and, 359


priority, 187, 188


Setuid system call, 227-229


streams and, 351


Seventh Edition, 269


swap and, 280





I NDEX


469


Sleep library routine, 270


free m ode list, 77-83


Sleep state, 28, 30, 150, 147, 148, 182, 183


lock, 80, 84


Socket system call, 384


Superuser, 36, 61, 110, 194, 211, 227, 229,


use of, 387


242, 245, 254, 310, 352, 360


Sockets, 383-387


in Newcastle connection, 424


Software device, 312


link and, 128


Software interrupt, 162, 264, 347


rnount and, 121


Space Travel, 2


SV1D, 170, 339


Special file, 88, 108


Swap device, 15, 271, 272, 275-277, 289,


creation of, 107


297, 300


See also Character device special file


exec and, 220, 226


and Block device special file


Swap map, 274, 275


Spin lock, 403


Swap space, 272, 274, 275


Stack, 24


allocation in paging system, 298


Stack frame, 25


Swap-use table, 286, 289, 290, 297


Stack pointer, 25, 159, 168


Swapped state, 147-149, 307, 280


Stack region, 25


Swapper proeess, 21, 25, 147, 212, 238,


Stack section, 151


280, 310


Standard error, 13, 96, 200


algorithm, 281, 282


Standard I/O Library, 20, 57, 99, 140


doek and, 260


Standard input, 13, 96, 198, 200, 226, 234,


Swapping, 21, 152, 189, 271-285, 307, 309


353


in distributed system, 433


Standard output, 13, 96, 119, 198, 200,


signal and, 300


226, 234


strategy procedure and, 322


Starvation, 52


Swapping system, definition, 15


Stat system call, 21, 110, 111


Syrnbolic link, 145


devices and, 323


Syne system call, buffers and, 60


State transition, 30, 147


System eau, 5


State transition diagram, 30, 147, 148, 202


buffers and, 51


Sticky bit, 181, 225, 226, 242


context and, 160, 164


Stime system can, 258, 268


context switch and, 168


Strategy interface, 314-316, 322, 325, 328


for devices, 313


Stream socket, 384


interface, 19, 165-168


Strearn-head, 345-347


interrupt in satellite system, 421, 422


Strearns, 344-351


rnultiprocesser interface, 394


analysis, 350


System III, 3


message, 346


System memory layout, 151


module, 346, 347


System V, 1, 3, 6, 12, 25, 68, 73, 89, 90,


multiplexer, 351, 354


103, 120, 138, 142, 152, 200, 221,


queue, 345, 347


240, 251, 252, 272, 275, 286, 290-


scheduling, 347, 350, 353


292, 307, 325, 326, 336, 344, 359,


Stty command, 353


372, 383


Stty system call, 323


System-level context, 159-161


Stub process, 414-425, 429-432


Super block, 24, 38, 60, 76, 84, 90, 119-


126, 139


free block list, 84-87


Tab character, 329





470


INDEX


Tannenbaum, 72


signals and, 203


TCP, 384


swap and, 278, 308


Terminal, 238, 353


system call parameters, 166


driver, 329-342, 351


virtual address, 156-158


hangup, 329


UDP, 384


in distributed system, 430, 432


UID, 28, 150


open procedure, 317, 318


Umount system call, 119, 126, 127, 144,


raw mode, 263, 329, 330, 339, 340, 351


145, 353


signals and, 201


buffers and, 52, 60


virtual, 354


device and, 314


Text, 24


sticky bit and, 226


Text region, 25, 222-226


Undo structure, 378-380


Text section, 151


UNIVAC 1100 Series, 4


Text table, 223


UNIX system domain, 384, 386-388


Thompson, Ken, 2, 3, 96, 103, 226, 251


Unlink system call, 132-137, 143, 145


Threshold priority, 250


comparison to shared memory, 370


Throughput, 57, 60, 250, 307


consistency and, 139, 140


,


Time, 258, 260, 268


directory, 74


in multiprocessor, 411


named pipe and, 113


Time quantum, 14, 21, 247, 248, 251


read-only file system and, 144


Time sharing, 14, 30, 247


region and, 173


Time slice, 190, 247


sticky bit and, 226


Time system call, 258, 268


User Datagram Protocol, See UDP


Tirneout, 263


User file descriptor table, 22, 23, 93-95,


Times system call, 258


104-107, 117, 118, 150


Times, use of, 259, 260


User ID, 28, 74, 150, 227


Tracing, 356, 359


User mode, 15, 16, 30, 51, 147, 149, 157,


Transparent distribution, 414, 426


165


Transport Connect Protocol, See TCP


User priority, 249, 250, 252, 254


Trap instruction, 26, 356, 357


User running state, 147-150


Tunis system, 410


User stack, 26, 27, 174, 189, 230, 231


signals and, 205, 207, 209


swap and, 276


User-level context, 159, 161


U area, 26, 28, 29, 93


Uucp, 382, 423


chroot and, 110


context and, 160, 161


V


current directory and, 74, 109, 150


current root, 150


V semaphore operation, 372, 389, 396-403,


definition, 150


408, 411


directory offset and creat, 107


Valid bit, 287, 296-298, 301, 303, 304,


exec and, 220


306, 307, 310


fork and, 194, 195


software, 306, 307


I/O parameters, 97-100, 115, 150, 178,


Valid page, 294


325, 328


Validity fault, 286, 296, 298, 300, 301, 304


process accounting and, 267


Validity fault handler, 293, 298, 299, 301,


signal handler and, 205


305, 309





INDEX


471


interaction with protection fault


tracing and, 356, 357


handler, 306


use of, 233


VAX, 171, 189, 205, 206, 306, 307, 310,


Wakeup, 33, 34, 37, 184


321, 393


algorithm, 150, 182, 186, 187, 190


Version 6, 282


comparison to V operation, 399, 403


Version 7, 144


Weinberger, 138, 265


Vfault, algorithm, See Validity fault


Window of terminal, 348, 349, 354


handler


Window of working set, 286


Vfork, 291, 292, 309


Working set, 286, 287, 307, 310


Vhand, See Page stealer


Write system eau, 21, 71, 100-102


Virtual address, 18, 158, 189, 278, 298


disk interface, 328


Virtual address space, 15, 151, 152, 156,


driver interface, 314, 320, 328


159


fork and, 197


Virtual address translation, See Address


pipe and, 113-115, 143


translation


read-only file system and, 144


Virtual circuit, 384


streams interface, 346


Virtual terminal, 348, 349


terminal interface, 334, 335


VMS, 307


Write-append mode, 93, 140


Volume table of contents, 326, 352


X


Xalloc, algorithm, 223, 224


Wait system call, 21, 213, 216


algorithm, 214, 215, 242


in multiprocessor, 408


ti me and, 269


Zombie, 147, 149, 213-217, 258, 280




index-109_1.png
% SYSTEM CALLS FOR THE FILE SYSTEM

the kernel file table even though one file (“/etc/passwd") is opened twice. The file
table entries of all instances of an open file point to one entry in the in-core inode
table. The process can read or write the file “/etc/passwd” but only through file
descriptors 3 and $ in the figure. The kernel notes the capability to read or write
the file in the file table entry allocated during the open call. Suppose a second
process executes the following code.

1d1 = open(“/etc/passwd”, O_RDONLY);

1d2 = open(“private”, O_RDONLY);

Figure 5.4 shows the relationship between the appropriate data structures while
both processes (and no others) have the files open. Again, each open call results in
allocation of a unique entry in the user file descriptor table and in the kernel file
table, but the kernel contains at most one entry per file in the in-core inode table.

‘The user file descriptor table entry could conceivably contain the file offset for
the position of the next 1/0 operation and point directly to the in-core inode entry
for the file, climinating the need for a separate kernel file table. The examples
‘above show a onc-to-one relationship between user file descriptor entrics and kernel
file table entries. Thompson notes, however, that he implemented the file table as a
separate structure 1o allow sharing of the offset pointer between several user file
descriptors (see page 1943 of [Thompson 78)). The dup and fork system calls,
explained in Sections 5.13 and 7.1, manipulate the data structures to allow such
sharing.

The first three user file descriptors (0, 1, and 2) are called the standard input,
standard output, and standard error file descriptors. Processes on UNIX systems
conventionally use the standard input descriptor to read input data, the standard
output descriptor to write output data, and the standard error descriptor t0 write
error data (messages). Nothing in the operating system assumes that these file
descriptors are special. A group of users could adopt the convention that file
descriptors 4, 6, and 11 are special file escriptors, but counting from 0 (in C) is
‘much more natural. Adoption of the convention by all user programs makes it casy
for them to communicate via pipes, s will be scen in Chapter 7. Normally, the
control terminal (see Chapter 10) serves as standard input, standard output and
standard error.

52 READ
‘The syntax of the read system call is

number = read(fd, buffer, count)
where fd is the file descriptor returned by open, buffer is the address of a data
structure in the user process that will contain the read data on successful
completion of the call, count is the number of bytes the user wants to read, and

number is the number of bytes actually read. Figure 5.5 depicts the algorithm read
for reading a regular file. ‘The kernel gets the file table entry that corresponds to
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algorithim read

input: user fle descriptor
‘address of buffer in user process
number of bytes 1o read.

output: count of bytes copied into user space

(

set parameters in u area for user address, byte count, 1/0 to user;
get inode from file table;
ock inode;
set byte offst in u arca from file table offset;
while (count not satisfied)
(

convert il offet to disk block (algorithm brmap);

calculate offset into block, number of bytes to read;

f (umber of bytes to read is 0)

7# trying to read end of fle */
break; 7 out of loop */
read block (algorithm bread if with read ahead, algorithm
bread otherwise);
copy data from system buffer o user address;
update u area fields for fle byte offst, read count,
address to write into user space;

release buffer: /* locked in bread */
1
unlock inode;
update file table offst for next rea
return(total number of byt read).

Figure 5.5, Algorithm for Reading a File

the user file descriptor, following the pointer in Figure 5.3. It now sets several /0
parameters in the u area (Figure 5.6), climinating the need to pass them as
function parameters. Specifically, it sets the /O mode to indicate that a read is
being done, a flag to indicate that the 1/O will go to user address space, a count
field to indicate the number of bytes to read, the target address of the user data
buffer, and finally, an offset field (from the file table) to indicate the byte offset
into the file where the 1/O should begin. After the kernel sets the 1/0 parameters
in the u area, it follows the pointer from the file table entry o the inode, locking
the inode before it reads the file.

The algorithm now goes into a loop until the read is satisfied. The kernel
converts the file byte offset into a block number, using algorithm bmap, and it
notes the byte offset in the block where the 1/O should begin and how many bytes
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The UNIX system was first described in a 1974 paper in the Communications of
the ACM [Thompson 74] by Ken Thompson and Dennis Ritchie. Since that time,
it has become increasingly widespread and popular throughout the computer
industry where more and more vendors are offering support for it on  their
machines. It is especially popular in universitics where it is frequently used for
operating systems research and case studies.

Many books and papers have described parts of the system, among them, two
special issues of the Bell System Technical Journal in 1978 [BSTJ 78] and 1984
[BLTJ 841 Many books describe the user level interface, particularly how to use
electronic mail, how to prepare documents, or how to use the command interpreter
called the shell; some books such as The UNIX Programming Environment
[Kernighan 84] and Advanced UNIX Programming [Rochkind 85] describe the
programming interface. This book describes the internal algorithms and structures
that form the basis of the operating system (called the kernel) and their
relationship to the programmer interface. It is thus applicable to several
environments. First, it can be used as a textbook for an operating systems course
at cither the advanced undergraduate or first-year graduate level. It is most
beneficial 10 reference the system source code when using the book, but the book
can be read independently, too. Second, system programmers can use the book as a
reference to gain better understanding of how the kernel works and to compare
algorithms used in the UNIX system to algorithms used in other operating systems.
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the process had previously opened the file for reading. It stores the values filbuf,
20, and 0 in the u area, corresponding 10 the address of the user buffer, the byte
count, and the starting byte offset in the file. It calculates that byte offset 0 is in
the Oth block of the file and retricves the entry for the Oth block in the inode.
Assuming such a block exists, the kernel reads the cntire block of 1024 bytes into a
buffer but copies only 20 bytes to the user address filbuf. It increments the u area
byte offset o 20 and decrements the count of data to read to 0. Since the read has
been satisfied, the kernel resets the file table offset to 20, so that subsequent reads
on the file descriptor will begin at byte 20 in the file, and the system call returns
the number of bytes actually read, 20.

For the second read call, the kernel again verifies that the descriptor i legal
and that the process had opened the fle for reading, because it has no way of
knowing that the user read request is for the same file that was determined to be
legal during the last read. It stores in the u area the uscr address bighuf, the
number of bytes the process wants to read, 1024, and the starting offset in the file,
20, taken from the file table. It converts the file byte offsct to the correct disk
block, as above, and reads the block. If the time between read calls is small,
chances are good that the block will be in the buffer cache. But the kernel cannot
satisfy the read request entirely from the buffer, because only 1004 out of the 1024
bytes for this request are in the buffer. So it copics the last 1004 bytes from the
buffer into the user data structure bigbuf and updates the parameters in the u area
10 indicate that the next iteration of the read loop starts at byte 1024 in the file,
that the data should be copied to byte position 1004 in bigbuf, and that the number
of bytes to to satisfy the read request is 20.

The kernel now cycles to the beginning of the loop in the read algorithm. It
converts byte offset 1024 to logical block offset 1, looks up the second direct block
number in the inode, and finds the correct disk block to read. It reads the block
from the buffer cache, reading the block from disk if it is not in the cache. Finally,
it copics 20 bytes from the buffer to the correct address in the user process. Before
leaving the system call, the kernel sets the offset field in the file tabl entry to 1044,
the byte offset that should be accessed next. For the last read call in the example,
the kernel proceeds as in the first read call, except that it starts reading at byte
1044 in the file, finding that value in the offset field in the file table entry for the
descriptor.

The example shows how advantageous it is for 1/O requests to start on file
system block boundaries and to be multiples of the block size. Doing so allows the
kernel to avoid an extra iteration in the read algorithm loop, with the consequent
expense of accessing the inode o find the correct block number for the data and
competing with other processes for access to the buffer pool. The standard /O
library was written to hide knowledge of the kernel buffer size from users; its use
avoids the performance penalties inherent in processes that nibble at the file system
inefficiently (see exercise 5.4),

As the kernel goes through the read loop, it determines whether a file is subject
to read-ahead: if a process reads two blocks sequentially, the kernel assumes that
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mode _indicates read or write
count  count of bytes to read or write

offict byte offet in file

address  target address to copy data, in user o kernel memory
flag ___indicates if address is in user o kerncl memory

Figure 5.6. 1/0 Parameters Saved in U Area

in the block it should read. After reading the block into a buffer, possibly using
block read ahead (algorithms bread and breada) as will be described, it copies the
data from the block to the target address in the user process. It updates the 1/0
parameters in the u area according to the number of bytes it read, incrementing the
file byte offset and the address in the user process where the next data should be
delivered, and decrementing the count of bytes it needs to read to satisfy the user
read request. If the user request is not satisfied, the kernel repeats the entire cycle,
converting the file byte offset 10 a block number, reading the block from disk to &
system buffer, copying data from the buffer to the user process, releasing the buffer,
and updating 1/0 parameters in the u area. The cycle completes cither when the
kernel completely satisfies the user request, when the file contains no more data, or
if the kernel encounters an error in reading the data from disk or in copying the
data to user space. The kernel updates the offset in the file table according to the
number of bytes it actually read; consequently, successive reads of a file eliver the
file data in scquence. The Iseek system call (Section 5.6) adjusts the value of the
file table offset and changes the order in which a process reads or writes a fle.

Hinclude <fentlh>
main()
(

int fd;

char litbufl20), bigbufl1024);

fd = open(“/etc/passwd”, O_RDONLY);
read (fd, llbu, 20);

read (fd, bigbuf, 1024);

read(d, lilbuf, 20);

Figure 5.7. Sample Program for Reading a File

Consider the program in Figure 5.7. The open returns a file descriptor that the
user assigns 10 the variable /d and uses in the subsequent read calls. In the read
system call, the kernel verifies that the file descriptor parameter is legal, and that
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Figure 5.17. Logical View of Reading and Writing a Pipe

a regular file is that a pipe uses only the direct blocks of the inode for greater
efficiency, although this places a limit on how much data a pipe can hold at a time.
The kernel manipulates the direct blocks of the inode as a circular queue,
maintaining read and write pointers internally to preserve the FIFO order (Figure
5.17).

Consider four cases for reading and writing pipes: writing a pipe that has room
for the data being written, reading from a pipe that contains enough data to satisfy
the read, reading from a pipe that does not contain enough data to satisfy the
read, and finally, writing a pipe that does not have room for the data being written.

Consider first the case that a process is writing a pipe and assume that the pipe
has room for the data being written: The sum of the number of bytes being written
and the number of bytes already in the pipe is less than or equal t0 the pipes
capacity. The kernel follows the algorithm for writing a regular file, except that it
crements the pipe size automatically after every write, since by definition the
amount of data in the pipe grows with every write. This differs from the growth of
a regular file where the process increments the file size only when it writes data
beyond the current end of file. If the next byte offset in the pipe were to requirc
use of an indircct block, the kernel adjusts the file offset value in the u area to
point to the beginning of the pipe (byte offset 0). The kernel never overwrites data
in the pipe; it can resct the byte offset to 0 because it has already determined that
the data will not overflow the pipe’s capacity. When the writer process has written
all its data into the pipe, the kernel updates the pipe’s (inode) write pointer so that
the next process to write the pipe will proceed from where the last write stopped.
The kernel then awakens all other processes that fell asleep waiting to read data
from the pipe.

When a process reads a pipe, it checks if the pipe is empty or not. If the pipe
contains data, the kernel 7eads the data from the pipe as if the pipe were a regular
file, following the regular algorithm for read. However, its initial offset is the pipe
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count indicates how many times the pipe was “opened,” initially two — one for
each file table entry. Finally, the inode records byte offsets in the pipe where the
next read or write of the pipe will start. Maintaining the byte offsets in the inode
allows convenient FIFO access to the pipe data and differs from regular files where
the offset is maintained in the file table. Processes cannot adjust them via the Iseek
system call and 5o random access 1/0 to a pipe is ot possible.

5.12.2 Opening » Named Pipe

A named pipe is a file whose semantics are the same as those of an unnamed pipe,
except that it has a directory entry and is accessed by a path name. Processes open
named pipes in the same way that they open regular files and, hence, processes that
are not closcly related can communicate. Named pipes permanently exist in the file
system hierarchy Gubject to their removal by the unlink system call), but unnamed
pipes are transient: When all processes finish using the pipe, the kernel reclaims its
inode

The algorithm for opening a named pipe is identical to the algorithm for
opening a regular file. However, before completing the system call, the kernel
increments the read o write counts in the inode, indicating the number of processes
that have the named pipe open for reading or writing. A process that opens the
named pipe for reading will sleep until another process opens the named pipe for
writing, and vice versa. 1t makes o sense for a pipe to be open for reading if there
is no hope for it to receive data; the same is true for writing. Depending on
whether the process opens the named pipe for reading or writing, the kernel
awakens other processes that were asleep, waiting for a writer or reader process
(respectively) on the named pipe.

If a process opens a named pipe for reading and a writing process exists, the
open call completes. Or if a process opens a named pipe with the no delay option,
the open returns immediately, even if there are no writing processes. But if neither
condition is truc, the process sleeps until a writer process opens the pipe. Similar
rules hold for a process that opens a pipe for writing.

5.12.3 Reading and Writing Pipes

A pipe should be viewed as if processes write into one end of the pipe and read
from the other end. As mentioned above, processes access data from a pipe in
FIFO manner, meaning that the order that data s written into a pipe is the order
that it is read from the pipe. The number of processes reading from a pipe do not
necessarily equal the number of processes writing the pipe; if the number of readers
or writers is greater than 1, they must coordinate use of the pipe with other
mechanisms. The kernel accesses the data for a pipe exactly as it accesses data for
a regular file: It stores data on the pipe device and assigns blocks to the pipe as
needed during write calls. The difference between storage allocation for a pipe and
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0 and there are processes asleep waiting 10 read data from the pipe, the kernel
awakens them, and they return from their read calls without reading any data. It
the count of reader processes drops to 0 and there are processes asleep waiting to
write data o the pipe, the kernel awakens them and sends them a signal (Chapter
7) to indicate an error condition. In both cases, it makes no sense to allow the
processes to continue sleeping when there is no hope that the state of the pipe will
ever change. For example, if a process is waiting to read an unnamed pipe and
there are no more writer processes, there will never be a writer process. Although
it is possible to get new reader or writer processes for named pipes, the kernel
treats them consistently with unnamed pipes. If no reader or writer processes
access the pipe, the kernel frees all its data blocks and adjusts the inode to indicate
that the pipe s empty. When it releases the inode of an ordinary pipe, it frees the
disk copy for reassignment.

har stringl] = “hello"

mainQ

(
char buil 1024
char *cpl, *cp2;
int fdsl2];

cpl = string;
p2 = buf;
while (*cpl)

opid = Scpl 4
pipe(fds);

write(fas{1], buf, 6);
read(fds(0], buf,

)

Figure 5.18. Reading and Writing a Pipe

5.12.5 Examples

The program in Figure 5.18 illustrates an artificial use of pipes. The process
creates a pipe and gocs into an infinite loop, writing the siring “hello” to the pipe
and reading it from the pipe. The kernel does not know nor does it care that the
process that writes the pipe is the same process that reads the pipe.

A process exceuting the program in Figure 5.19 creates a named pipe node
called “fifo”. If invoked with a second (dummy) argument, it continually writes
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read pointer stored in the inode, indicating the extent of the previous read. After
reading cach block, the kernel decrements the size of the pipe according to the
number of bytes it read, and it adjusts the u area offset value t0 wrap around to the
beginning of the pipe, if necessary. When the read system call completes, the
kernel awakens all sleeping writer processes and saves the current read offset in the
inode (not in the file table entry).

If a process attempts to read more data than is in the pipe, the read will
complete successfully after returning all data currently in the pipe, cven though it
does not satisfy the user count. If the pipe is empty, the process will typically slecp
until another process writes data into the pipe, at which time all slecping processes
that were waiting for data wake up and race to read the pipe. 1f, however, a
process opens a named pipe with the no delay option, it will return immediately
from a read if the pipe contains no data. The semantics of rcading and writing
pipes are similar to the semantics of reading and writing terminal devices (Chapter
10), allowing programs to ignore the type of file they are dealing with.

1f a_process writes a pipe and the pipe cannot hold all the data, the kernel
marks the inode and goes to sleep waiting for data to drain from the pipe. When
another process subsequently reads from the pipe, the kernel will notice that
processes are asleep waiting for data to drain from the pipe, and it will awaken
them, as explaincd above. The exception to this statement is when a process writes
an amount of data greater than the pipe capacity (that is, the amount of data that
can be stored in the inode direct blocks); here, the kernel wries as much data as
possible to_the pipe and puts the process to sleep until more room becomes
available. Thus, it is possible that written data will not be contiguous in the pipe if
other processes write their data to the pipe before this process resumes its write.

Analyzing the implementation of pipes, the process interface is consistent with
that of regular fles, but the implementation differs because the kernel stores the
read and write offsets in the inode instead of in the file table. The kernel must
store the offsets in the inode for named pipes 5o that processes can share their
values: They cannot share values stored in file table entries because a process gets
a new file table entry for cach open call. However, the sharing of read and write
offsets in the inode predates the implementation of named pipes. Processes with
access to unnamed pipes share access to the pipe through common file table entrics,
50 they could conceivably store the read and write offsets in the file table entry, as
is done for regular files. This was not done, because the low-level routines in the
kernel no longer have access to the file table entry: The code is simpler because the
processes share offsets stored in the inode.

S.12.4_ Closing Pipes

When closing a pipe, a process follows the same procedure it would follow for
closing a regular file, except that the kernel does special processing before releasing
the pipe’s inode. The kernel decrements the number of pipe readers or writers,
according to the type of the file descriptor. If the count of writer processes drops to
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Findiude <fentlh>
char stringl] = “hello"
main(arge, argv)
int arge;
char *argHl};
(
int 1d;
char buf(256);
7# create named pipe with read/write permission for all users */
mknod (“6f0”, 010777, 0);
if (arge ==2)
d = open(“fo”, O_WRONLY);
dse
fd = open(“fo”, O RDONLY);
for )
if (arge =
(td, string, ©);
else
read (fd, bur, ;.
1]

Figure 5.19. Reading and Writing a Named Pipe

the string “hello” into the pipe; if invoked without a second argument, it reads the
named pipe. The two processes are invocations of the identical program and have
sccretly agreed to communicate through the named pipe “ffo”, but they need not
be related. Other users could execute the program and participate in (or interferc
with) the conversation.

513 DUP

The dup system call copies a file descriptor into the first free slot of the user file
descriptor table, returning the new file descriptor to the user. It works for all file
types. The syntax of the system call is

newfd = dup(fd);

where /d is the file descriptor being duped and new/d is the new file descriptor that
references the file. Because dup duplicates the file descriptor, it increments the
count of the corresponding file table entry, which now has one more file descriptor
entry that points toit. For example, examination of the data structures depicted in
Figure 5.20 indicates that the process did the following sequence of system calls: It
opened the file “/etc/passwd” (file descriptor 3), then opened the file “local” (fle
descriptor 4), opened the file “/etc/passwd” again (file descriptor 5), and finally,
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in the book, but not a complete reference manual.

The book is organized as follows. Chapter 1 is the introduction, giving a brief,
general description of system features as perceived by the user and describing the
System structure. Chapter 2 describes the general outline of the kernel architccture
and presents some basic concepts. The remainder of the book follows the outline
presented by the system architecture, describing the various components in
building block fashion. It can be divided into three parts: the file system, process
control, and advanced topics. The file system is presented first, because its concepts
are casier than those for process control. Thus, Chapter 3 describes the system
buffer cache mechanism that is the foundation of the file system. Chapter 4
describes the data structures and algorithms used internally by the file system.
These algorithms use the algorithms explained in Chapter 3 and take care of the
internal bookkeeping needed for managing user files. Chapter 5 describes the
system calls that provide the user interface to the file system; they use the
algorithms in Chapter 4 10 access user files.

Chapter 6 turns to the control of processes. It defines the context of a process
and investigates the internal kernel primitives that manipulate the process context.
In particular, it considers the system call interface, interrupt handling, and the
context switch. Chapter 7 presents the system calls that control the process
context. Chapter 8 deals with process scheduling, and Chapter 9 covers memory
management, including swapping and paging systems.

Chapter 10 outlines general driver interfaces, with specific discussion of disk
drivers and terminal drivers. Although devices are logically part of the file system,
their discussion is deferred until here because of issucs in process control that arise
in terminal drivers. This chapter also acts &s  bridge to the more advanced topics
presented in the rest of the book. Chapter 11 covers interprocess communication
and networking, including System V messages, shared memory and semaphores,
and BSD sockets. Chapter 12 explains tightly coupled multiprocessor UNIX
systems, and Chapter 13 investigates loosely coupled distributed systems.

“The material in the first nine chapters could be covered in a one-semester course
on operating systems, and the material in the remaining chapters could be covered
in advanced seminars with various projects being done in parallel.

A few caveats must be made at this time. No attempt has been made to
describe system performance in absolute terms, nor is there any attempt to suggest
configuration parameters for a system installation. Such data is likely to vary
according to machine type, hardware configuration, system version and
implementation, and application mix. Similarly, I have made a conscious cffort to
avoid predicting future development of UNIX operating system features.
Discussion of advanced topics does not imply a commitment by AT&T to provide
particular features, nor should it cven imply that particular areas are under
investigati

It is my pleasure to acknowledge the assistance of many friends and collcagues
who encouraged me while I wrote this book and provided constructive criticism of
the manuscript. My deepest appreciation goes to lan Johnstone, who suggested
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Finclude <fenilh>
main0)
L
inti
char bufl(512], bur2(5121;

i = open(“/etc/passwd, O_RDONLY);
J = dup();

read(, bufl, sizeof (buf1));

read(, buf2, sizeof (buf2);

close(;

read(, buf2, sizeof (bur2):

Figure 5.21. C Program llustrating Dup

This differs from the case where a process opens the same file twice and reads the
same data twice (Section 5.2). A process can close cither file descriptor if it wants,
but 1/ continues normally on the other file descriptor, as illustrated in the
example. In particular, a process can close its standard output file descriptor (file
descriptor 1), dup another file descriptor 5o that it becomes file descriptor 1, then
treat the file as its standard output. Chapter 7 presents a more realistic example of
the use of pipe and dup when it describes the implementation of the shell

5.14 MOUNTING AND UNMOUNTING FILE SYSTEMS

A physical disk unit consists of several logical sections, partitioned by the disk
driver, and cach section has a device file name. Processes can access data in a
section by opening the appropriate device file name and then reading and writing
the “file,” treating it as a sequence of disk blocks. Chapter 10 gives details on this
interface. A section of a disk may contain a logical file system, consisting of a boot
block, super block, inode list, and data blocks, as described in Chapter 2. The
mount system call connects the file system in a specified section of a disk to the
existing file system hicrarchy, and the umount system call disconnects a file system
from the hicrarchy. The mount system call thus allows users to access data in @
disk section as a file system instead of a sequence of disk blocks.
The syntax for the mount system call is

‘mount(special pathname, directory pathname, options);

where special pathname is the name of the device special file of the disk section
containing the file system to be mounted, directory pathname is the directory in the
existing hierarchy where the file system will be mounted (called the mount point),
and options indicate whether the file system should be mounted “read-only™
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Figure 5.20. Data Structures after Dup

duped file descriptor 3, returning file descriptor 6.

Dup is perhaps an inclegant syst
that the system will return t}
descriptor table. However,
programs from simpler, ‘building-block programs, as exemplified in the construction
of shell pipelines (Chapter 7).

Consider the program in Figure 5.21. The variable i contains the file descriptor
that the system returns as a result of opening the file “etc/passwd,” and the
YariableJ contains the file descriptor that the system returns as a result of duping
the file descriptor i. In the u area of the process, the two user file descriptor
entries represented by the user variables i and J point to one file table entry and
therefore use the same file offset. The first two reads in the process thus read the
data in sequence, and the two buffers, bufl and buf2, do not contain the same data.
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stat(pathname, statbuffer);

fstat(fd, statbuffer);
where pathname is a file name, fd is a file descriptor returned by a previous open
call, and statbuffer is the address of a data structure in the user process that will
contain the status information of the file on completion of the call. The system
calls simply write the fields of the inode into statbuffer. The program in Figure
5.3 willillustrate the use of star and fstat.

Calls pipe Cannot share pipe

Proc A

Pro¢ B Proc C

PrcD  :  ProcE

Shar pipe

Figure 5.15. Process Tree and Sharing Pipes

512 PIPES

Pipes allow transfer of data between processes in a frst-in-first-out manner (FIFO),
and they also allow synchronization of process exccution. Their implementation
allows processes to communicate even though they do not know what processes are
on the other cnd of the pipe. The traditional implementation of pipes uses the file
system for data storage. There are two kinds of pipes: named pipes and, for lack
of a better term, unnamed pipes, which are identical except for the way that 2
process initially accesses them. Processes use the open system call for named pipes,
but the pipe system call to create an unnamed pipe. Afterwards, processes use the
regular system calls for files, such as read, wrie, and close when manipulating
pipes. Only related processes, descendants of a process that issued the pipe call,
can share access to unnamed pipes. In Figure 5.15 for example, if process B
creates a pipe and then spawns processes D and E, the three processes share access
0 the pipe, but processes A and C do not. However, all processes can access a
named pipe regardiess of their relationship, subject to the usual file permissions.
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A process usually uses the global file system root for all path names starting
with /", The kernel contains a global variable that points to the inode of the
global root, allocated by igef when the system is booted. Processes can change their
notion of the file system root via the chroot system call. This is useful if a user
wants to simulate the usual file system hierarchy and run processes there. It
syntax is

chroot (pathname);

where pathname is the directory that the kernel subsequently treats as the process's
root directory. When executing the chroot system call, the kernel follows the same
algorithm as for changing the current directory. It stores the new root inode in the
process u area, unlocking the inode on completion of the system call. However,
since the default root for the kernel is stored in a global variable, it does not release
the inode of the old root automatically, but only if it or an ancestor process had
exccuted the chroot system call. The new inode is now the logical root of the file
system for the process (and all its children), meaning that all path name searches
in algorithm namei that start from root (/") start from this inode, and that all
attempts to usc *.” over the root will leave the working directory of the process in
the new root. A process bestows new child processes with its changed root, just as
it bestows them with its current directory.

5.10 CHANGE OWNER AND CHANGE MODE

Changing the owner or mode (access permissions) of a file are operations on the
inode, not on the file per se. The syntax of the calls is

chown(pathname, owner, group)
chmod (pathname, mode)

To change the owner of a file the kernel converts the file name to an inode using
algorithm namei. The process owner must be superuser or match that of the file
owner (a process cannot give away something that docs not belong 10 it). The
kernel then assigns the new owner and group 0 the file, clears the set user and set
group flags (se Section 7.5), and releases the inode via algorithm iput. After the
change of ownership, the old owner loses “owner” access rights to the file. To
change the mode of a file, the kernel follows a similar procedure, changing the
mode flags in the inode instead of the owner numbers.

S5.11 STAT AND FSTAT

The system calls stat and fstat allow processes to query the status of files, returning
information such as the file type, file owner, access permissions, file size, number of
links, inode number, and file access times. The syntax for the system calls is
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Because unnamed pipes are more common, they will be presented first.

5.12.1 The Pipe System Call
The syntax for creation of a pipe is
pipe(fdpte);

where fdptr is the pointer to an integer array that will contain the two fle
descriptors for reading and writing the pipe. Because the kernel implements pipes
in the file system and because a pipe does not exist before its use, the kernel must
assign an inode for it on creation. It also allocates a pair of user file descriptors
and corresponding file table entries for the pipe: one file descriptor for reading
from the pipe and the other for wriing to the pipe. It uses the file table so that the
interface for the read, write and other system calls is consistent with the interface
for regular files. As a result, processes do not have to know whether they are
reading o writing a regular file or a pipe.

algorithm pipe

input: none

output; read file descriptor
write file descriptor

(

assign new inode from pipe device algorithm ialloc);
allocate file table entry for eading, another for writing:
initialize file table entries to point o new inode;
allocate user file descriptor for reading, another for writing,
2¢ 10 point 10 respective il table entries;

set inode reference count (0 2;

iitialize count of inode readers, writers to 1;

Figure 5.16. Algorithm for Creation of (Unnamed) Pipes

Figure 5.16 shows the algorithm for creating unnamed pipes. The kernel
assigns an inode for a pipe from a file system designated the pipe device using
algorithm ialloc. A pipe device is just a file system from which the kernel can
assign inodes and data blocks for pipes. System administrators specify a pipe
device during system configuration, and it may be identical to another file system.
While a pipe is active, the kernel cannot reassign the pipe inode and data blocks to
another file

The kernel then allocates two fle table entries for the read and write
descriptors, respectively, and updates the bookkeeping information in the in-core
inode. Each file table entry records how many instances of the pipe are open for
reading or writing, initially 1 for each file table entry, and the inode reference
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Finclude <fentlh>
main(arge, argv)

int arge;

char *argv(l;

int (4, skvaly
char ¢;

£d = open(argv{1], O_RDONLY);
if (fd == —1)
exit0;

((skval = read(fd, &c, 1)) == 1)

printf(“char Sc\n”, o);
skval = Iseek(fd, 1023L,
printf(“new seck val %din”

skvab;

Figure 5.10. Program with Lseek System Call

close(fd);

where /d is the file descriptor for the open file. The kernel does the close operation
by manipulating the file descriptor and the corresponding file table and inode table
entries. If the reference count of the file table entry is greater than | because of
dup or fork calls, then other user file descriptors refercnce the file table entry, as
will be seen; the kernel decrements the count and the close completes. If the fle
table reference count is 1, the kernel frees the entry and releases the in-core inode
originally allocated in the open system call (algorithm iput). If other processes still
reference the inode, the kernel decrements the inode reference count but leaves it
allocated; otherwise, the inode is free for reallocation because its reference count is
0. When the close system call completes, the user file descriptor table entry is
empty. Attempts by the process to use that file descriptor result in an error until
the file descriptor is reassigned as a result of another system call. When a process
exits, the kernel examines its active user file descriptors and internally closes each
one. Hence, no process can keep a file open after it terminates.

For example, Figure 5.11 shows the relevant table cntries of Figure 5.4, after
the second process closes its files. The entrics for file descriptors 3 and 4 in the
user file descriptor table are empty. The count fields of the file table entrics are
now 0, and the entries are empty. The inode reference count for the files
“/etc/passwd" and “private” are also decremented. The inode entry for “private”
is on the free st because its reference count is 0, but its entry is not empty. If
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where the variables pathname, modes, and fd mean the same as they do in the
open system call. If no such file previously existed, the kernel creates a new file
with the specified name and permission modes; if the file already existed, the kernel
truncates the file (releases all existing data blocks and sets the file size 10 0) subject
to suitable file access permissions.’ Figure 5.12 shows the algorithm for file
creation.

algorithm creat

input: file name
permission settings

output: file descriptor

(

get inode for file name (algorithm namei);
if (fle already exists)

it (not permitted access)

release inode (algorithm iput);
return(erron);

1
clse /* file does not exist yet */
{
assign free inode from file system algorithm ialloc);
ereate new directory entry in parent dircctory: include
new file name and newly assigned inode number;
)
allocate file table entry for inode, initialize count;
if (fle did exist at time of create)
free all fle blocks (algorithm free);
unlock(inode);
return(user file descriptor);

Figure 5.12. Algorithm for Creating a

The kernel parses the path name using algorithm namei, following the
algorithm literally while parsing directory names. However, when it arrives at the
fast component of the path name, namely, the file name that it will create, namei

3 The open system callspcifcs two flags, O_CREAT (create and 0_TRUNC Gruncate): 1 a process
specifics the O_CREAT flag on an open and the file docs not xis, the kernel wil crate the e, 1f
the e alreadyexists, it will not be truncated unless the O, TRONC- g is alsoset.
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Figure 5.11. Tables after Closing a File

another process accesses the file “private” while the inode is still on the free list,
the kernel will reclaim the inode, as explained in Section 4.1.2.

57 FILE CREATION

The open system call gives a process access to an existing file, but the creaf system
call creates a new file in the system. The syntax for the ereat system call is

1d = creat(pathname, modes);
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notes the byte offset of the first empty dircctory slot in the directory and saves the
offset in the u area. If the kernel does not find the path name component in the
directory, it will eventually write the name into the empty slot just found. If the
directory has no cmpty slots, the kernel remembers the offset of the end of the
directory and creates a new slot there. It also remembers the inode of the directory
being searched in its u area and keeps the inode locked; the dircctory will become
the parent directory of the new file. The kernel does not write the new file name
into the directory yet, so that it has less to undo in event of later errors. It checks
that the directory allows the process write permission: Because a process will write
the directory as a result of the creat call, write permission for a directory means
that processes are allowed 10 create files in the directory.

Assuming no file by the given name previously existed, the kernel assigns an
inode for the new fle, using algorithm ialloc (Section 4.6). It then writes the new
file name component and the inode number of the newly allocated inode in the
parent directory, at the byte offset saved in the u area. Afterwards, it releases the
inode of the parent directory, having held it from the time it searched the directory
for the file name. The parent directory now contains the name of the new file and
its inode number. The kernel writes the newly allocated inode to disk (algorithm
bwrite) before it writes the directory with the new name to disk. If the system
crashes between the write operations for the inode and the directory, there will be
an allocated inode that is not referenced by any path name in the system but the
system will function normally. If, on the other hand, the directory were written
before the newly allocated inode and the system crashed in the middle, the file
system would contain a path name that referred to a bad inode. (See Section
5.16.1 for more detail)

I the given fil already xisted before the creat, the kernel finds its inode while
scarching for the file name. The old file must allow write permission for a process
to create a “new” file by the same name, because the kernel changes the file
contents during the creat call: It truncates the file, freeing all its data blocks using
algorithm Jree, o that the file looks like a newly created file. However, the owner
and permission modes of the file are the same as they were for the original file:
The kernel does not reassign ownership to the owner of the process, and it ignores
the permission modes specified by the process. Finally, the kernel does not check
that the parent directory of the existing file allows write permission, because it will
not change the directory contents. X

The creat system call proceeds according to the same algorithm as the open
system call. The kernel allocates an entry in the file table for the created file so
that the process can write the file, allocates an entry in the user file descriptor
table, and eventually returns the index to the latter entry s the user file descriptor.

5.8 CREATION OF SPECIAL FILES

The system call mknod creates special files in the system, including named pipes,
device files, and directories. It is similar to creat in that the kernel allocates an
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Finally, programmers on UNIX systems can gain a decper understanding of how
their programs interact with the system and thereby code  more-sfficient.
sophisticated programs.

The material and organization for the book grew out of a course that T prepared
and taught at AT&T Bell Laboratorics during 1983 and 1984. While the cpuree
centered on reading the source code for the system, I found that understanding the
code was casier once the concepts of the algorithms had been mastered. I pave
autempted (0 keep the descriptions of algorithms in this book as simple as possible.
reflecting in a small way the simplicity and clegance of the system it deseribes.
Thus, the book is not a line-by-line rendition of the system written in English i
2 description of the general flow of the various algorithms, and most important, 3
description of how they interact with cach other. Algorithms are presented in 5 C.
ke pscudocode 1o aid the reader in understanding the natural language
description, and their names correspond 1o the procedure names in the borec,
Figures depict the relationship between various data structures as the systom
manipulates them. In later chapters, small C programs illustrate. many system
Chnepts a8 they manilest themselves to users. In the interests of space and clariy,
these cxamples do not usually check for error conditions, something that shouy
2lways be done when writing programs. I have run them on System ¥ except for
Programs that exercise features specifc to System V, they should run on other
versions of the system, too,

Many exerciss originally prepared for the course have been included at the end
of cach chapter, and they are a key part of the book . Some exercises are
straightorward, designed (0 illustrate concepts brought out in the text. - Oyhecs are
ore diffcult, designed 10 help the reader understand the system at 5 decper level.
Finally, some are exploratory in nature, designed for investigation as a research
problem. Difficult excrcises arc marked with asterisks

The system descript
AT&T, with some new features from Release 3. This is the system with which |
varianost familia, but 1 have tried 1o portray interesting contibutions of other
OPerating system, particularly those of Berkeley Software
- 1 have avoided issues that assume particular hardwere
characteristics, trying to cover the kerncl-hardware interface 1 general terms and
importeg Farticular machine idiosyncrasics. Where machine-specifc. eopes are
elevimt o crstand implementation of the kernel, however, 1 delve oy the
relevant detail. At the very least, examination of these topics will highlight the

have attempted to write this book in such a way thoy the reader should still be able
lo absorb the material without such background.  Tne appendix contains a
simplified description of the system call, sufficient 10 undersp s the presentation






index-122_1.png
58 CCHANGE DIRECTORY AND CHANGE ROOT 109

algorithm change irectory
input:  new directory name
output: none

get inode for new dircctory name (algorithm name;
if (inode not that of directory o process not permitied access to file)

release inode (algorithm ipu0);
rewrn(erron;
)
unlock inode;
release “old” current dircctory inode (algorithm iput
place new inode into current directory slot in u area;

Figure 5.14. Algorithm for Changing Current Directory

59 CHANGE DIRECTORY AND CHANGE ROOT

When the system is first booted, process 0 makes the file system root its current
directory during initialization. It executes the algorithm igef on the root inode,
saves it in the u area as its current directory, and releases the inode lock. When a
new process is created via the fork system call, the new précess inherits the current
directory of the old process in its u area, and the kernél increments the inode
reference count accordingly.

‘The algorithm chdir (Figure 5.14) changes the current directory of a process.
‘The syntax for the chdir system call is

chdir(pathname);

where pathname is the directory that becomes the new current directory of the
process. The kernel parses the name of the target directory using algorithm namei
and checks that the target file is a directory and that the process owner has access
permission to the dircctory. It releases the lock to the new inode but keeps the
inode allocated and its reference count incremented, releases the inode of the old
current directory (algorithm ipur) stored in the u area, and stores the new inode in
the u area. After a process changes its current directory, algorithm namei uses the
inode for the start directory to search for all path names that do not begin from
To0t._ After execution of the chdir system call, the inode reference count of the new
directory is at least one, and the inode reference count of the previous current
directory may be 0. In this respect, chdir is similar to the open system call,
because both system calls access a file and leave its inode allocated. The inode
allocated during the chdir system call is released only when the process executes
another chdir call or when i
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inode for the file. The syntax of the mknod system call is
‘mknod(pathname, type and permissions, dev)

where pathname is the name of the node to be created, type and permissions give
the node type (directory, for example) and access permissions for the new fle to be
created, and dev specifics the major and minor device numbers for block and
character special files (Chapter 10). Figure 5.13 depicts the algorithm mknod for
making a new node.

algorithm make new node
inputs: node (file name)

file type

permissions

major, minor device number (for block, character special fils)
output: none

if (new node not named pipe and user not super user)
return(erron);
get inode of parent of new node (algorithm namei);
if (new node already exsts)
1
release parent inode (algorithm iput);
return(erron):
)
assign frec inode from file system for new node (algorithm ialloc);
create new directory entry in parent directory: include new node
name and newly assigned inode number;
release parent dircctory inode (algorithm iput);
if (new node is block or character special ile)
write major, minor numbers into inode structure;
release new node inode (algorithm iput);

Figure 5.13. Algorithm for Making New Node

The kernel scarches the file system for the file name it is about to create. If the
file does not yet cxist, the kernel assigns a new inode on the disk and writes the new
file name and inode number into the parent directory. It sets the file type field in
the inode o indicate that the file type is a pipe, directory or special file. Finally, if
the file is a character special or block special device file, it writes the major and
minor device numbers into the inode. If the mknod call is creating a directory
node, the node will exist after the system call completes but its contents will be in
the wrong format (there are no directory entries for *.” and *."). Exercise 5.33
considers the other steps needed to put a directory into the correct format.
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#include <fentlh>
/% process A */.
mainQ
(
int fd;
char bufls12);
1d = open(“/etc/passw

O_RDONLY);

read (fd, buf, sizeof (buD) 1% readl %/
read(d, buf, sizeof (bud);  /* read2 ¥/
)
1# process B */
main0
(
int 1d,
char buflS12);
for 1= 0; i < sizeof(buf); i++)

bufli]
d = open(*/etc/passwd”, O_WRONLY);
‘write(fd, buf, sizeof (buf)); /* writel */
‘write(fd, buf, sizeof (buf)); /* write2 */

Figure 5.8, A Reader and a Writer Process

guarantee fle consistency while it has a file open.

Finally, the program in Figure 5.9 shows how a process can open a file more
than once and read it via different file descriptors. The kernel manipulates the file
table offsets associated with the two file descriptors independently, and hence, the
arrays bufl and bu2 should be identical when the process completes, assuming no
other process writes “/etc/passwd” in the meantime.

5.3 WRITE
‘The syntax for the write system call is
number = write(fd, buffer, count);

where the meaning of the variables /d, buffer, count, and number are the same as
they are for the read system call. The algorithm for writing a regular file s similar
10 that for reading a regular file. However, if the filc does not contain a block that
corresponds 10 the byte offset to be written, the kernel allocates & new block using
algorithm alloc and assigns the block number to the correct position in the inode's
table of contents. If the byte offset is that of an indirect block, the kernel may
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all subsequent reads will be sequential until proven otherwise. During cach
iteration through the loop, the kernel saves the next logical block number in the in-
core inode and, during the next iteration, compares the current logical block
number to the value previously saved. If they are equal, the kernel calculates the
physical block number for read-ahead and saves its valuc in the u area for use in
the breada algorithm. Of course, if a process does not read tothe end of a block,
the kernel does not invoke read-ahead for the next block.

Recall from Figure 4.9 that it is possible for some block numbers in an inode or
in indirect blocks to have the value 0, even though later blocks have nonzero value.
If a process attempts to read data from such a block, the kernel satisfies the request
by allocating an arbitrary buffer in the read loop, clearing is contents to 0, and
copying it to the user address. This case is different from the case where  process
encounters the end of a file, meaning that no data was ever written to any location
beyond the current point. When encountering end of file, the kernel returns no
data to the process (see exercise 5.1).

When a process invokes the read system call, the kernel locks the inode for the
duration of the call. Afterwards, it could go 1o sleep reading a buffer associated
with data or with indirect blocks of the inode. If another process were allowed to
change the file while the first process was sleeping, read could return inconsistent
data. For example, a process may read several blocks of a file; if it slept while
reading the first block and a second process were to write the other blocks, the
returned data would contain a mixture of old and new data. Hence, the inode
left locked for the duration of the read call, affording the process a consistent view
of the file as it existed at the start of the call.

‘The kernel can preempt a reading process between system calls in user mode
and schedule other processes to run. Since the inode is unlocked at the end of a
system call, nothing prevents other processes from accessing the file and changing
its contents. It would be unfair for the system to keep an inode locked from the
time a process opened the file until it closed the file, because one process could
keep a file open and thus prevent other processes from ever accessing it. If the file
was “/etc/passwd”, used by the login process to check a user's password, then one
ious (or, perhaps, just errant) user could prevent all other users from logging
To avoid such problems, the kernel unlocks the inode at the end of each system
call that uses it. If another process changes the file between the two read system
calls by the first process, the first process may read unexpected data, but the kernel
data structures are consistent.

For cxample, suppose the kernel executes the two processes in Figure 5.8
concurrently. Assuming both processes complete their open calls before cither onc
starts its read or write calls, the kernel could exccute the read and write calls in
any of six sequences: readl, read2, writel, write2, or readl, writel, read2, write2,
or readl, writel, write2, read?, and 5o on. The data that process A reads depends
on the order that the system exccutes the system calls of the two processes; the
system docs not guarantee that the data in the file remains the same after opening
the file. Use of the file and record locking feature (Section 5.4) allows a process to
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the number of disk writes for temporary files.

5.4 FILE AND RECORD LOCKING

The original UNIX system developed by Thompson and Ritchie did not have an
internal mechanism by which a process could insure exclusive access to a file, A
locking mechanism was considered unnecessary because, s Ritchie notes, “we are
not faced with large, single-file databases maintained by independent processes”
(see [Ritchie 81]). To make the UNIX system more attractive to commercial users
with database_applications, System V now contains file and record locking
mechanisms. File locking is the capability to prevent other processes from reading
or writing any part of an entire file, and record locking is the capability to prevent
other processes from reading or writing particular records (parts of a file between
particular byte offsets). Exercise 5.9 explores the implementation of file and record
Tocking.

5.5 ADJUSTING THE POSITION OF FILE 1/0 — LSEEK

The ordinary use of read and write system calls provides sequential access 10 a fle,
but processes can use the Iseek system call o position the 1/0 and allow random
access 1o a file. The syntax for the system call is

position = Iseek (fd, offset, reference);

where fd is the file descriptor identifying the file, ofve is a byte offset, and
reference indicates whether offset should be considered from the beginning of the
file, from the current position of the read/write offset, or from the end of the fl.
‘The return value, position, is the byte offset where the next read o write will start.
In the program in Figure 5.10, for example, a process opens a file, reads a byte,
then invokes Iseek to advance the file table offset value by 1023 (with reference 1),
and loops. Thus, the program reads every 1024th byte of the file. If the value of
reference is 0, the kernel sceks from the beginning of the file, and if its value is 2,
the kernel seeks beyond the end of the file. The /seek system call has nothing to do
with the seck operation that positions a disk arm over a particular disk scctor. To
implement Iseek, the kernel simply adjusts the offset value in the file table;
subscquent read or write system calls use the file table offset as their starting byte
offset.

5.6 CLOSE

A process closes an open file when it no longer wants to access it. The syntax for
the close system call is
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Finclude <fentlh>
‘main0).
(
int fd1, fd2;
char bufl(512], buf2(s12};

fd1 = open(*/etc/passwa”, O_RDONL'
142 = open(*/etc/passwd”, O RDONLY)
read(fd1, bufl, sizeof (buf1));
read(fd2, buf2, sizeof (buf2));

)

Figure 5.9. Reading a File via Two File Descriptors

have to allocate several blocks for use as indirect blocks and data blocks. The
inode is locked for the duration of the write, because the kernel may change the
inode when allocating new blocks; allowing other processes access to the file could
corrupt the inode if several processes allocate blocks simultancously for the same
byte offsets. When the write is complete, the kernel updates the file size entry in
the inode if the file has grown larger.

For example, suppose a process writes byte number 10,240 to a file, the
highest-numbered byte yet written to the file. When accessing the byte in the file
using algorithm bmap, the kernel will find not only that the file does not contain a
block for that byte but also that it does not contain the necessary indirect block. It
assigns a disk block for the indircct block and writes the block number in the in-
core inode. Then it assigns a disk block for the data block and writes its block
number into the first position in the newly assigned indirect block.

The kernel goes through an internal loop, as in the read algorithm, writing one
block to disk during cach iteration. During each iteration, it determines whether it
will write the entire block o only part of it. I it writes only part of a block, it
must first read the block from disk 5o as not to overwrite the parts that will remain
the same, but if it writes the whole block, it need not read the block, since it will
overwrite its previous contents anyway. The write proceeds block by block, but the
kernel uses a delayed write (Section 3.4) to write the data to disk, caching
case another process should read or write it soon and avoiding extra disk operations.
Delayed write is probably most cffective for pipes, because another process s
reading the pipe and removing its data (Section 5.12). But even for regular fles,
delayed write is effective if the file is created temporarily and will be read soon
For example, many programs, such as editors and mail, create temporary files in
the dircctory “/tmp” and quickly remove them. Use of delayed write can reduce
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However, any processes that accessed those files (or attempted to access other files
via the locked directory) would deadlock. Thus, if the file were “/bin” or
“fusr/bin" (typical depositories for commands) or “/bin/sh” (the shell) the cffect
on the system would be disastrous.

516 UNLINK
‘The unlink system call removes a directory entry for a file. The syntax for the
unlink call is

unlink(pathname);

where pathname identifies the name of the file to be unlinked from the directory
hicrarchy. If a process unlinks a given file, no file is accessible by that name until
another directory entry with that name s created. In the following code fragment,
for example,

unlink(“myfle”);

fd = open(“myfile”, O_RDONLY);
the open call should fail, because the current directory no longer contains a file
called myjle. I the file being wnlinked is the last fink of the file, the kernel
eventually frees its data blocks. However, if the file had several links, it is still
accessible by its other names.
igure 5.31 gives the algorithm for wnlinking a file. The kernel first uses a
variation of algorithm namei to find the file that it must unlink, but instead of
returning its inode, it returns the inode of the parent directory. It accesses the in-
core inode of the file to be unlinked, using algorithm iger. (The special case for
unlinking the file “. is covered in an exercise) After checking error conditions
and, for executable files, removing inactive shared text entries from the region table
(Chapter 7), the kernel clears the file name from the parent directory: Writing 2 0
for the value of the inode number suffices to clear the slot in the directory. The
kernel then does a synchronous write of the diectory to disk to ensure that the file
is inaccessible by its old name, decrements the link count, and releases the in-core
inodes of the parent dircctory and the unlinked file via algorithm ipur

When releasing the in-core inode of the unlinked file in iput, if the reference
count drops to 0, and if the link count is 0, the kernel reclaims the disk blocks
occupied by the file. No file names refer to the inode any longer and the inode is
not active. To reclaim the disk blocks, the kernel loops through the inode table of
contents, frecing all direct blocks immediately (according to algorithm free). For
the indirect blocks, it recursively frees all blocks that appear in the various levels of
indirection, frecing the more direct blocks first. It zeroes out the block numbers in
the inode table of contents and sets the file size in the inode t0 0. It then clears the
inode fle type field to indicate that the inode is free and frees the inode with
algorithm ifree. It updates the disk since the disk copy of the inode still indicated
that the inode was in use; the inode is now frec for assignment o other fils,
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Process A Process B

Try to get inode for ¢
SLEEP - inode ¢ locked

Get inode for a
Release inode a
Get inode for b
Release b
Get inode ¢
Release ¢
Get inode d

Try to get inode ¢
SLEEP - inode ¢ locked

[Wakeup - inode ¢ unlocked]

. [¥alkeup = Tnode € wnlocked|

n

s Get inode ¢
" Release ¢
s Get inode f
it Get inode a
A Release &
.

ic

k

0

Try to get inode d
SLEEP - proc A locked inode

Get inode ¢
Release ¢
Try to get inode
SLEEP - proc B locked inode

Time [Deadlock]

Figure 5.30. Deadlock Scenario for Link
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For example, suppose a file has two links with path names “a™ and “b", ang
suppose a process unlinks “a”. If the kernel orders the disk write operations, then
it 2¢r0s the directory entry for “a” and writes it to disk. If the system crashes afier
the write to disk completes, file “b” has link count of 2, but file “a” does not exis,
because its old entry had been zeroed before the systom crash. File “b” has an
extra link count, but the system functions properly when rebooted,

Now suppose the kernel ordered the disk write operations in the reverse order
and the system crashes: That s, it decrements the link count for the file “b” to 1,
rites the inode to disk, and crashes before it could zero the directory entry for file
“a". When the system is rebooted, entries for files “a” and “b” cxist in their
respective dircctories, but the link count for the file they reference is 1. 1f a process
then unlinks file “a”, the fle link count drops to 0 cven though file “b” stll
references the inode. If the kernel were later to reassign the inode as the result of
a ereat system call, the new file would have link count 1 but two path names that
reference it The system cannot rectify the situation except via maintenance
programs (fsck, described in Section 5.18) that access the file system through the
block or raw interface.

The kernel also frees inodes and disk blocks in a specific order to minimize
corruption in event of system failure. When removing the contents of a file and
clearing its inode, it is possible to free the blocks containing the file data first, or it
is possible to frec and write out the inode first. The result is usually identical for
both cases, but it differs if the system crashes in the middle. Suppose the kernel
first frees the disk blocks of a file and crashes. When the system is rebooted, the
inode still contains references to the old disk blocks, which may no longer contain
data relevant o the file. The kernel would see an apparently good file, but a user
accessing the file would notice corruption. It is also possible that other files were
assigned those disk blocks. The effort to clean the file system with the fock
program would be great. However, if the system first writes the inode to disk and
the system crashes, a user would not notice anything wrong with the file system
when the system is rebooted. The data blocks that previously belonged to the file
yrould be inaccessible to the system, but users would notice no apparent corruption
The fsck program also finds the task of reclaiming unlinked disk blocks sasier thap
the clean-up it would have to do for the first sequence of events

5.162 Race Conditions

face conditions abound in the wnlink system call, partcularly when unlinking
directories. The rmdir command removes a directory after verifying that the
directory contains no fles (it reads the directory and checks that all directory
eniries have inode value 0). But since rmdir runs at user lovel, the actions o
yerifying that a directory is empty and removing the directory are not atomie: the
System could do a context switch between cxccution of the read and unlink system
calls. Henee, another process could crear a file in the directory after iy
determined that the directory was empty. Users can prevent this situation only by
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algorithm unlink
input: ~fle name
output: none:
{
get parent inode of fle to be unlinked (algorithm namei);
74 if unlinking the current dircctory... */
if (st component of file name is ")
increment inode reference count;

ae
et inode of il to be unlinked (algorithm iged);
if (file is directory but user is not super user)
[
rlease inodes (algorithm ipud):
return(erron);
)
if (shared text file and link count currently 1)
remove from region tabl;
wite parent directory: 2670 inode number of unlinked fie;
felease inode parent dircctory (algorithm iput):
decrement fle link count
release file inode (algorithm iput)
7# iput checks if link count is O: if 50,
* releases fle blocks (algorithm free) and
* frees inode (algorithm ifree);
o

Figure 531, Algorithm for Unlinking a File

5.16.1 File System Consistency

The kernel orders its o disk to minimize file system corruption in event of
system failure. For instance, when it removes a file name from its parent directory,
it writes the directory synchronously to the disk — before it destroys the contents of
the file and frees the inode. If the system were to crash before the file contents
were removed, damage to the file system would be minimal: There would be an
inode that would have a link count 1 greater than the number of directory entries
that access it, but all other paths to the file would stll be legal. I the directory
write were not synchronous, it would be possible for the directory entry on disk to
point to a free (or reallocated!) inode after a system crash. Thus there would be
more directory entries in the file system that refer to the inode than the inode
would have link counts. In particular, if the file name was that of the last link to
the file, it would refer to an unallocated inode. System damage is clearly less
severe and easier to correct in the first case (see Section 5.18).
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Proc A Proc B Proc C

Unlink file ¢
Find inode for ¢ locked
Sleeps

Search dir b for name ¢

Get inode number for ¢

Finds inode for c locked
Sleeps

Wakes up and ¢ free
Unlinks c,
old inode free if
link count 0

Assign inode to new file n
Happen to assign
old inode for ¢

Eventually release
inode n lock

Wakes up and old ¢ inode free
(now n)
Get inode for n

Search n for name d
Time

Figure 5.32. Unlink Race Condition
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use of file and record locking. Once a process begins execution of the unlink call,
however, no other process can access the file being unlinked since the inodes of the
parent directory and the file are locked.

Recall the algorithm for the Jink system call and how the kernel unlocks the
inode before completion of the call. If another process should unlink the file while
the inode lock is-free, it would only-decrement the link count; since the link count
had been incremented before unlinking the inode, the count would still be greater
than 0. Hence, the file cannot be removed, and the system is safe. The condition is
cquivalent to the case where the wnlink happens immediately after the link call
completes.

Another race condition exists in the case where one process is converting a file
path name to an inode using algorithm namei and another process is removing &
directory in that path. Suppose process A is parsing the path name “a/b/c/d" and
goes to sleep while allocating the in-core inode for “c”. It could go to sieep while
trying to lock the inode or while trying to access the disk block in which the inode
resides (see algorithms iget and bread). If process B wants to unlink the directory
“c”, it may go to slecp, possibly for the same reasons that process A is slecping.
Suppose the kernel later schedules process B to run before process A. Process B
would run to completion, unlinking directory “c” and removing it and its contents
(for the last link) before process A runs again. Later, process A would try to
access an illegal in-core inode that had been removed. Algorithm namei therefore
checks that the link count is not 0 before proceeding, reporting an error otherwise.

‘The check is not sufficient, however, because another process could conceivably
create a new directory somewhere in the file system and allocate the inode that had
previously been used for “c”. Process A is tricked into thinking that it accessed the
correct inode (see Figure 5.32). Nevertheless, the system maintains its integrity:
the worst that could happen is that the wrong file is accessed — a possible sccurity
breach — but the race condition is rare in practice.

A process can unlink a file while another process has the file open. (The
unlinking process could even be the process that did the open). Since the kernel
unlocks the inode at the end of the open call, the unlink call will succeed. The
kernel will follow the wnlink algorithm as if the file were not open, and it will
remove the directory entry for the file. No other processes will be able to access
the now unlinked fle. However, since the open system call had incremented the
inode reference count, the kernel does not clear the file contents when cxccuting the
iput algorithm at the conclusion of the unlink call. So the opening process can do
all the normal file operations with its file descriptor, including reading and writing
the file. But when it closes the file, the inode reference count drops to 0 in iput,
and the kernel clears the contents of the file. In short, the process that had opened
the file proceeds as if the unlink did not oceur, and the unlink happens as if the file
were not open. Other system calls will continue to work for the opening process,
t00.

In Figure 5.33 for example, a process opens a file supplicd as a parameter and
then unlinks the fle it just opened. The stat call fails because the original path
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The UNIX system has become quite popular since its inception in 1969, running on
machines of varying processing power from microprocessors to mainframes and
providing a common execution environment across them. The system is divided
into two parts. The first part consists of programs and services that have made the
UNIX system environment so popular; it is the part readily apparent to users,
including such programs as the shell, mail, text processing packages, and source
code control systems. The second part consists of the operating system that
supports these programs and services. This book gives a detailed description of the
operating system. It concentrates on a description of UNIX System V produced by
ATA&T but considers interesting features provided by other versions too. It
cxamines the major data structures and algorithms used in the operating system
that ultimately provide users with the standard user interface.

This chapter provides an introduction to the UNIX system. It reviews its
history and outlines the overall system structure. The next chapter gives a more
detailed introduction to the operating system.

1.1 HISTORY

In 1965, Bell Telephone Laboratorics joined an cffort with the General Electric
Company and Project MAC of the Massachusetts Institute of Technology to
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Each file system type has a structure that contains the addresses of functions
that perform abstract operations. When the kernel wants to access a file, it makes
an indirect function call, based on the file system type and the operation (sce
Figure 5.34). Some abstract operations are to open a fil, close it, read or write
data, return an inode for a file name component (like namei and iger), release an
inode (like iput), update an inode, check access permissions, set file attributes
(permissions), and mount and unmount fle systems. Chapter 13 will illustrate the
use of file system abstractions in the description of a distributed file system.

5.18 FILE SYSTEM MAINTENANCE

The kernel maintains consistency of the file system during normal operation.
However, extraordinary circumstances such s a power failure may cause a system
crash that leaves a file system in an inconsistent state: most of the data in the file
system is acceptable for use, but some inconsistencies exist. The command fsck
checks for such inconsistencies and repairs the file system if necessary. It accesses
the file system by its block or raw interface (Chapter 10) and bypasses the regular
file access methods. This section describes several inconsistencies checked by fsck

A disk block may belong to more than one inode or to the list of frec blocks and
an inode. When a file system is originally set up, all disk blocks are on the free list.
When a disk block is assigned for use, the kernel removes it from the free list and
assigns it 10 an inode. The kernel may not reassign the disk block to another inode
until the disk block has been returned to the free list. Therefore, a disk block is
cither on the free list or assigned t0 a single inode. Consider the possibilties if the
kernel freed a disk block in a file, returning the block number to the in-core copy of
the super block, and allocated the disk block to a new file. If the kernel wrote the
inode and blocks of the new file to disk but crashed before updating the inode of
the old file to disk, the two inodes would address the same disk block number.
Similarly, if the kernel wrote the super block and its free list to disk and crashed
before writing the old inode out, the disk block would appear on the free list and in
the old inode.

If a block number is not on the free list of blocks nor contained in a file, the file
system is inconsistent because, as mentioned above, all blocks must appear
somewhere. This situation could happen if a block was removed from a file and
placed on the super block free list. If the old file was written to disk and the
system crashed before the super block was written to disk, the block would not
appear on any lists stored on disk.

An inode may have a non-0 link count, but its inode number may not exist in
any directories in the file system. All files except (unnamed) pipes must exist in
the file system tree. If the system crashes after creating a pipe or after creating a
file but before creating its dircctory entry, the inode will have its link field set even
though it does not appear to be in the file system. The problem could also arise if a
directory were unlinked before making sure that all files contained in the directory
were unlinked.
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Weinberger introduced file system types to support his network file system (sec
[Killian 84] for a brief description of this mechanism), and the latest release of
System V supports a derivation of his scheme. File system types allow the kernel to
support multiple file systems simultancously, such as network file systems (Chapter
13) or even file systems of other operating systems. Processes use the usual UNIX
system calls to access files, and the kernel maps a generic set of file operations into
operations specific to each file system type.

File System Generic System V.
Operations Inodes, File System Inode
System V[~ open —
close T
read
write

Remote [~ ropen

relose
rread Remote
rwrite Inode

Figure 5.34. Inodes for File System Types

The inode is the interface between the abstract file system and the specific file
system. A generic in-core inode contains data that is independent of particular file
systems, and points to a file-system-specific inode that contains file-system-specific
data. The file-system-specific inode contains information such as access permissions
and block layout, but the generic inode contains the device number, inode number,
file type, size, owner, and reference count. Other data that is file-system-specific
includes the super block and directory structures. Figure 5.34 depicts the generic
in-core inode table and two tables of file-system-specific inodes, one for System V
file system structures and the other for a remote (network) inode. The latter inode
presumably contains enough information to identify a file on a remote system. A
file system may not have an inode-like structure; but the file-system-specific code
manufactures an object that satisfies UNIX file system semantics and allocates its
tode™ when the kernel allocates a generic inode.
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reference count. If no other processes access the file at the conclusion of the fink
call, the inode reference count of the file is 0, and the link count of the file is at
least 2.

For example, when executing

link(“source”, “dir/target”);

the kernel locates the inode for file “source”, increments its link count, remembers
its inode number, say 74, and unlocks the inode. It locates the inode of “dir", the
parent directory of “target”, finds an empty directory slot in “dir”, and writes the
file name “target” and the inode number 74 into the empty dircctory slot. Finally,
it releases the inode for “source” via algorithm iput. If the link count of “source”
had been 1, it is now 2.

Two deadlock possibilities are worthy of note, both concerning the reason the
process unlocks the source file inode after incrementing its link count. If the kernel
did not unlock the inode, two processes could deadlock by executing the following
system calls simultancously.

process A: link(“a/b/c/d”, “e/f/g");
process B:  link(“e/f", “a/b/c/d/ec");

Suppose process A finds the inode for file “a/b/c/d" at the same time that process
B finds the inode for “e/f". The phrase ar the same time means that the system
arrives at a state where cach process has allocated its inode. Figure 5.30 illustrates
an execution scenario. When process A now attempts to find the inode for
directory “e/f", it would slecp awaiting the event that the inode for “I" becomes
frec. But when process B attempts to find the inode for directory “a/b/c/d"
would sleep awaiting the event that the inode for “d” becomes free. Process A
would be holding a locked inode that process B wants, and process B would be
holding a locked inode that process A wants. The kernel avoids this classic
example of deadlock by releasing the source file's inode after incrementing its link
count. Since the first resource (inode) is free when accessing the next resource, no
deadlock can occur.

The last cxample showed how two processes could deadlock each other if the
inode lock were not released. A single process could also deadlock itself. If it
executed

link(“a/b/c", “a/b/c/d")

it would allocate the inode for file “c™ in the first part of the algorithm; if the
kernel did not release the inode lock, it would deadlock when encountering the
inode “c” in scarching for the file “d". If two processes, or even one proeess, could
not continue exccuting because of deadlock, what would be the cffcct on the
system? Since inodes are finitely allocatable resources, receipt of a signal cannot
awaken the process from its sleep (Chapter 7). Hence, the system could not break
the deadlock without rebooting. If no other processes accessed the files over which
the processes deadlock, no other processes in the system would be affected
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assignments are done immediately because the calling process could go o sleep in
the ensuing device open procedure o in reading the file system super block, and
another process could attempt to mount a file system. By having marked the
mount table entry in use, the kernel prevents two mounrs from using the same
entry. By noting the device number of the attempted mount, the kernel can
prevent other processes from mounting the same file system again, because strange
things could happen if a double mount were allowed (see exercise 5.26).

The kernel calls the open procedure for the block device containing the file
system in the same way it invokes the procedure when opening the block device
directly (Chapter 10). The device open procedure typically checks that the device
is legal, sometimes initializing driver data structures and sending initialization
commands to the hardware. The kernel then allocates a free buffer from the buffer
pool (a variation of algorithm gerblk) to hold the super block of the mounted file
system and reads the super block using a variation of algorithm read. The kernel
stores a pointer to the inode of the mounted-on directory of the original file tree to
allow file path names containing “.” to traverse the mount point, as will be scen.
It finds the root inode of the mounted file system and stores a pointer to the inode
in the mount table. To the user, the mounted-on directory and the root of the
mounted fle system are logically equivalent, and the kernel establishes their
equivalence by their coexistence in the mount table entry. Processes can no longer
access the inode of the mounted-on directory.

The kernel initializes fields in the file system super block, clearing the lock fields
for the free block list and free inode list and setting the number of free inodes in
the super block to 0. The purpose of the initializations is to minimize the danger of
file system corruption when mounting the file system after a system crash: Making
the kernel think that there are no free inodes in the super block forces algorithm
ialloc to search the disk for frec inodes. Unfortunately, if the linked list of free
disk blocks is corrupt, the kernel does not fix the list internally (sec Section 5.17 for
file system maintenance). If the user mounts the file system read-only to disallow
all write operations 1o the file system, the kernel sets a flag in the super block.
Finally, the kernel marks the mounted-on inode as a mount point, so other
processes can later identify it. Figure 5.24 depicts the various data structures at
the conclusion of the mount call.

S.14.1 Crossing Mount Points in File Path Names

Let us reconsider algorithms namei and iget for the cases where a path name
crosses a mount point. The two cases for crossing a mount point are: crossing
from the mounted-on fle system to the mounted file system (in the direction from
the global system root towards a leaf node) and crossing from the mounted file
system 1o the mounted-on file system. The following sequence of shell commands
illustrates the two cases.
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algorithm iget
input:  file system inode number
output: locked inode
{
while (not done)
{
if (inode in inode cache)

{
:{1 Ginode locked)

sleep (event inode becomes unlocked);
continue;  /*loop */

1 special processing for mount points—
if (inode a mount point)
{
find mount table entry for mount point;
get new file system number from mount table;
use root inode number in search;
continue; /* loop again */
]
if (inode on inode free
remove from free list;
increment inode reference count;
return Ginode);

)

/* inode not in inode cache */
remove new inode from free
reset inode number and fil system;
remove inode from old hash queve, place on new one;
read inode from disk (algorithm bread)
alize inode (c.g. reference count to 1
return inode;

Figure 5.25. Revised Algorithm for Accessing an Tnode

root inode of the mounted device and returns that inode. In the first change
directory cxample above, the kernel first accesses the inode for “/usr” in the
‘mounted-on file system, finds that the inode is marked “mounted-on,” finds the root
inode of the mounted file system in the mount table, and accesses the root inode of
the mounted file system.
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Figure 5.24. Data Structures after Mount

‘mount /dev/dskl /ust
cd Just/srcluts
o

The mount command invokes the mount system call after doing some consistency
checks and mounts the file system in the disk section identified by “/dev/dsk1” onto
the directory “/usr”. The first cd (change directory) command causes the shell to
exccute the chdir system call, and the kernel parses the path name, crossing the
mount point at “/usr”. The second cd command results in the kernel parsing the
path name and crossing the mount point at the third **.” in the path name.

For the case of crossing the mount point from the mounted-on file system to the
mounted file system, consider the revised algorithm for iget in Figure 5.25, which is
identical to that of Figure 4.3, except that it checks if the inode is 2 mount point:
If the inode is marked “mounted-on,” the kernel knows that it is a mount point. It
finds the mount table entry whose mounted-on inode is the one just accessed and
notes the device number of the mounted file system. Using the device number and
the inode number for root, which is common to all file systems, it then accesses the
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also root, and the path name component is dot-dot (“.."), the kernel identifies the
inode as a mount point. It finds the mount table entry whose device number cquals
the device number of the last found inode, gets the inode of the mounted-on
directory, and continues its search for dot-dot (") using the mounted-on inode as
the working inode. At the root of the file system, however, *..” is the root.

In the example above (cd assume the starting current directory of the
process is “/use/stc/uts”. When parsing the path name in namei, the Starting
working inode is the current directory. The kernel changes the working inode to
that of “/usr/src” as a result of parsing the first “." in the path name. Then, it
parses the sccond “.” in the path name, finds the root inode of the (previously)
mounted file system, “usr”, and makes it the working inode in namei.  Finally, it
parses the third . in the path name: It finds that the inode number for *. is
the root inode number, its working inode is the root inode, and *.” is the current
path name component. The kernel finds the mount table entry for the “usr” mount
point, releases the current working inode (the root of the “usr” file system), and
allocates the mounted-on inode (the inode for directory “usr” in the root file
system) as the new working inode. It then searches the directory structures in the
mounted-on “/usr” for . and finds the inode number for the root of the file
system (/"). The chdir system call then completes as usual; the calling process is
oblivious to the fact that it crossed a mount point.

5142 Unmounting a File System
‘The syntax for the umount system call is
umount(special filename);

where special filename indicates the file system to be unmounted. When
unmounting a file system (Figurc 5.27), the kernel accesses the inode of the device
to be unmounted, retrieves the device number for the special file, releases the inode
(algorithm iput), and finds the mount table entry whose device number equals that
of the special file. Before the kernel actually unmounts a file system, it makes sure
that no files on that file system are still in use by searching the inode table for all
files whose device number equals that of the file system being unmounted. Active
files have a positive reference count and include files that are the current directory
of some process, files with shared text that are currently being exccuted (Chapter
7). and open files that have not been closed. If any files from the file system are
active, the umount call fails: if it were to succeed, the active files would be
inaccessible.

The buffer pool may still contain “delayed write” blocks that were not written
to disk, 50 the kernel flushes them from the buffer pool. The kernel removes shared
text entries that are in the region table but not operational (sce Chapter 7 for
detail), writes out all recently modified super blocks to disk, and updates the disk
copy of all inodes that nced updating. It would suffice for the kernel to update the
disk blocks, super block, and inodes for the unmounting file system only, but for
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aigorithm namei 7 convert path name (@ inode */
put: path name

output: locked inode.

(

if (path name starts from root)
‘working inode = root inode (algorithm iget

dlse
working inode = current dircctory inode (algorithm ige);
while (there is more path name)
(
read next path name component from input;
verify that inode i of directory, permissions;
if (inode is of changed root and componen
continue; /* loop */
component search:
read inode (directory) (algorithms bmap, bread, brelse);
i (component matches a directory entry)

Y

get inode number for matched component;

i (found inode of root and working inode is root and.
‘and component name is *.)

(

19 crossing mount point */
gt mount table cnry for working inode;
release working inode (algorithm iput);
‘working inode = mounted on inode:
& lock mounted on inode;

increment reference count of working inode;
80 to component scarch (for ",

)

release working inode (algorithm iput);
working inode = inode for new inode number (algorithm iget);
)
clse /* component not in dircctory */
return (10 inode);
)
return (working inode);

Figure 5.26. Revised Algorithm for Parsing a File Name

For the second case of crossing the mount point from the mounted file system to
the mounted-on file system, consider the revised algorithm for namei in Figure 5.26.
It i similar to that of Figure 4.11. However, after finding the inode number for a
path name component in a directory, the kernel checks if the inode number is the
root inode of a file system. If it is, and if the inode of the current working inode is
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algorithm umount
input: - special file name of fle system to b unmounted
output; none
{
i (not super user)
rewen(erron;
get inode of special file (algorithm namei);
extract major, minor number of device being unmounted;
get mount table entry, based on major, minor number.
for unmounting file system;
release inode of special file (algorithm iput);
remove shared text entries from region table for fl
belonging to fle system; /* chap Txxx */
update super block, inodes, flush buffers;
if (fles from fle system still in use)
returnerron);
get roo inode of mounted file system from mount table;
Tock inode;
release inode (algorithm iput); /* iget was in mount */
invoke close routine for special device;
invalidate buffers in pool from unmounted fle system;
get inode of mount point from mount table;
lock inode;
clear flag marking it as mount point;
release inode (algorithm ipu0;  /* iget in mount */
free buffer used for super block;
free mount table slot;

Figure 5,27, Algorithm for Unmounting a File System

historical reasons it does 5o for all file systems. The kernel then releases the root
inode of the mounted file system, held since its original access during the mount
system call, and invokes the driver of the device that contains the file system to
close the device. Afterwards, it goes through the buffers in the buffer cache and
invalidates buffers for blocks on the now unmounted file system; there is no need to
cache data in those blocks any longer. When invalidating the buffers, it moves the
buffers to the beginning of the buffer free list, o that valid blocks remain in the
buffer cache longer. It clears the “mounted-on” flag in the mounted-on inode st
during the mount call and releases the inode. After marking the mount table entry
firee for general use, the umount call completes.
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system, because the implementation of the mkdir command, which creates a new
directory, relies on the capability to link directories.  Inclusion of the mkdir system
call climinates the need to link dircctories.

algorithm link
input:  existing file name

new file name
output: none

(
get inode for existing file name (algorithm namei);
if (100 many links on file or linking directory without super user permission)
(

release inode (algorithm iput;

return(erron);
)
increment link count on inode;
update disk copy of inode;
unlock inode;
get parent inode for dircctory to contain new file name (algorithm namei);
if (new file name alrcady exiss or xisting file, new fle on

different file systems)

(

‘undo update done above;
return(erron);

1

ereate new directory entry in parent directory of new file name
include new file name, inode number of existing file name;

release parent directory inode (algorithm iput);

release inode of existing file (algorithm iput);

Figure 5.29. Algorithm for Linking Files

Figure 5.29 shows the algorithm for link. The kernel first locates the inode for
the source file using algorithm namei, increments its link count, updates the disk
copy of the inode (for consistency, as will be seen), and unlocks the inode. It then
searches for the target file; if the file is present, the Jink call fails, and the kernel
decrements the link count incremented earlier. Otherwise, it notes the location of
an empty slot in the parent directory of the target file, writes the target file name
and the source file inode number into that slot, and releases the inode of the target
file parent directory via algorithm iput. Since the target file did not originally
exist, there is no other inode to release. The kernel concludes by releasing the
source file inode: Its link count is 1 greater than it was at the beginning of the call,
and another name in the file system allows access to it. The link count keeps count
of the directory entries that refer to the file and is thus distinct from the inode
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include

s realfileh

Figure 5.28. Linked Files in File System Tree

515 LINK

The link system call links a file to a new name in the file system dircctory
structure, creating a new directory entry for an existing inode. The syntax for the
link system call is

link (source file name, target file name);

where source file name is the name of an existing file and targer file name is the
new (additional) name the file will have after completion of the fink call. The file
system contains a path name for cach link the file has, and processes can access the
file by any of the path names. The kernel does not know which name was the
original file name, so no file name is treated specially. For cxample, after executing
the system calls

ink (“/ust/stc/uts/sys", “/ust/include/sys");
link(“/usr/include/realfile.h", “/usr/src/uts/sys/testfile.h”

the following three path names refer to the same file: “/usr/src/uts/sys/testfile.h",
“fust/include/sys/testhle.h”, and “/ust/include/realfile” (sce Figure 5.28).

‘The kernel allows only a superuser to link directories, simplifying the coding of
programs that traverse the file system tree. If arbitrary users could link directorics,
programs designed to traverse the file hicrarchy would have to worry about getting
into an infinite loop if a user were to Jink a directory to a node name below it in
the hierarchy. Superusers are presumably more careful about making such finks,
The capability to link directories had to be supported on carly versions of the
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Association of the mount point inode and the root inode of the mounted file system,
set up during the mount system call, allows the kernel to traverse the file system
hicrarchy gracefully, without special user knowledge.

aigorithm mount
inputs: file name of block special file
dircctory name of mount point
options (read only)
output: none
{
if (ot super user)
returnerron);
get inode for block special file (algorithm namei);
make legality checks;
get inode for “mounted on” directory name algorithm named;
if (not directory, or reference count > 1)
(
relcase inodes (algorithm iput);
return(error);
)
find empty slotin mount table;
invoke block device driver open routinc;
get free buffer from buffer cache;
read super block into free buffer;
initialize super block fields;
get root inode of mounted device (algorithm iget), save in mount table;
mark inode of “mounted on” directory as mount point;
release special file inode (algorithm ipud);
unlock inode of mount point directory;

Figure 5.23. Algorithm for Mounting a File System

Figure 5.23 depicts the algorithm for mounting a file system. The kernel only
allows processes owned by a superuser to mount or umount file systems.  Yielding
permission for mount and umount 1o the entire user community would allow
malicious (or not so malicious) users to wreak havoc on the file system. Super-
users should wreak havoc only by accident.

‘The kernel finds the inode of the special file that represents the file system to be
mounted, extracts the major and minor numbers that identify the appropriate disk
section, and finds the inode of the directory on which the file system will be
mounted.  The reference count of the directory inode must not be greater than 1 (it
must be at least 1 — why?), because of potentially dangerous side effects (see
exercise 5.27). The kernel then allocates a free slot in the mount table, marks the
slot in use, and assigns the device number field in the mount table. The above
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Figure 5.22. File System Tree Before and After Mount

(system calls such as write and creat that write the file system will fail). For
example, if a process issues the system call

‘mount(“/dev/dsk1”, “/usr”, 0);

the kernel attaches the file system contained in the portion of the disk called
“/dev/dsk1” to directory “/usr” in the existing file system tree (see Figure 5.22).
‘The file */dev/dsk1” is a block special file, meaning that it is the name of a block
device, typically a portion of a disk. The kernel assumes that the indicated portion
of the disk contains a file system with a super block, inode list, and root inode.
After completion of the mount system call, the root of the mounted file system is
accessed by the name “/usr”. Processes can access files on the mounted file system
and ignore the fact that it is detachable. Only the link system call checks the file
system of a file, because System V docs not allow file links to span multiple file
systems (see Section 5.15).

‘The kernel has a mount table with entries for every mounted file system. Each
‘mount table entry contains

* a device number that identifies the mounted file system (this i
system number mentioned previously);

* a pointer to a buffer containing the fle system super block;

* @ pointer to the root inode of the mounted file system (“/" of the “/dev/dsk1”
file system in Figure 5.22);

* @ pointer to the inode of the directory that is the mount point (“usr” of the root
file system in Figure 5.22)

the logical file
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« Limit fields restrict the size of a process and the size of a file it can write.
« A permission modes field masks mode settings on files the process creats.

This section has described the process state transitions on  logical level. Each
state has physical characteristics managed by the kernel, particularly the virtual
‘address space of the process. The next section describes a model for memory
management; later sections describe the states and state transitions at a physical
level, focusing on the states “user running,” “kernel running,” “precmpted,” and
“slecp (n memory).” The next chapter describes the states “created” and
“zombie,” and Chapter 8 describes the state “seady 1o run in memory.” Chapter 9
discusses the two “swap” states and demand paging.

62 LAYOUT OF SYSTEM MEMORY

Assume that the physical memory of a machine is addressable, starting at byte
offset 0 and going up to a byte offset equal to the amount of memory on the
machine. As outlined in Chapter 2, a process on the UNIX system consists of
three logical sections: text, data, and stack. (Shared memory, discussed in
Chapter 11, should be considered part of the data section for purposes of this
discussion.) The text scetion contains the st of instructions the machine executes
for the process; addresses in the text section include text addresses (for branch
instructions or subroutine calls), data addresses (for access to global data
variables), or stack addresses (for access to data structures local (o a subroutine).
If the machine were to treat the generated addresses as address locations in
physical memory, it would be impossible for two processes to execute concurrently
if their set of generated addresses overlapped. The compiler could generate
addresses that did not overlap between programs, but such a procedure is
impractical for general-purpose computers because the amount of memory on a
machine is finite and the set of all programs that could be compiled is infinite.
Even if the compiler used heuristics to try to avoid unnecessary overlap of
generated addresses, the implementation would be inflexible and therefore
undesirable.

The compiler therefore generates addresses for a virtual address space with a
given address range, and the machine’s memory management unit translates the
virtual addresses generated by the compiler into address locations in physical
memory. The compiler does not have to know where in memory the kernel will
later load the program for execution. In fact, several copies of a program can
coexist in memory: All execute using the same virtual addresses but reference
different physical addresses. The subsystems of the kernel and the hardware that
cooperate to translate virtual to physical addresses comprise the memory
management subsystem.
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information to do a context switch to the process when the process moves from
State “ready to run in memory” to the state “kernel running" or from the state
“preempted” 10 the statc “user running.” In addition, it uses this information
when swapping (or paging) processes to and from main memory (between the
w0 “in memory” states and the two “swapped” states). The process table
entry also contains a field that gives the process size, so that the kernel knows
how much space 0 allocate for the process.

o Several user identifiers (user IDs or UIDs) determine various process privileges.
For example, the user ID fields delincate the sets of processes that can send
signals to each other, as will be explained in the next chapter.

« Process identifiers (process IDs or PIDs) specify the relationship of processes to
cach other. These ID fields are set up when the process enters the state
“ereated” in the fork system call.

« The process table entry contains an event descriptor when the process is in the
“sleep” state. This chapter will examine its use in the algorithms for sleep and
wakeup.

« Scheduling parameters allow the kernel to determine the order in which
processes move to the states “kernel running” and “user running.”

« A signal field enumerates the signals sent to @ process but not yet handied
(Section 7.2).

 Various timers give process exccution time and kernel resource utilization, used
for process accounting and for the calculation of process scheduling priority.
One field is a user-set timer used to send an alarm signal to a process (Section
8.).

The u area contains the following ficlds that further characterize the process
states. Previous chapters have described the last seven fields, which are briefly
described again for completeness.

A pointer to the process table identifies the entry that corresponds to the  area.

o The real and effective user IDs determine various privileges allowed the process,
such as file access rights (see Section 7.6)

 Timer fields record the time the process (and its descendants) spent executing
user mode and in kernel mode.

« An array indicates how the process wishes Lo react to signals.

« The control terminal field identifies the “login terminal” associated with the
process, if one exists.

» An error feld records errors encountered during a system call,

A rewrn value field contains the result of system calls

* 1/0 parameters describe the amount of data to transfer, the address of the
source (or targe) data array in user space, file offsets for 1/0, and so on.

* The current dircctory and current root describe the file system environment of
the process.

« The user file descriptor table records the fles the process has open.
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Per Proc Region Tables Regi
(Virtual Addresses) egions
Text| 8K
Process
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Stack| 32K
Text| 4K
Process
B Danf 8K
Stack| 32K
Figure 6.2. Processes and Regions

6.2.2 Pages and Page Tables

This section defines the memory model that will be used throughout this book, but
it is not specific o the UNIX system. In a memory management architecture
based on pages, the memory management hardware divides physical memory into a
set of equal-sized blocks called pages. Typical page sizes range from 512 bytes to
4K bytes and are defined by the hardware. Every addressable location in memory
is contained in a page and, consequently, every memory location can be addressed
bya

(page number, byte offset in page)

pair. For example, if a_machine has 2°2 bytes of physical memory and a page size
of 1K bytes, it has 22 pages of physical memory; every 32-bit address can be
treated as a pair consisting of a 22-bit page number and a 10-bit offset into the
page (Figure 6.3).

When the kernel assigns physical pages of memory 10 a region, it need not
assign the pages contiguously or in a particular order. The purposc of paged
memory i to allow greater flexibility in assigning physical memory, analogous to
the assignment of disk blocks to files in a file system. Just as the kernel assigns
blocks to a file to increase flexibility and to reduce the amount of unused space
caused by block fragmentation, so it assigns pages of memory to a region.
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621 Regions
The System V. kernel divides the virtual address space of a process into logical
regions. A region is a contiguous area of the virtual address space of a process that
can be treated as a distinct object to be shared or protected. Thus text, data, and
stack usually form separate regions of a process. Several processes can share a
region. For instance, several processes may execute the same program, and it is
natural that they share one copy of the text region. Similarly, several processes
may cooperate to share a common shared-memory region.

The kernel contains a egion table and allocates an entry from the table for
each active region in the system. Section 6.5 will describe the fields of the region
table and region operations in greater detail, but for now, assume the region table
contains the information to determine where its contents arc located in physical
memory. Each process contains a private per process region table, called a pregion
for short. Pregion entries may exist in the process table, the u area, or in 2
separately allocated area of memory, dependent on the implementation, but for
simplicity, assume that they are part of the process table entry. Each pregion entry
points 1o & region table entry and contains the starting virtual address of the region
in the process. Shared regions may have different virtual addresses in cach process,
The pregion entry also contains a permission field that indicates the type of access
allowed the process: read-only, read-write, or read-execute. The pregion and the
region structure are analogous to the file table and the inode structure in the file
system: Several processes can share parts of their address space via a region, much
as they can share access to a file via an inode; cach process accesses the region via
a private pregion entry, much as it accesses the inode via private cntries in its user
file descriptor table and the kernel file table.

Figure 6.2 depicts two processes, A and B, showing their regions, pregions, and
the virtual addresses where the regions are connected. The processes share text
region 'a’ at virtual addresses 8K and 4K, respectively. If process A reads memory
location 8K and process B reads memory location 4K, they read the identical
memory location in region '’. The data regions and stack regions of the two
processes are private.

‘The concept of the region is independent of the memory management policies
implemented by the operating system. Memory management policy refers to the
actions the kernel takes o insure that processes share main memory fairly. For
example, the two memory management policies considered in Chapter 9 are process
swapping and demand paging. The concept of the region is also independent of the
memory management implementation: whether memory is divided into pages or
segments, for example. To lay the foundation for the description of demand paging
algorithms in Chapter 9, the discussion.here assumes a memory architecture based
on pages, but it does not assume that the memory management policy is based on
demand paging algorithms.
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Figure 6.5 Mapping Virtual Addresses to Physical Addresses

hardware where the page tables and physical memory of the process reside by
loading the appropriate registers. Since such operations are machine dependent
and vary from one implementation to another, this text will not discuss them. The
exerciscs at the end of the chapter cite specific machine architectures.

Let us use the following simple memory model in discussing memory
management. Memory is organized in pages of 1K bytes, accessed via page tables
as described carlier. The system contains a set of memory management register
triples (assume a large supply), such that the first register in the triple contains the
address of a page table in physical memory, the second register contains the first
virtual address mapped via the triple, and the third register contains control
information such as the number of pages in the page table and page access
permissions (read-only, read-write). This model corresponds to the region model,
Just described. When the kernel prepares a process for exccution, it loads the set of
‘memory management register  triples with the corresponding data stored in the
pregion entries.
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Hexadecimal Address 58432
Binary 0101 1000 0100 0011 0010
Page Number, Page Offsct 01 0110 0001 00 0011 0010
In Hexadecimal 161 32

Figure 6.3. Addressing Physical Memory as Pages

Togical Page Number  Physical Page Number
0 177
1 54
2 209
3 17

Figure 6.4. Mapping of Logical to Physical Page Numbers

‘The kernel correlates the virtual addresses of a region to their physical machine
addresses by mapping the logical page numbers in the region to physical page
numbers on’the machine, as shown in Figure 6.4. Since a region is a contiguous
range of virtual addresses in a program, the logical page number is the index into
an array of physical page numbers. The region table entry contains 2 pointer to &
table of physical page numbers called a page rable. Page table cntries may also
contain machine-dependent information such as permission bits to allow reading or
writing of the page. The kernel stores page tables in memory and accesses them
like all other kernel data structures.

Figure 6.5 shows a sample mapping of a process into physical memory. Assume
that the size of a page is 1K bytes, and suppose the process wants to access virtual
memory address 68,432, The pregion entries show that the virtual address is in the
stack region starting at virtual address 64K (65,536 in decimal), assuming the
rection of stack growth is towards higher addresses. Subtracting, address 68,432
s at byte offsct 2896 in the region. Since each page consists of 1K bytes, the
address is contained at byte offset 848 in page 2 (counting from 0) of the region,
located at physical address 986K. Section 6.5.5 (loading a region) discusses the
meaning of the page table entry marked “empty.”

Modern machines use a variety of hardware registers and caches to speed up
the address translation procedure just described, because the memory references
and address calculations would otherwise be too slow. When resuming the
execution of a process, the kernel therefore informs the memory management
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] Address of No. of Pages
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Process (Region) Page Tables Kernel Page Tables

Figure 6.6, Changing Mode from User to Kernel

6.2.4 The U Area

Every process has a private u area, yet the kernel accesses it as if there were only

o one u area in the system, that of the running process. The kernel changes its

: virtual address translation map according to the exccuting process to access the
correct u area. When compiling the operating system, the loader assigns the

variable u, the name of the u area, a fixed virtual address. The valu of the u area
virtual address is known to other parts of the kernel, in particular, the module that
does the context switch (Section 6.4.3). The kernel knows where in its memory
3 ‘management tables the virtual address translation for the u area is done, and it can
dynamically change the address mapping of the u area to another physical address.
The two physical addresses represent the u areas of two processes, but the kernel

i

Wl
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If a process addresses memory locations outside its virtual address space, the
hardware causes an exception condition. For example, if the size of the text region
in Figure 6.5 is 16K bytes and a process accesses virtual address 26K, the hardware
will cause an exception that the operating system handles. Similarly, if a process
tries 10 access memory without proper permissions, such as writing an address in ity
write-protected text region, the hardware will cause an exception. In both these
examples, the process would normally exif; the next chapter provides more detail.

62.3 Layout of the Kernel

Although the kernel executes in the context of a process, the virtual memory
mapping associated with the kernel is independent of all processes. The code and
data for the kernel reside in the system permanently, and all processes share i.
When the system is brought into service (booted), it loads the kernel code into
memory and sets up the necessary tables and registers to map its virtual addresses
into physical memory addresses. The kernel page tables are analogous to the page
tables associated with a process, and the mechanisms used to map kernel virtual
addresses are similar to those used for user addresses. In many machines, the
virtual address space of a process is divided into several classes, including system
and user, and cach class has its own page tables. When executing in kernel mode,
the system permits access to kernel addresses, but it prohibits such access when
exccuting in user mode. Thus, when changing mode from user to kernel as a result
of an interrupt or system call, the operating system collaborates with the hardware
to permit kernel address references, and when changing mode back to user, the
operating system and hardware prohibit such references. Other machines change
the virtual address translation by loading special registers when cxccuting in kernel
mode.

Figure 6.6 gives an example of the virtual addresses of the kernel and a process,
where kernel virtual addresses range from 0 to 4M—1 and user virtual addresses
range from 4M up. There are two sets of memory management triples, one for
kernel addresses and one for user addresses, and each triple points to a page table
that contains the physical page numbers corresponding (o the virtual page
addresses. The system allows address references via the kernel register triples only
when in kernel mode; hence, switching mode between kernel and user requires only
that the system permit or deny address references via the kernel register triples.

Some system implementations load the kernel into memory such that most
kernel virtual addresses are identical o their physical addresses and the virtual to
physical memory map of those addresses is the identity function. However, the
treatment of the u area requires-virtual to physical address mapping in the kernel.
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accesses them via the same virtual address.

‘A process can access its u area when it executes in kernel mode but not when it
exccutes in user mode. Because the kernel can access only one u area at a time by
its virtual address, the u area partially defines the context of the process that is
running on the system. When the kernel schedules a process for execution, it finds
the corresponding u area in physical memory and makes it accessible by its virtual
address.

Address of  Virtual Addr  No. of Pages
Page Table _in Process __in Page Table

Reg Triple |

Reg Triple 2|

(U Arca) Reg Triple 3| ™M 4

Page Tables for U Areas

114K 843K 1879K 184K
708K 794K 290K 176K
143K 361K 450K 209K
565K 847K 770K 477K
“Proc A Proc B Proc C Proc D

igure 6.7. Memory Map of U Area in the Kernel

For example, suppose the u area is 4K bytes long and resides at kernel virtual
address 2M.  Figure 6.7 shows a sample memory layout, where the first two
register triples refer to kernel text and data (the addresses and pointers are not
shown), and the third triple refers to the u area for process D. If the kernel wants
10 access the u area of process A, it copies the appropriate page table information
for the u area into the third register triple. At any instant, the third kernel register
triple refers to the u area of the currently running process, but the kernel can refer
0 the u area of another process by overwriting the entries for the u area page table
address with a new address. The entries for register triples 1 and 2 do not change
for the kernel, because all processes share kernel text and data.
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Laboratories grew to about 25, and a UNIX Systems Group was formed to provide
internal support.

At this time, AT&T could not market computer products because of a 1956
Consent Decree it had signed with the Federal government, but it provided the
UNIX system to universities who requested it for educational purposcs. AT&T
neither advertised, marketed, nor supported the system, in adherence to the terms
of the Consent Decree. Nevertheless, the system’s popularity steadily increased. In
1974, Thompson and Ritchie published a paper describing the UNIX system in the
Communications of the ACM [Thompson 741, giving further impetus to_its
acceptance. By 1977, the number of UNIX system sites had grown to about 500,
of which 125 were in universities. UNIX systems became popular in the operating
elephone companies, providing a good environment for program  development,
network transaction operations services, and real-time services (via MERT
[Lycklama 78aD). Licenses of UNIX systems were provided to commercial
institutions as well as universitics. In 1977, Interactive Systems Corporation
became the first Value Added Reseller (VAR)! of a UNIX system, enhancing it
for use in office automation environments. 1977 also marked the year that the
UNIX system was first “ported” t0 a non-PDP machine (that is, made to run on
another machine with few or no changes), the Interdata 8/32.

‘With the growing popularity of microprocessors, other companies ported the
UNIX system to new machines, but its simplicity and clarity tempted many
developers to enhance it in their own way, resulting in several variants of the basic
System. In the period from 1977 to 1982, Bell Laboratories combined several
AT&T variants into a single system, known commercially as UNIX System IIL.
Bell Laboratories later added scveral features to UNIX System III, calling the new
product UNIX System V.2 and AT&T announced official support for System V in
January 1983. However, people at the University of California at Berkeley had
developed a variant to the UNIX system, the most recent version of which is called
4.3 BSD for VAX machines, providing some new, interesting features. This book
will concentrate on the description of UNIX System V and will occasionally talk
about features provided in the BSD system.

By the beginning of 1984, there were about 100,000 UNIX system installations
in the world, running on machines with a wide range of computing power from
microprocessors to mainframes and on machines across different manufacturers’
product lines. No other operating system can make that claim. Several reasons
have been suggested for the popularity and success of the UNIX system.

1. Value Added Resellrs add spesific spplications o a computer system (0 satisy » partcular marke.
‘They market the applicaions rather than the operating system upon which they run.

2. What happened to System IV? An internal version of the system evaved into System V.





nav.xhtml

    
  
    		Start


  




  
    		Cover


  




index-153_1.png
1490 SYSTEM CALLS FOR THE FILE SYSTEM

If the format of an inode is incorrect (for instance, if the file type field has an
undefined value), something is wrong. This could happen if an administrator
mounted an improperly formatted file system. The kernel accesses disk blocks tha
it thinks contain inodes but in reality contain data.

If an inode number appears in a directory entry but the inode is free, the file
system s inconsistent because an inode number that appears in a directory entry
should be that of an allocated inode. This could happen if the kernel was creating
a new file and wrote the directory entry to disk but did not write the inode to disk
before the crash. It could also oceur if a process unlinked a file and wrote the
freed inode to disk, but did not write the directory element to disk before it
crashed. These situations are avoided by ordering the write operations properly.

If the number of free blocks or free inodes recorded in the super block does not
conform to the number that exist on disk, the file system is inconsistent. The
summary information in the super block must always be consistent with the state of
the file system.

519 SUMMARY

‘This chapter concludes the first part of the book, the explanation of the file system.
It introduced three kernel tables: the user file descriptor table, the system file
table, and the mount table. It described the algorithms for many system calls
relating to the file system and their interaction. It introduced file system
abstractions, which allow the UNIX system to support varied file system types.
Finally, it described how fsck checks the consistency of the flc system.

520 EXERCISES

1. Consider the program in Figure 5.35. What is the return value for all the reads and
what is the contents of the buffer? Describe what is happening in the kernel during
each read.

2. Reconsider the program in Figure 5.35 but suppose the statement

Iscek(fd, 9000L, 0);

is placed before the first read. What does the process see and what happens inside the
kernel?

3. A process can open a file in write-append mode, meaning that every write operations
starts at the byte offset marking the current end of file. Therefore, two processes can
open a file in write-append mode and write the file without overwriting data. What
happens i a proces opens a fil i write-append mode and sceks 10 the beginning of
the file?

4. The standard 1/0 library makes user reading and writing more efficient by buffering
the data in the library and thus potentially saving the number of system calls a user
has to make. How would you implement the library functions fread and fwrite?
What should the library functions fopen and felose do?
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« The kernel can assign block fragments only for the last block of a fle;
« 1If a block is partitioned into several fragments, the kerel can assign them 1o
diffrent fles;

« The number of fragments in a block is fixed per fl system;

« The kernel allocates fragments during the write system call.

Design an algorithm that allocates block fragments 1o a fle. What changes must be
made 1o the inode to allow for fragments? How advantageous is it from o
performance standpoint 10 use fragments for files that use indirect blocks? Would it
be more advantageous to allocate fragments during a close call instead of during a
write call?

*8. Recall the discussion in Chapter 4 for placing data in a fles inode. If the size of the
inode is that of  disk block, design an algorithm such that the last data of a file is
written in the inode block if it fits. Compare this method with that described in the
previous problem.

*9. System V uses the fenl system call to implement fl and record locking:

fentl(fd, emd, arg);

where fd s the file descriptor, emd specifies the type of locking operation, and arg
specifis various parameters, such as lock type (read or write) and byte ofsets (ee the
appendix). The locking operations include

® Test for locks belonging to other processes and return immediately, indicating

whether other locks were found,

* Set a lock and sleep until successful,

* Set a lock but return immediately if unsuccessful.
The kernel automatically releases locks set by a process when it closes the fle
Describe an algorithm that implements file and record locking. If the locks are
mandatory, other processes should be prevented from accessing the file. What
changes must be made to read and write?

*10. 1f a process goes to sleep while waiting for a file lock to become free, the possibility for
deadlock exists: process A may lock flc “one” and atiempt to lock file “two,” and
process B may lock file “two” and attempt to lock file “one.” Both processes are in &
state where they cannot continue. Extend the algorithm of the previous problem so
that the kernel detects the deadlock situation as it is about to occur and fails the
system call. Is the kernel the right place to check for deadlocks?

1. Before the existence of a file locking system call, users could get cooperating processes
to implement a locking mechanism by exceuting system calls that cxhibited atomic
features. What system calls described i this chapter could be used? What are the
dangers inherent i using such methods?

12, Ritchic claims (sce (Ritchic 81) that fle locking is not suficient to prevent the
confusion caused by programs such as editors that make a copy of a file whil cditing
and then write the original file when done. Explain what he meant and comment.

13, Consider another method for locking files to prevent destructive update: Suppose the
inode contains a new permission seiting such that it allows only one process at & time
10 open the file for writing, but many processes can open the file for reading. Describe
an implementation.

* 14. Consider the program in Figure $.37 that ereates a directory node in the wrong format
Ghere arc no dircctory entris for . and *."). Try a few commands on the new
directory such as Is —1, Is ~Id, or cd. What is happening?

|
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EXERCISES 1

Finclude <fentlh>
main()
(
int fd:
char bufl1024];
d = creat(“junk”, 0666);
Iseek(fd, 2000L, 2); 14 seek 1o byte 2000 */
write(fd, “hello”, $);
closefd);

d = open("junk”, O_RDONLY);
read(fd, buf, 1024); 1* read zex0's */
read(fd, buf, 1024); 7# catch something */
read(fd, buf, 1024);

Figure 5.35. Reading 0s and End of File

If a process is reading data consecutively from a fle, the kernel notes the value of the
read-ahead block in the in-core inode. What happens if several processes
simultancously read data consccutively from the same fle?

Finclude <fentlh>
main0)
(

int 1d;

char bufl256];

1d = open(“/etc/passwa”, O_RDONLY);
if (read (d, but, 1024) < 0)
prindf(“read fails\n");

Figure 5.36. A Big Read in a Little Buffer

Consider the program in Figure 5.36. What happens when the program is exccuted?
Why? What would happen if the declaration of buf were sandwiched between the
declaration of two other arrays of size 10247 How docs the kernel recognize that the
read is 100 big for the buffer?

The BSD filc system allows fragmentation of the last block of a file as needed,
‘according 10 the following rules:

 Structures similar to the super block keep track of free fragments;

* The kernel does not keep a preallocated pool of free fragments but breaks a free

block into fragments when necessary;
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‘main(arge, argv)
int arge;
char *argvl];

if (arge 1= 2)

{

intf(“nced 1 dir arg\n");
exit0;

)

if (chdir(argy{1) == -1)
printf(“%s not a directory\n”, argu[11);

)
Figure 5.38. Sample Program with Chdir System Call

communicate through the named pipe instead of the one reader and one writer implicit
in the text? How could the processes ensure that only one reader and one writer
process were communicating?

When opening a named pipe for reading, a process slecps in the open until another
process opens the pipe for wi Why? Couldn't the process return successfully
from the open, continue processing until it tried to read from the pipe, and slecp in the
read?

How would you implement the dup2 (from Version 7) system call with syntax

dup2(oldfd, newd);

where oldfd is the il descriptor 10 be duped to file descriptor number newfd? What
should happen if newd already refers to an open file?

‘What strange things could happen if the kerncl would allow two processes to mount
the same file system simultaneously at two mount points?

Supposc  process changes ts current directory to "/mnt/a/b/c” and a second process
then mounts a file system onto “/mnt”. Should the mount succeed? What happens if
the first process exccutes pwd? The kernel does not allow the mount to succeed if the
inode reference count of “/mnt” i greater than 1. Comment.

In the algorithm for crossing a mount point on recognition of . in the fle path
name, the kenel checks three conditions 1o see if it is at & mount point: that the
found inode. has the root inode number, that the wor ode is root of the fie
system, and that the path name component is “.". Why must it check all three
conditions? Show that checking any two conditions is insuficient o allow the process
10 cross the mount point

If a user mounts a file system “read-only." the kernel sets a flag in the super block
How should it prevent write operations during the write, creat, link, unlink, chown.
and chmod system calls? What write operations do all the above system calls do 0
the file system?

Suppose a process attempts to wmount a file system and another process is
simultancously attempting 10 creat a new file on that file system. Only one system call
can succeed.  Explore the race condition.
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EXERCISES 13

main(arge, argv)
int arge;
char *argyl];

if (arge 1= 2)
{

printf(“try: command directory name\n");
exit0:

)

1% modes indicate: directory (04) rwx permission for all */

7 only super user can do this */

if (mknod (argvl 1], 040777, 0) =
printf(“mknod fails\n");

-1

Figure 5.37. A Half-Baked Directory

Write a program that prints the owner, fle type, access permissions, and acccss times
of files supplicd as parameters. 1f a file (parameter) i a dircctory, the program should
read the dircctory and print the above information for all fls n the directory.
Suppose a directory has read permission for a uscr but not crecute permission. What
happens when the dircctory s used as @ parameter to Is with the “~i" option? What
about the “~I" option? Explain the answers. Repeat the problem for the case that
the directory has execute permission but not read permission.
Compare the  permissions a.process must have for the following operations and
comment

« Creating a new file requires write permission in a directory.

+ Creating an cxisting file requires writc permission on the file.

» Unlinking a fle requircs write permission in the directory, not on the fie.
Wit  program that visis every directory, starting with the current directory. How
should it handie loops in th dircctory hierarchy?
Exccute the program in Figure 5.38 and describe what happens in the kernel. (Hint:
Exccute pwd when the program completcs.)
Write a program that changes its root 10 a particular directory, and investigate the

recory tree accesible o that program.

't a process undo a previous chroor system call? Change the implementation

can change s root back (o a previous root, What are the advantages and
disadvantages of such a featurc?
‘Consider the simple pipe cxample in Figure 5.19, where a process writes the string
“hello” in the pipe then reads the string. What would happen if the count of data
written 10 the pipe were 1024 instead of 6 (but the count of read data stays at 6)7
‘What would happen if the order of the read and write system cals were reverscd?
In the program illustrating the use of named pipes (Figure 5.19), what happens if
mknod discovers that the named pipe already exists? How docs the Kernel implement
this? What would happen if many reader and writer processes all attempted to






index-159_1.png
THE STRUCTURE
OF PROCESSES

Chapter 2 formulated the high-level characteristics of processes. This chapter
presents the ideas more formally, defining the context of a process and showing how
the kernel identifies and locates a process. Section 6.1 defines the process state
model for the UNIX system and the set of state transitions. The kernel contains
process table with an entry that describes the statc of every active process in the
system. The u area contains additional information that controls the operation of a
process. The process table entry and the u area are part of the context of
process. The aspect of the process context that most visibly distinguishes it from
the context of another process is, of course, the contents of its address space.
Section 6.2 deseribes the principles of memory management for processes and for
the kernel and how the operating system and the hardware cooperate to do virtual
memory address translation. Section 6.3 examines the components of the context of
a process, and the rest of the chapter describes the low-level algorithms that
‘manipulate the process context. Section 6.4 shows how the kernel saves the context
of a process during an interrupt, system call, or context switch and how it later
resumes exccution of the suspended process. Section 6.5 gives various algorithms,
used by the system calls described in the next chapter, that manipulate the process
address space. Finally, Section 6.6 covers the algorithms for putting a process to
sleep and for waking it up.
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* 31. When the umount system call checks that no more fles are active on a file system, it
has a problem with the file system root inode, allocated via iger during the mount
system call and hence having reference count greater than 0. How can umount be
sure there arc no active files and take account for the file system root? Consider two
cases:

 umount releases the root inode with the iput algorithm before checking for active
inodes. (How does it recover if there were active fies after all?)
 umount checks for active files before releasing the root inode but permits the root
inode to remain active. (How active can the root inode get?)

32, When exceuting the command /s —Id on a directory, note that the number of links to
the directory is never 1. Why?

33, How docs the command mkdir (make a new dircctory) work? (Hint: When mkdir
completes, what are the inode numbers for *.” and *."7)

* 34. Symbolic links refer 10 the capability 10 /ink files that exist on different file systems.
A new type indicator specifies & symbolic link fil: the data of the file is the path name
of the file to which it is linked. Describe an implementation of symbolic links

* 35. What happens when a process cxccutes

unlink("");

‘What is the current directory of the process? Assume superuser permissions.

36. Design a system call that truncates an existing file to arbitrary sizes, supplied as an
argument, and describe an implementation. Implement a system call that allows a
user to remove a file segment between specified byte offsets, compressing the file size.
Without such system calls, encode a program that provides this functionality.

37, Describe all conditions where the reference count of an inode can be greater than 1

38, In fle system abstractions, should cach file system type support a private lock
operation to be called from the generic code, or does a generic lock operation suffce?
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User Running

interrupt,
interrupt return|

Ready to Run
In Memory

enough mem

not enough mem
(swapping system only)

Sleep, Swapped Ready to Run, Swapped

Figure 6.1. Process State Transition Diagram.
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develop a new operating system called Multics [Organick 72]. The goals of th
Multics system were to provide simultancous computer access (0 a large communit

of users, to supply ample computation power and data storage, and t0 allow users

share their data casily, if desired. Many people who later took part in the carl
development of the UNIX system participated in the Multics work at Bel

Laboratories. Although  primitive version of the Multics system was running on :
GE 645 computer by 1969, it did not provide the gencral service computing fo
which it was intended, nor was it clear when its development goals would be et
Consequently, Bell Laboratorics ended its participation in the project.

With the end of their work on the Multics project, members of the Computing
Science Research Center at Bell Laboratories were left without a “convenien
interactive computing service” [Ritchie 84al. In an attempt to improve. their
programming environment, Ken Thompson, Dennis Ritchie, and others sketched 4
paper design of a file system that later evolved into an early version of the UNIX
file system. Thompson wrote programs that simulated the behavior of the proposed
file system and of programs in a demand-paging environment, and he even eneoded
2 simple kernel for the GE 645 computer. At the same time, he wrote & game
program, “Space Travel,” in Fortran for a GECOS system (the Honeywell 635),
but the program was unsatisfactory because it was difficult to control the “space
ship” and the program was expensive o run. Thompson later found a little.yee
PDP-7 computer that provided g0od graphic display and cheap executing power.
Programming “Space Travel" for the PDP-7 enabled Thompson 1o learn sbca the
machine, but ts environment for program development required cross-assembly of
o program on the GECOS machine and carrying paper tape for input (0 the
PDP7. To create a better development environment, Thompson and. Rischie
implemented their system design on the PDP-7, including an carly version of e
UNIX file system, the process subsystem, and a small s of utility programs.
Eventually, the new system no longer needed the GECOS system 40 8 development
o mert but could support itsef. “The new system was given the name UNIX.
R o0 dhe name Multics coined by another member of the Computing Seienee
Rescarch Center, Brian Kernighan.

Although this carly version of the UNIX system held much promise, it could
not realize ts potential until it was used in a real project. Thus, whie providing a
Syaten socsing system for the patent department at Bell Laboratories, the Uneit
System was moved to a PDP-11 in 1971, The system was characteriped by its small
size: 16K bytes for the system, K byts for user programs. a digk of SI2K bytes,
and @ limit of 64K bytes per file. After its carly sucecss. Thompson set out to
implement a Fortran complr for the new system, but incad came up with the
language B, influenced by BCPL [Richards 69 B was nterpretive language
vith the performance drawbacks implid by such languages, so R developed it
types e e called C, allowing gencration of machine code, declaration of data
pes, and definition of data structures. In 1973, the Operating system was
fewriten in C, an unheard of siep at the time, but one that was to hese tremendous
MPAEL on s acceptance among outside users. The number of installtions o1 ey
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when it is about to return to user mode. Consequently, the kernel could swap a
process from the state “preempted” if necessary. Eventually, the scheduler will
choose the process to cxecute, and it returns to the state “user running,” executing
in user mode agai

When a process executes a system call, it leaves the state “user running” and
enters the state “kernel running.” Suppose the system call requires 1/0 from the
disk, and the process must wait for the 1/0 to complete. It enters the state “asleep
in memory,” putting itself to slcep until it is notified that the 1/0 has completed.
When the 1/0 later completes, the hardware interrupts the CPU, and the interrupt
handler awakens the process, causing it to enter the state “ready to run in
memory.”

Suppose the system is exceuting many processes that do not fit simultaneously
into main memory, and the swapper (process 0) swaps out the process 1o make
room for another process that is in the state “ready to run swapped.” When
evicted from main memory, the process enters the state “ready to run swapped.”
Eventually, the swapper chooses the process as the most suitable to swap into main
memory, and the process reenters the state “ready to run in memory.” The
scheduler will eventually choose to run the process, and it enters the state “kernel
running” and proceeds. When a process completes, it invokes the exit system call,
thus entering the states “kernel running” and, finally, the “zombie” state.

The process has control over some state transitions at user-level. First, a
process can create another process. However, the state transitions the process takes
from the “created” state (that is, to the states “ready to run in memory” or “ready
1o run swapped”) depend on the kernel: The process has no control over those state
transitions. Second, a process can make system calls to move from state “user
running” to statc “kernel running” and enter the kernel of its own volition.
However, the process has no control over when it will return from the kernel; events
may dictate that it never returns but enters the zombie state (see Section 7.2 on
signals). Finally, a process can exif of its own volition, but as indicated before,
external events may dictate that it exits without explicitly invoking the exit system
call. All other state transitions follow a rigid model encoded in the kernel, reacting
to events in a predictable way according to rules formulated in this and later
chapters. Some rules have already been cited: No process can preempt another
process exccuting in the kernel, for example.

Two kernel data structures describe the state of a process: the process table
entry and the u area. The process table contains fields that must always be
accessible to the kernel, but the u area contains fields that need to be accessible
only to the running process. Therefore, the kernel allocates space for the u area
only when creating a process: It does not need u areas for process table entrics
that do not have processes.

‘The fields in the process table are the following.

 The state field identifies the process state.
 The process table entry contains fields that allow the kernel to locate the process
and its u area in main memory or in sccondary storage. The kernel uses the
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a process exccutes the link system call, the kernel releases the lock of the first inode.
before locking the second inode to avoid deadlocks.

The kernel must do a context switch at the conclusion of the exit system call,
because there is nothing clse for it to do. Similarly, the kernel allows a context
switch when a process enters the sleep state, since a considerable amount of time
may clapse until the process wakes up, and other processcs can meanwhile execute.
The kernel allows a context switch when a process is not the most eligible to run to
permit fairer process scheduling: If a process completes a system call o returns
from an interrupt and there is another process with higher priority waiting to run,
it would be unfair to keep the high-priority process waiting

The procedure for a context switch is similar to the procedures for handling
interrupts and system calls, except that the kernel restores the context layer of a
different process instead of the previous context layer of the same process. The
reasons for the context switch are irrelevant. Similarly, the choice of which process
to schedule next is a policy decision that does not affect the mechanics of the
context switch

1. Decide whether to do a context switch,
and whether a context switch is permissible now.

2. Save the context of the “old" process

3. Find the “best” process to schedule for excaution,
using the process scheduling algorithm in Chapter 8.

4. Restore its context.

Figure 6.15. Steps for a Context Switch

The code that implements the context switch on UNIX systems is usually the
most difficult to understand in the operating system, because function calls give the
appearance of not returning on some occasions and materializing from nowhere on
others. This is because the kernel, in many implementations, saves the process
context at one point in the code but proceeds to execute the context switch and
scheduling algorithms in the context of the “old” process. When it later restores
the context of the process, it resumes execution according to the previously saved
context. To differentiate between the case where the kernel resumes the context of
a new process and the case where it continues to execute in the old context after
having saved it, the return values of critical functions may vary, or the program
counter where the kernel executes may be set artificially.

Figure 6.16 shows a scenario for doing a context switch. The function
save_context saves information about the context of the running process and returns
the value 1. Among other pieces of information, the kernel saves the value of the
current program counter (in the function save_context) and the value 0, to be used
later as the return value in register 0 from save_context. The kernel continues to
execute in the context of the old process (A), picking another process (B) to run
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kernel stack
166 | mode value (octal 666) context laer 1
204 | address of variable name calling sequence
6a_| return address after call to library for create
Saved register Context
e for level 0 (user)
g value of program counter 7.
direction of tack pointer stack pointer
stack growth o 3
time of trap reg 0 (input val 8)
l other general
purpose registers

Figure 6.14. Stack Configuration for Creat System Call

Several library functions can map into one system call entry point. The system
call entry point defines the true syntax and semantics for every system call, but the
libraries frequently provide a more convenient interface. For example, there are
several flavors of the exec system call, such as exec/ and execle, which provide
slightly different interfaces for one system call. The libraries for these calls
‘manipulate their parameters to implement the advertised features, but eventually,
map into one kernel entry point.

643 Context Switch

Referring to the process statc diagram in Figure 6.1, we sce that the kernel permits
a context switch under four circumstances: when a process puts itself to sleep,
when it exits, when it returns from a system call to user mode but is not the most
cligible process to run, or when it returns 1o user mode after the kernel completes
handling an interrupt but is not the most eligible process to run. The kernel
ensures integrity and consistency of internal data structures by prohibiting arbitrary
context switches, as explained in Chapter 2. It makes sure that the state of its data
structures s consistent before it does a context switch: that is, that all appropriate
updates are done, that queues are properly linked, that appropriate locks are set to
prevent intrusion by other processes, that no data structures are left unnecessarily
locked, and so on. For example, if the kernel allocates a buffer, reads a block in a
file, and goes to sleep waiting for 1/0 transmission from the disk to complete, it
keeps the buffer locked so that no other process can tamper with the buffer. But if
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the old context layer. When the kernel wishes to resume the context it had saved
in setjmp, it does a longjmp, restoring its context from the u area and returning a
1 from setjmp.

6,45 Copying Data between System and User Address Space

As presented so far, a process executes in kernel mode or in user mode with no
overlap of modes. However, many system calls examined in the last chapter move
data between kernel and user space, such as when copying system call parameters
from user to kernel space or when copying data from 1/O buffers in the read
system call . Many machines allow the kernel to reference addresscs in user space
directly. The kernel must ascertain that the address being read or written is
accassible as if it had been executing in user mode; otherwise, it could override the
ordinary protection mechanisms and inadvertently read or write addresscs outside
the user address space (possibly kernel data structures). Therefore, copying data
between kernel space and user space is an expensive proposition, requiring more
than one instruction.

Tubyter # move byte from user space
prober  $3,51,%4(ap)  # byte accessible?
beal  eret #no
movzbl  *4(ap).c0
ret
eret
mocgl S50 # error rewm (-1)
ret

Figure 6.17. Moving Data from User to System Space on a VAX

Figure 6.17 shows sample VAX code for moving one character from user
address space to kernel address space. The prober instruction checks if one byte at
address argument pointer register-+4 (*4(ap)) could be read in user mode (mode
3) and, if not, the kernel branches to address eret, stores =1 in register 0, and
returns; the character move failed. Otherwise, the kernel moves one byte from the
given user address to register 0 and returns that value to the caller. The procedure
is expensive, requiring five instructions (with the function call to fubyte) to move 1
character.

6.5 MANIPULATION OF THE PROCESS ADDRESS SPACE

So far, this chapter has described how the kernel switches context between
processes and how it pushes and pops context layers, viewing the user-level context
25 a static object that does not change during restoration of the process context.
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if Gave context0) /* save context of exceuting process

{
/* pick another process to run */

Tesume_context(new_process);
1 never gets here ! */
)
/% resuming process exccutes from here */

Figure 6.16. Pseudo-Code for Context Switch

and calling resume_context to restore the new context (of B). After the new
context is restored, the system is exccuting process B; the old process (A) is no
longer exceuting but leaves its saved context behind (hence, the comment in the
figure “never gets here”). Later, the kernel will again pick process A to run
(except for the exit case, of course) when another process does a context switch, as
just described. When process A's context is restored, the kernel will set the
program counter to the value process A had previously saved in the function
save_context, and it will also place the value 0, saved for the return value, into
register 0. The kernel resumes cxecution of process A inside save_context even
though it had executed the code up to the call to resume_context before the context
switch. Finally, process A returns from the function save_context with the value 0
er 0) and resumes execution after the comment line “resuming process
exccutes from here.”

6.4.4 Saving Context for Abortive Returns

Situations arise when the kernel must abort its current execution sequence and
immediately execute out of a previously saved context.  Later sections dealing with
sleep and signals describe the circumstances when a process must suddenly change
its context; this section explains the mechanisms for executing a previous context.
The algorithm 1o save a context is setjmp and the algorithm to restore the context
is longjmp.? The method is identical to that described for the function save_context
in the previous section, except that save_context pushes a new context layer,
whereas setjmp stores the saved context in the u area and continues to execute in

3. These algorithms should not be confused with the I
cal directly from th

y functions of the same name that users can
programs (see [SVID 851). However,their functions are simiar
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table whose entries appear cither on a free linked lst or on an active linked list.
When it allocates a region table entry, the kernel removes the first available entry
from the free list, places it on the active list, locks the region, and marks its type
(shared or private). With few exceptions, every process is associated with an
executable file as a result of a prior exec call, and allocreg sets the inode field in
the region table entry to point to the inode of the exccutable file. The inode
identifies the region to the kernel so that other processes can share the region if
desired. The kernel increments the inode reference count to prevent other processes
from removing its contents when unlinking it, as will be explained in Section 7.5.
Allocreg returns a locked, allocated region.

algorithm allocreg _/* allocate a region data structure */
input: (1) inode pointer
(2) region type
output: locked region
{
remove region from linked list of free regions;
assign region type;
assign region inode pointer;
if Ginode pointer not null)
increment inode reference count;
place region on linked list of active regions;
return(locked region);

Figure 6.18. Algorithm for Allocating a Region

653 Attaching a Region to a Process

The kernel attaches a region during the fork, exec, and shmat system calls to
connect it to the address space of a process (algorithm attachreg, Figure 6.19).
The region may be a newly allocated region or an existing region that the process
will share with other processes. The kernel allocates a free pregion entry, sets its
type field 10 text, data, shared memory, or stack, and records the virtual address
where the region will exist in the process address space. The process must not
exceed the system-imposed limit for the highest virtual address, and the virtual
addresses of the new region must not overlap the addresses of existing regions. For
example, if the system restricts the highest virtual address of a process to 8
megabytes, it would be illegal to attach a 1 megabyte-size region to virtual address
7.5M.If it is legal to attach the region, the kernel increments the size field in the
process table entry according to the region size, and increments the region reference
count.
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However, various system calls manipulate the virtual address space of a process, s
will be seen in the next chapter, doing so according to well defined operations op
regions. This scction describes the region data structure and the operations on
regions; the next chapter eals with the system calls that use the region operations
The region table entry contains the information necessary to describe a region
In particular, it contains the following entrics:
« A pointer to the inode of the file whose contents were originally loaded into the
region
 The region type (text, shared memory, private data or stack)
« The size of the region
 The location of the region in physical memory
« The status of a region, which may be a combination of
— locked
— in demand
— in the process of being loaded into memory
— valid, loaded into memory
« The reference count, giving the number of processes that reference the region.

The operations that manipulate regions are to lock a region, unlock a region,
allocate a region, attach a region to the memory space of a process, change the size
of a region, load a region from a file into the memory space of a process, free &
region, detach a region from the memory space of a process, and duplicate the
contents of a region. For example, the exec system call, which overlays the user
address space with the contents of an executable file, detaches old regions, frees
them if they were not shared, allocates new regions, attaches them, and loads them
with the contents of the file. The remainder of this section describes the region
operations in detail, assuming the memory management model described earlier
(page tables and hardware register triples) and the cxistence of algorithms for
allocation of page tables and pages of physical memory (Chapter 9).

651 Locking and Unlocking a Region
The kernel has operations to lock and unlock a region, independent of the
operations 10 allocate and free a region, just as the file system has lock-unlock and
allocate-release operations for inodes (algorithms iget and ipur). Thus the kernel
can lock and allocate a region and later unlock it without having to free the region.
Similarly, if it wants to manipulate an allocated region, it can lock the region 10
prevent access by other processes and later unlock it

652 Allocating a Region

The kernel allocates a new region (algorithm allocreg, Figure 6.18) during fork,
exec, and shmget (shared memory) system calls. The kernel contains a region
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Per Process Region Table
Page | Proc | Size
Table | Virt | and
Addr | Addr |Protect
Entry

for Text S

empty
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846K
752K
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Figure 6.20. Example of Attaching to an Existing Text Region

for one process and causing another process 1o grow beyond the system limit for
process size. The two cases where the kernel uses growreg on an cxisting region are
sbrk on the data region of a process and automatic growth of the user stack. Both
regions are private. Text regions and shared memory regions cannot grow after
they are initialized. These cases will become clear in the next chapter.

The kernel now allocates page tables (or extends existing page tables) to
accommodate the larger region and allocates physical memory on systems that do
not support demand paging. When allocating physical memory, it makes sure such
memory is available before invoking growreg: if the memory is unavailable, it
resorts to other measures to increase the region size, as will be covered in Chapter
9. If the process contracts the region, the kernel simply releases memory assigned
to the region. In both cases, it adjusts the process size and region size and
reinitializes the pregion entry and memory management register triples to conform
10 the new mapping.

For example, suppose the stack region of a process starts at virtual address
128K and currently contains 6K bytes, and the kernel wants to extend the size of
the region by 1K bytes (I page). If the process size is acceptable and virtual
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algorithm atiachreg _/° attach a region 10 a process */
input: (1) pointer to (Jocked) region being attached
(2) process to which region is being attached
(3) virtual address in process where region will be attached
(@) region type
output: per process region table entry

allocate per process region table entry for process;
initalize per process region table entry:

set pointer 10 region being aitachs

set type field;

set virtual address field;
check Iegality of virtual address, region
increment region reference count;
increment process size according 1o atached reg
italize new hardware register ripl for process
return(per process region table entry);

Figure 6.19. Algorithm for Attachreg

Attachreg then initializes a new set of memory management register triples for
the process: If the region is not already attached to another process, the kerncl
allocates page tables for it in a subsequent call to growreg (next section); otherwise,
it uses the existing page tables. Finally, artachreg returns a pointer o the pregion
entry for the newly attached region. For example, suppose the kernel wants to
attach an existing (shared) text region of size 7K bytes (0 virtual address 0 of a
process (Figure 6.20): it allocates a new memory management register triple and
initializes the triple with the address of the region page table, the process virtual
address (0), and the size of the page table (9 entries).

65.4 Changing the Size of a Region

A process may expand or contract its virtual address space with the sbrk system
call. Similarly, the stack of a process automatically expands (that is, the process
does not make an explicit system call) according to the depth of nested procedure
calls. Internally, the kernel invokes the algorithm growreg to change the size of &
region (Figure 6.21). When a region cxpands, the kernel makes sure that the
virtual addresses of the expanded region do not overlap those of another region and
that the growth of the region does not cause the process size o become greater
than the maximum allowed virtual memory space. The kernel never invokes
growreg to increase the size of a shared region that is already attached to several
processes; therefore, it does not have to worry about increasing the size of a region
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Per Process Region Table Per Process Region Table
[Page | Proc | Size [Page [ Proc | Size
Table | Virt | and Table | Virt | and
Addr | Addr_|Protect_ Addr | Addr_[Protect
Entry for
Eney 126K | 6K Stack 128K | 7K
342K 342K
779K 779K
846K 846K
752K 752K
341K 341K
484K 484K
NEW PAGE——] 976K

Before Stack Growth After Stack Growth

Figure 6.22. Growing the Stack Region by 1K Bytes

reference. By protecting the page containing address O appropriately, processes
that errantly access address 0 incur a fault and abort, allowing programmers to
discover such bugs more quickly.

To load a file into a region, loadreg (Figure 6.23) accounts for the gap between
the virtual address where the region is attached to the process and the starting
virtual address of the region data and expands the region according to the amount
of memory the region requires. Then it places the region in the state “being loaded
into memory” and reads the region data into memory from the fle, using an
internal variation of the read system call algorithm.

1If the kernel is loading a text region that can be shared by several processes, it
is possible that another process could find the region and attempt t0 use it before its
contents were fully loaded, because the first process could sleep while reading the
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algoriths growreg 7+ change the size of a region */
input: (1) pointer to per process region table entry .
(2) change in size of region (may be positive or negative)

output: none.
if (egion sze increasing)
(
check lgalty of new region sie;
allocate auxilary tabls (page tables:
if (not system supporting demand paging)
(
e physical memory:
liary tables, as necessary;
}
)
cie /% region size decreasing */
(
free physical memory, as appropria
free auxiliary tables, as appropriate;
)

do (other) initialization of auxiliary tables, as necessary;
set size field in process table;

)

Figure 6.21. Algorithm Growreg for Changing the Size of a Region

addresses 134K 10 135K — 1 do not belong to another region attached to the
process, the kernel extends the size of the region. It extends the page table,
allocates a page of memory, and initializes the new page table entry. Figure 6.22
illustrates this case.

655 Loading a Region

In a system that supports demand paging, the kernel can “map” a file into the
process address space during the exec system call, arranging to read individual
physical pages later on demand, as will be explained in Chapter 9. If the kernel
does not support demand paging, it must copy the exccutable file into memory,
loading the process regions at virtual addresses specified in the executable file. It
may attach a region at a different virtual address from where it loads the contents
of the file, creating a gap in the page table (recall Figure 6.20). For example, this
feature is used to cause memory faults when user programs access address 0
illegally. Programs with pointer variables sometimes use them erroneously without
checking that their value is O and, hence, that they are illegal for use as a pointer
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6.3 THE CONTEXT OF A PROCESS

The context of a process consists of the contents of its (user) address space and the
contents of hardware registers and kernel data structures that relate (0 the process.
Formally, the context of @ process is the union of its user-level context, register
context, and system-level context." The uscr-level context consists of the process
fext, data, user stack, and shared memory that occupy the virtual address space of
the process. Parts of the virtual address space of a process that periodically do not
reside in main memory because of swapping or paging still constitute a part of the
user-level context.
The register context consists of the following components.

« The program counter specifies the address of the next instruction the CPU will
exceute; the address is a virtual address in kernel o in user memory space.

« The processor status register (PS) specifies the hardware status of the machine
as it relates to the process. For example, the PS usually contains subficlds to
indicate that the result of a recent computation resulted in a zero, positive or
negative result, or that a register overflowed and a carry bit is set, and 50 on.
The operations that caused the PS o be set were done for a particular process,
hence the PS contains the hardware status of the machine as it relates to the
process. Other important subfields typically found in the PS are those that
indicate the current processor execution level (for interrupts) and the current
and most recent modes of exccution (such as kernel, user). The subfield that
shows the current exccution mode determines whether a process can execute
privileged instructions and whether it can access kernel address space.

« The stack pointer contains the current address of the next entry in the kernel or
user stack, determined by the mode of execution. Machine architectures dictate
‘whether the stack pointer points to the next free entry on the stack or to the last
used entry. Similarly, the machine dictates the direction of stack growth
toward numerically higher or lower addresses, but such issues are immaterial
for purposes of this discussion.

« The general-purpose registers contain data generated by the process during its
execution. To simplify the following discussion, let us distinguish two general
purpose registers, register 0 and register 1, for additional use in transmitting
information between processes and the kernel

‘The system-level context of a process has a “static part” (frst three items of the
following list) and a “dynamic part” (last two items). A process has one static
part of the system-level context throughout its lifetime, but it can have a variable
number of dynamic parts. The dynamic part of the system-level context should be

1. The terms user-level context, register context, system-evel context, and context layers used n this

secton are the author's terminology.
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System Level Context Saved Register Context

for Layer |

Process Table Entry
U Area
Per Process Region Table

Kernel Stack for Layer 1

Layer 1 | Saved Register Context

for Layer 0
Kernel
Context
Layer 0 (User Level)

Figure 6.8, Components of the Context of a Process

level context, containing the process text (instructions), data, stack, and shared
memory Gf the process has any), and the static part of the system-level context,
containing the process table entry, the u area, and the pregion entries (the virtual
address mapping information for the user-level context). The right side of the
figure shows the dynamic portion of the context. It consists of several stack frames,
where each frame contains the saved reister context of the previous layer, and the
kernel stack as the kernel executes in that layer. System context layer 0 is a
dummy layer that represents the user-level context; growth of the stack here is in
the user address space, and the kernel stack is null. The arrow pointing from the
static part of the system-level context to the top layer of the dynamic portion of the
context represents the logical information stored in the process table entry to enable
the kernel to recover the current context layer of the process.

A process runs within its context or, more precisely, within its current tontext
layer. The number of context layers is bounded by the number of interrupt levels
the machine supports. For instance, if a machine supports different interrupt levels
for software interrupts, terminals, disks, all other peripherals, and the clock, it
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viewed as a stack of context layers that the kernel pushes and pops on occurrence
of various events. The system-level context consists of the following components.

» The process table entry of a process defines the state of a process, as described
in Section 6.1, and contains control information that is always accessible to the
kernel.

 The u area of a process contains process control information that need be
accessed only in the context of the process. General control parameters such as
the process priority are stored in the process table because they must be
accessed outside the process context

« Pregion entries, region tables and page tables, define the mapping from virtual
to physical addresses and therefore define the text, data, stack, and other
regions of a process. If several processes share common regions, the regions are
considered part of the context of each process, because each process manipulates
the regions independently. Part of the memory management task is to indicate
‘which parts of the virtual address space of a process are not memory resident.

© The kernel stack contains the stack frames of kernel procedures s a process
executes in kernel mode. Although all processes exccute the identical kernel
code, they have a private copy of the kernel stack that specifies their particular
invocation of the kernel functions. For instance, one process may invoke the
crear system call and go to sleep waiting for the kernel t0 assign a new inode,
and another process may invoke the read system call and go to slecp awaiting
the transfer of data from disk to memory. Both processes execute kernel
functions, but they have separate stacks that contain their private function call
sequence. The kernel must be able to recover the contents of the kernel stack
and the position of the stack pointer to resume execution of a process in kernel
mode. System implementations frequently place the kernel stack in the process
u area, ‘but it is logically independent and can exist in an independently
allocated area of memory. The kernel stack is empty when the process exccutes
in user mode.

+ The dynamic part of the system-level context of a process consists of a set of
layers, visualized as a last-in-first-out stack. Each system-level context layer
contains the necessary information to recover the previous layer, including the
register context of the previous level.

The kernel pushes a context layer when an interrupt occurs, when a process
makes a system call, or when a process does a context switch. It pops a context
layer when the kernel returns from handling an interrupt, when a process returns to
user mode after the kernel completes execution of  system call, or when a process
does a context switch. The context switch thus entails a push and a pop of &
system-level context layer: The kernel pushes the context layer of the old process
and pops the context layer of the new process. The process table entry stores the
necessary information to recover the current context layer.

Figure 6.8 depicts the components that form the context of a process. The left
side of the figure shows the static portion of the context. It consists of the user-
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Tnterrupt Number

Tnterrupt Handler

clockinte
diskintr
tyintr
devintr
softinte
otherintr

Figure 6.9, Sample Interrupt Vector

terminal interrupt handler tryintr.

3. The kernel invokes the interrupt handier. The kernel stack for the new
context layer is logically distinet from the kernel stack of the previous context
layer. Some implementations use the kernel stack of the executing process to
store the interrupt handler stack frames, and other implementations use a
global interrupt stack to store the frames for interrupt handlers that arc
guaranteed to return without switching context.

4. The interrupt handler completes it work and returns. The kernel exceutes a
machine-specific sequence of instructions that restores the register context and
kernel stack of the previous context layer as they existed at the time of the
interrupt and then resumes execution of the restored context layer. The
behavior of the process may be affected by the interrupt handler, since the
interrupt_handier may have altered global kernel data structures and
awakened slecping processes. Usually, however, the process continues
execution as if the interrupt had never happened.

algorithm nthand _/* handle interrupts */

input:  none

output: none.

(
save (push) current context layer;
determine interrupt source;
find interrupt vector;
call interrupt handler;
restore (pop) previous context layer:

1

Figure 6.10. Algorithm for Handling Interrupts

Figure 6.10 summarizes how the kernel handles interrupts. Some machines do
part of the sequence of operations in hardware or microcode to get better
performance than if all operations were done by software, but there are tradeoffs,
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supports § interrupt levels, and hence, a process can contain at most 7 contex
layers: 1 for each interrupt level, 1 for system calls, and 1 for user-level. The 7
layers are sufficient (o hold all context layers even if interrupts occur in the “worst”
possible sequence, because an interrupt of a given level is blocked (that s, the CPU
defers it) while the kernel handles interrupts of that level or higher.

Although the kernel always exccutes in the context of some process, the logical
function that it executes does not necessarily pertain to that process. For instance,
if a disk drive interrupts the machine because it has returned data, it interrupts the
running process and the kernel executes the interrupt handler in a new system-level
context layer of the exccuting process, even though the data belongs to another
process. Interrupt handlers do not generally access or modify the static parts of the
process context, since those parts have nothing to do with the interrupt.

6.4 SAVING THE CONTEXT OF A PROCESS

As observed in previous sections, the kernel saves the context of a process whenever
it pushes a new system context layer. In particular, this happens when the system
reccives an interrupt, when a process exccutes a system call, or when the kernel
docs a context switch. This scction considers each case in detail.

6.4.1 Interrupts and Exceptions

The system is responsible for handling interrupts, whether they result from
hardware (such as from the clock or from peripheral evices), from a programmed
interrupt(exceution of instructions designed to cause “software interrupts™), or
from exceptions (such as page faults). If the CPU is exccuting at a lower processor
execution level than the level of the interrupt, it acccpts the interrupt before
decoding the next instruction and raises the processor excoution level, so that no
other interrupts of that level (or lower) can happen while it handles the current
interrupt, preserving the integrity of kernel data structures (see Section 2.2.2). The
kernel handles the interrupt with the following sequence of operations:

1. It saves the current register context of the executing process and creates
(pushes) a new context layer.

2. It determines the “source™ or cause of the interrupt, identifying the type of
interrupt (such as clock or disk) and the unit number of the interrupt, if
applicable (such as which disk drive caused the interrupt). When the system
receives an interrupt, it gets a number from the machine that it uses as an
offsct into a table, commonly called an interrupt vector. The contents of
interrupt vectors vary from machine to machine, but they usually contain the
address of the interrupt handler for the corresponding interrupt source and a
way of finding a parameter for the interrupt handler. For example, consider
the table of interrupt handlers in Figure 6.9. If a terminal interrupts the
system, the kernel gets interrupt number 2 from the hardware and invokes the
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exccutes the clock interrupt handler. Every time the system receives an interrupt
(or makes a system call), it creates a new context layer and saves the register
context of the previous layer.

642 System Call Interface

The system call interface to the kernel has been described in previous chapters as
though it were a normal function call. Obviously, the usual calling sequence cannot
change the mode of a process from user to kernel. The C compiler uses a
predefined library of functions (the C library) that have the names of the system
calls, thus resolving the system call references in the user program to what would
otherwise be undefined names. The library functions typically invoke an instruction
that changes the process execution mode to kernel mode and causes the kernel to
startexecuting code for system calls. The ensuing discussion refers to the
instruction as an operating system trap. The library routines execute in user mode,
but the system call interface is, in short, a special case of an interrupt handler.
The library functions pass the kernel a unique number per system call in a
‘machine-dependent way — either as a parameter to the operating system trap, in a
particular register, or on the stack — and the kernel thus determines the specific
system call the user is invoking.

algorithm syscall 7% algorithm for invocation of system call */
input:  system call number
utpts el of syt
find cniry in system cal table corresponding t0 system call number;
determine number of parameters to system call
copy parameters from user address space (0 u area;
save current context for abartive return (described in section 6.4.4);
invoke system call code in kernel;
if G during sxccution o yem al)
set register 0 in user saved register context (o error number;
o omcamy bitn PS egstr i v sevd egtr ot
clse
set registers 0, 1 im user saved register context
o return values from system call;

Figure 6.12. Algorithm for System Calls
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based on how much of the context layer must be saved and the speed of the
hardware instructions doing the save. The specific operations required in a UNIX
system implementation are therefore machine dependent.

Interrupt Sequence

Kernel Context Layer 3
Execute Clock
Interrupt Handler

Save Register Context
of Disk Interrupt
Handler

Clock Interrupt .-
A

Kernel Context Layer 2
Exccute Disk
Interrupt Handler

Save Register Context
of Sys Call

Disk Interrupt.-

Kernel Context Layer 1
Execute Sys Call

Save Register Context
User Level

i

Make System Call -+

Executing User Mode
Figure 6.11. Example of Interrupts
Figure 6.1 shows an example where a process issues a system call (see the next

section) and receives a disk interrupt while executing the system call. While
executing the disk interrupt handler, the system receives a clock interrupt and
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char namel] = ik
main0

{

int 1d;
fd = creat(name, 0666);

Portions of Generated Motorola 68000 Assembler Code

Addr Instruction

# code for main

S5 mov  &OXIB6(Gsp)  # move 0666 onto stack
Se.  mov  &0x204-(%sp)  # move stack pir

# and move variable “name” onto stack
64 g O # call C library for creat

# library code for creat

7 movq  &OXB%dO # move data value 8 into data register 0
7 wap  &0X0 # operating system trap

e bec  &0x6 <B6> # branch to addr 86 if carry bit clear
80 jmp  Oxldc # jump t0 addr 13¢

86 s # return from subroutine

# library code for errors in system call

Be mov  %d0,&0x20 # move data reg 0 1o location 20 (errno)
142 movq  &=0x1,%d0 # move constant —1 into data register 0
146 mova  %d0.%a0

146 rts # return from subroutine

Figure 6.13, Creat System Call and Generated Code for Motorola 68000

When returning from the system call handler to user mode, the C library checks
the carry bil the PS register at address 7e: If it is set, the process jumps to
address 13c, takes the error code from register 0 and places it into the global
variable errno at address 20e, places a —1 in register 0, and returns to the next
instruction after the call at address 64. The return code for the function is =1,
signifying an error in the system call. If, when returning from kernel mode to user
mode, the carry bit in the PS register is clear, the process jumps from address 7 to
address 86 and returns to the caller (address 64): Register O contains the return
value from the system call.
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In handling the operating system trap, the kernel looks up the system cal
number in a table to find the address of the appropriate kernel routine that is the
entry point for the system call and to find the number of parameters the system call
expects (Figure 6.12). The kernel calculates the (user) address of the first
parameter to the system call by adding (or subtracting, depending on the dircction
of stack growth) an offset to the user stack pointer, corresponding to the number of
parameters to the system call. Finally, it copies the user parameters to the u area
and calls the appropriate system call routine. After executing the code for the
system call, the kernel determines whether there was error.  If so, it adjusts register
locations in the saved user register context, typically setting the “carry" bit for the
PS register and copying the error number into the register 0 location. If there were
no errors in the execution of the system call, the kernel clears the “carry” bit in the
PS register and copies the appropriate return values from the system call into the
locations for registers 0 and 1 in the saved user register context. When the kernel
returns from the operating system trap to user mode, it returns to the library
instruction after the trap. The library interprets the return values from the kernel
and returns a value to the user program.

For example, consider the program that creates a file with read and write
permission for all users (mode 0666) in the first part of Figure 6.13. The second
part of the figure shows an edited portion of the generated output for the program,
as compiled and disassembled on a Motorola 68000 system. Figure 6.14 depicts the
stack configurations during the system call. The compiler generates code to push
the two parameters onto the user stack, where the first parameter pushed is the
permission mode setting, 0666, and  the second parameter pushed is the variable
name 2 The process then calls the library function for the creat system call (address
7a) from address 64. The return address from the function call is 6a, and the
process pushes this number onto the stack. The library function for crear moves
the constant § into register 0 and executes a trap instruction that causes the process
to change from user mode to kernel mode and handle the system call. The kernel
recognizes that the user is making a system call and recovers the number 8 from
register 0 to determine that the system call is creat. Looking up an internal table,
the kernel finds that the creat system call takes two parameters; recovering the
stack register of the previous context layer, it copies the parameters from user space
into the u area. Kernel routines that need the parameters can find them in
predictable locations in the u area. When the kernel completes executing the code
for creat, it returns to the system call handler, which checks if the u area eror
field is set (meaning there was some error in the system call); if so, the handler sets
the carry bit in the PS register, places the error code into register 0, and returns.
If there is no error, the kernel places the system return code into registers 0 and 1

2. The order that the compiler evaluates and pushes function parameters is implementation dependent,
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® The sysiem is written in a high-level language, making it easy to read,
understand, change, and move to other machines. Ritchic cstimates that the.
first system in C was 20 to 40 percent larger and slower because it was noy
written in assembly language, but the advantages of using a higher-level
language far outweigh the disadvantages (sce page 1965 of [Ritchie 785,

® It has a simple user interface that has the power to provide the services that
users want.

* It provides primitives that permit complex programs to be built from simpler
programs.

® It uses a hierarchical file system that allows casy maintenance and effcient
implementation.

© It uses a consistent format for fles, the byte stream, making application
programs casier to write.

* It provides a simple, consistent interface to peripheral devices.

® It is a multi-user, multiprocess system; each user can execute several processes

imultancously.

® It hides the machine architecture from the user, making it casier to write
programs that run on different hardware implementations,

The philosophy of simplicity and consistency underscores the UNIX system and
accounts for many of the reasons cited above.

Although the operating system and many of the command programs are written
in C UNIX systems support other languages, including Fortran, Basio, Paccq).
ada, Cobol, Lisp, and Prolog. The UNIX sysiem can support any langage sha;
has o compiler or interpreter and a system interface that maps weer roquess
operaling system services to the standard sct of requests used on UNTX sysioms.

1.2 SYSTEM STRUCTURE

Figure 1.1 depicts the highlevel architecture of the UNIX system. The hardware
a4 the center of the diagram prvides the operating system with basic servine that
yill be described in Section 1.5. The operating systom interacts directly’ with the
hardware, providing common services to  programs  and insulating them_ from
hardware.idiosyncrasics. Viewing the system s a sot of layers, the operating
system is commonly called the system Kernel, or just the kernel emphasizing its

e ementtosof the UNIX syse, e aperain syt nrsts with v operatn
oo, i ur iteacs with th undering hariate . provtes sy TS

dcklama, Thal. More recot congurations meude leeonBere ot 1 System/370
‘computers [Felion 841 and for UNIVAC 1100 S
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Finclude_<signal h>
int buffer(40961;
main0
(
int offse, endof, scale, eff, gee, text;
extern theend0, 0, §0;
signal SIGINT, theend);
endof = (in) theend;
offset = (int) main;
/* calculates number of words of program text */
text = (endof — offset + sizeofint) — 1)/sizeofin0);
scale = OxfT;
printfCoffset %d endof %d text %d\n", offset, endof, text);
0 f

printfCT % g %d Gl % gdiff %, o, gee, ef—offct, gecoffsed);
profilbuffer, sizeof nt) *text, offct, scale);

for ()
{
0;
80:
)
)
0
(
)
80
(
)
theend )
(
i

-0; i < 409:
(bufferliD)
printf("bufl%d] = %d\n’, i, buffer(il);

Figure 8.12. Program Invoking Profil System Call

For example, consider the program in Figure 8.12, profiling execution of a
program that calls the two functions f and g successively in an infinite loop. The
process first invokes signal 10 arrange to call the function theend on occurrence of
an interrupt signal and then calculates the range of text addresses it wishes 0 |
profile, extending from the address of the function main to the address of the
function theend, and, finally, invokes profil to inform the kernel that it wishes to
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Algorithm _ Address  Count
bread 100 5
breada 150 0
bwrite 200 0
brelse 300 2
getblk 400 1
user - 2

Figure 8.11. Sample Addresses of Kernel Algorithms

For example, Figure 8.1 shows hypothetical addresses of several kernel
routines. If the sequence of program counter values sampled over 10 clock
interrupts is 110, 330, 145, address in user space, 125, 440, 130, 320, address in
user space, and 104, the figure shows the counts the kernel would save. Examining
these figures, one would conclude that the system spends 20% of its time in user
mode and 50% of its time executing the kernel algorithm bread.

If kernel profiling is done for 2 long time period, the sampled pattern of
program counter values converges toward a true proportion of system usage.
However, the mechanism does not account for time spent executing the clock
handler and code that blocks out clock-level interrupts, because the clock cannot
interrupt such critical regions of code and therefore cannot invoke the profile
interrupt handler there. This is unfortunate since such critical regions of kernel
code are frequently those that are the most important to profile. Hence, results of
kernel profiling must be taken with a grain of salt. Weinberger [Weinberger 84]
describes a scheme for generating counters into basic blocks of code, such as the
body of “if-then” and “else” statements, to provide exact counts of how many times
they are cxcouted. However, the method increases CPU time anywhere from 50%
10 200%, 5o its use as a permanent kernel profiling mechanism is not practical.

Users can profile exccution of processes at user-level with the profil system call:

profil(buff, bufsize, offse, scale);

where buff is the address of an array in user space, bufsize is the size of the array,
offset is the virtual address of a user subroutine (usually, the first), and scale is a
factor that maps user virtual addresses into the array. The kernel treats scale as a
fixed-point binary fraction with the binary point at the extreme “left”: The
hexadecimal value OxfTfT gives a one to one mapping of program counters to words
in buff, OX7AT maps pairs of program addresses into a single buff word, OX3fIf maps
8roups of 4 program addresses into a single buff word, and so on. The kernel stores
the system call parameters in the process u area. When the clock interrupts the
process while in user mode, the clock handler examines the user program counter at
the time of the interrupt, compares it to offset, and increments a location in buff
‘whose address is a function of bufsize and scale.
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e 213 ndor 4
416 g 428 fdiff 204 gdiff 216
bufl46] = 50

bufl48] = 8585216

bufl49] = 151

bufl51] = 12189799

bufl53] = 65

bufl54] = 10682455
lotssi=or |

Figure 8.13. Sample Output for Profil Program

profile its exceution. Running the program for about 10 seconds on a lightly loaded
AT&T 3B20 computer gave the output shown in Figure 8.13. The address of £ is
204 greater than the Oth profiling address; because the size of the text of /is 12
bytes and the size of an integer is 4 on an AT&T 3B20 computer, the addresscs of
f map into buf entries 51, 52, and 53. Similarly, the addresses of g map into buf
entrics 54, 55, and 56. The buf entries 46, 48, and 49 are for addresses in the loop
in function main. In typical usage, the range of addresses to be profiled is
determined by examination of the text addresses in the symbol table of the program
being profiled. Users are discouraged from using the profil call directly because it
is complicated; instcad, an option on the C compiler directs the compiler to
generate code to profile processes.

8.3.4 Accounting and Statistics

When the clock interrupts the system, the system may be exccuting in kernel mode,
executing in user mode, or idle (not executing any processes). It is idle if all
processes are slecping, awaiting the occurrence of an event. The kerel keeps
internal counters for each processor state and adjusts them during each clock
interrupt, noting the current mode of the machine. User processes can later
analyze the statistics gathered in the kernel

Every process has two fields i its u area to keep a record of elapsed kernel and
user time. When handling clock interrupts, the kernel updates the appropriate field
for the executing process, depending on whether the process was executing in kernel
‘mode or in user mode. Parent processes gather statistics for their child processes in
the wait system call when accumulating execution statistics for exiting child
processes.

Every process has one field in its u area for the kernel to log its memory usage.
When the clock interrupts a running process, the kernel calculates the total memory
used by a process as a function of its private memory regions and its proportional
usage of shared memory regions. For example, if  process shares a text region of
e SOK bytes with four other processes and uses data and stack regions of size
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algorithm clock

input: none

output: none

(
restart clock; /% 5o that it will interrupt again */
if (callout table not empty)

(

adjust callout times;

schedule callout function if time clapscd:
)
if (kernel profiling on)

note program counter at time of interrupt;
(user profiling on)

note program counter at time of interrupt;
gather system statistics;
gather statistics per process;
adjust measure of process CPU utilitization;
if (1 second or more since last here and interrupt not in critical
region of code)

(

for (all processes in the system)
(

adjust alarm time if active;
adjust measure of CPU utlization;
if (process to execute in user mode)

adjust process priority:
)

‘wakeup swapper process is necessary;

Figure 8.9. Algorithm for the Clock Handler

the critical time periods when other interrupts are blocked is as small as possible.
Figure 8.9 shows the algorithm for handling clock interrupts.

1 Restarting the Clock

i
H

When the clock interrupts the system, most machines require that the clock be
reprimed by software instructions so that it will interrupt the processor again after

a suitable interval. Such instructions arc hardware dependent and will not be
discussed.

[
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Finclude <sys/typesh>
#include <sys/stath>
#include <sys/signalh>

main(arge, argy)
int arge;
char *argl];

extern unsigned alarm0;
extern wakeup0:

struct stat statbuf;
time_t axtime;

if (arge = 2)

{
printfConly 1 argn');
exitO;

1

axtime = (time_0) 0;
for ()
{

1% find out file access time */

if (stat(argyl1], &statbu) == =1)

printfCfle %s not there\n”, argv{1D;
exit0;

)

H (axtime 1= statbuf.st_atime)
printf(Cfle %s accessed\n,
axtime = statbuf st_atime;

rgv(1);

)

signal(SIGALRM, wakeup);  /* reset for alarm */

alarm(60);
pause0; 7% sieep until signal */

)
wakeupO

(
)

Figure 88. Program Using Alarm Call
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At every clock interrupt, the clock handler checks if there are any entries in the
callout table and, if there are any, decrements the time field of the first entry,
Because of the way the kernel keeps time in the callout table, decrementing the
time field for the first entry effectively decrements the time field for all entries in
the table. If the time field of the first entry in the list is less than or equal to 0,
then the specified function should be invoked. The clock handler does not invoke
the function directly so that it does not inadvertently block later clock interrupts;
The processor priority level is currently set to block out clock interrupts, but the
kernel has no idea how long the function will take to complete. If the function
were to last longer than a clock tick, the next clock interrupt (and all other
interrupts that occur) would be blocked. Instead, the clock handler typically
schedules the function by causing a “software interrupt” sometimes called a
“programmed interrupt” because it is caused by execution of a particular machine
instruction. Because software interrupts are at a lower priority level than other
interrupts, they are blocked untl the kernel finishes handling ail other interrupts.
Many interrupts, including clock interrupts, could occur between the time the
kernel is ready to call a function in the callout table and the time the softwarc
interrupt occurs and, therefore, the time field of the first callout entry can have a
negative value. When the software interrupt finally happens, the interrupt handler
removes entries from the callout table whose time fields have expired and calls the
appropriate function.

Since it is possible that the time field of the first entries in the callout table are
0 or negative, the clock handler must find the first entry whose time fild is positive
and decrement it. In Figure 8.10 for example, the time field of the entry for
function a is ~2, meaning that the system took 2 clock interrupts after @ was
eligible to be called. Assuming the entry for b was in the table 2 ticks ago, the
kernel skipped the entry for a and decremented the time field for .

833 Profiling

Kernel profiling gives a measure of how much time the system is exccuting in user
mode versus kernel mode, and how much time it spends exccuting individual
routines in the kernel. The kernel profile driver monitors the relative performance
of kernel modules by sampling system activity at the time of a clock interrupt, The
profile driver has a list of kernel addresses (o sample, usually addresscs of kernel
functions; & process had previously down-loaded these addresses by writing the
profile driver.” If kernel profiling is enabled, the clock interrupt handler invokes the
interrupt handler of the profile driver, which determines whether the processor
mode at the time of the interrupt was user or kernel. If the mode was user, the
profiler increments a count for user execution, but if the mode was kernel, it
increments an internal counter corresponding to the program counter. User
processes can read the profile driver to obtain the kernel counts and do statistical
measurements,





index-275_1.png
83 CLock 263

8.3.2 Internal System Timeouts

Some kernel operations, particularly device drivers and network protocols, require
invocation of kernel functions on a real-time basis. For instance, a process may put
a terminal into raw mode so that the kernel satisfies user read requests at fixed
intervals instead of waiting for the user to type a carriage return (sce Section
10.3.3). The kernel stores the necessary information in the callout table (Figure
8.9), which consists of the function to be invoked when time expires, a parameter
for the function, and the time in clock ticks until the function should be called.

The user has no direct control over the entrics in the callout table; various
Kernel algorithms make cntries as needed. The kernel sorts entries in the callout
table according to their respective “time to fire,” independent of the order they are
placed in the table. Because of the time ordering, the time field for each entry in
the callout table is stored as the amount of time to fire after the previous clement
fires. The total time to fire for a given element in the table is the sum of the times
10 fire of all entries up to and including the clement

Function  Time to Fire Function  Time to Fire
a0 2 a0 2
b0 3 b0 3
<0 10 0 2
<0 8
Before After

Figure 8.10. Callout Table and New Entry for {

Figure 8.10 shows an instance of the callout table before and after addition of a
new entry for the function /. (The negative time field for function a will be
explained shortly) When making a new entry, the kernel finds the correct (timed)
position for the new entry and appropriately adjusts the time field of the entry
immediately after the new entry. In the figure, the kernel arranges to invoke
function f after 5 clock ticks: it creates an entry for f after the entry for b with the
value of ts time field 2 (the sum of the time fields for b and f s 5), and changes
the time field for c to 8 (c will sill fire in 13 clock ticks). Kernel implementations
can use a linked list for each entry of the callout table, or they can readjust
position of the entries when changing the table. The latter option is not that
expensive if the kernel does not use the callout table to0 much.
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have other ideas). The scheduler algorithms described above were designed for use
in a time-sharing environment and are inappropriate in a real-time environment,
because they cannot guarantee that the kernel can schedule a particular process
within a fixed time limit. Another impediment to the support of real-time
processing is that the kernel is nonprecmptive; the kernel cannot schedule a real-
time process in user mode if it is currently executing another process in kernel
mode, unless major changes are made. Currently, system programmers must insert
real-time processes into the kernel to achicve real-time response. A true solution to
the problem must allow real-time processes to exist dynamically (that is, not be
hard-coded in the kernel), providing them with a mechanism to inform the kernel
of their real-time constraints. No standard UNIX system has this capability today.

8.2 SYSTEM CALLS FOR TIME

There are several time-related system calls, stime, time, times, and alarm. The
first two deal with global system time, and the latter two deal with time for
individual processes.

Stime allows the superuser to set a global kernel variable to a value that gives
the current time:

stime(pvalue);

where pvalue points 10 a long integer that gives the time as measured in seconds
from midnight before (00:00:00) January 1, 1970, GMT. The clock interrupt
handler increments the kernel variable once a second. Time retrieves the time as
set by stime:

time(tloc);

where tloc points to a location in the user process for the return value. Time
returns this value from the system call, too. Commands such as date use time to
determine the current time.

Times retrieves the cumulative times that the calling process spent exccuting in
user mode and kernel mode and the cumulative times that all zombie children had
executed in user mode and kernel mode. The syntax for the call is

times(tbuffer)
struct tms *tbuffer;

where the structure tms contains the retrieved ti

s and is defined by
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time_ttms_cutime; /% user time of children */
time ¢ tms_cstime 7* kernel time of children */

Times returns the elapsed time “from an arbitrary point in the past,” usually the
time of system boot

In the program in Figure 8.7, a process creates 10 child processes, and each
child loops 10,000 times. The parent process calls fimes before creating the
children and after they all exit, and the child processes call fimes before and after
their loops. One would naively expect the parent child user and child system times
10 cqual the respective sums of the child processes’ user and systent times, and the
parent real time 10 equal the sum of the child processes’ real time. However, the
child times do not include time spent in the fork and exit system calls, and all
times can be distorted by time spent handling interrupts or doing context switches.

User processes can schedule alarm signals using the alarm system call. For
example, the program in Figure 8.8 checks the access time of a file every minute
and prints a message if the file had been accessed. To do so, it enters an infinite
loop: During cach iteration, it calls stat to report the last time the file was accessed
and, if accessed during the last minute, prints 2 message. The process then calls
signal (o catch alarm signals, calls alarm to schedule an alarm signal in 60 scconds,
and calls pause to suspend its activity until receipt of a signal. After 60 seconds,
the alarm signal goes off, the kernel sets up the process user stack to call the signal
catcher function wakeup, the function returns to the position in the code after the
pause call, and the process executes the loop agai

‘The common factor in all the time related system calls s their reliance on the
system clock: " the kernel manipulates various time counters when handling clock
interrupts and initiates appropriate action.

83 CLOCK

The functions of the cloc

errupt handler are to

o restart the clock,

* schedule invocation of internal Kernel functions based on internal timers,
¢ provide execution profiling capability for the kernel and for user processes,
* gather system and process accounting statistics,

« keep track of time,

 send alarm signals to processcs on request,

© periodically wake up the swapper process (sc the next chapter),

© control process scheduling.

Some operations are donc every clock interrupt, whereas others are done after
several clock ticks. The clock handler runs with the Pprocessor execution level set
high, preventing other events (such as interrupts from peripheral devices) from
‘happening while the handler is active. The clock bandler is therefore fast, so that
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[Finclude <sys/typesh>
Hinclude <sys/times h>
extern long times();

main()
{
inti;
7% ms s data structure containing the 4 time clements */
struct tms pbl, pb2;
long ptl, pi2:

Pl = times(&pbl);
for (1=0; i < 10;
if (fork0) == 0)
child(0

for (=0 i< 10; i+4)
wait(Gint *) 0);

pi2 = times(&pb2);

printfCparen real %u user %u sys %u cuser %u csys Faln”,
PI2 — ptl, pb2.ms_utime — pbl.tms_utime, pb24ms stime ~ pbl.tms_s
pb2.tms_cutime ~ pbl.tms_cutime, pb2.tms_cstime = pbl.tms_cstime);

child(n)
int n;
{
inti;
struct ms cbl, b2
long 1, 2;

tl = times(&cbl);
for 1= 0; i < 10000; i+)

=
printfCc

<h2.tms_utime — cbl.ums
exit0;

es(&cb2);
%d: real %u user %u sys Fuln’, n, 12 = 11,
ime, cb2.tms_stime — cbl.ums stime);

Figure 8.7. Program Using Times

struct tms {

_t s the data structure for time */
/% user time of process */
/% kernel time of process */
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60|
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Higher B A
Priority
A
A
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60| B A B B (A runs first)
A
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Figure 8.5. Round Robin Scheduling and Process Priorities

on the system, hence the name. Processes inherit the nice valuc of their parent
during the fork system call. The nice system call works for the running process
process cannot resct the nice value of another process. Practically, this
means that if a system administrator wishes to lower the priority values of various
processes because they consume too much time, there is 10 way to do so short of
killing them outright.

815 Fair Share Scheduler

‘The scheduler algorithm described above does not differen
users. That is, it is impossible to allocate half of the CPU time to a particular set
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features are beyond the scope of this book (sec [Bourne 78] for a detailed
description of the shell).

133 Building Block Primitives

As deseribed carlier, the philosophy of the UNIX system is to provide operating
system primitives that enable users to write small, modular programs that can be
used as building blocks to build more complex programs. One such pri
visible to shell users is the capability to redirect /0. Processes conventionally have
access 1o three files: they read from their standard input file, write 1o their
standard output file, and write error messages to their standard error file.
Processes exccuting at a terminal typically use the terminal for these three files, but
each may be “redirected” independently. For instance, the command line

Is
lists all files in the current directory on the standard output, but the command line
Is > output

redirects the standard output to the file called “output” in the current directory,
using the creat system call mentioned above. Similarly, the command line

mail mjb < letter

opens the file “letter" for its standard intput and mails its contents to the user
named “mjb.” Processes can redirect input and output simultancously, as in

nroff —mm < docl > docl.out 2> errors

where the text formatter nroff reads the input file docl, redirects its standard
output to the file docl.out, and redirects error messages to the file errors (the
notation “2>" means to redirect the output for file descriptor 2, conventionally the
standard error). The programs Is, mail, and roff do not know what file their
standard input, standard output, or standard error will be; the shell recognizes the
symbols *<”, *>", and “2>" and sets up the standard input, standard output,
and standard crror appropriately before exccuting the processes.

The second building block primitive is the pipe, a mechanism that allows a
stream of data to be passed between reader and writer processes. Processes can
redirect their standard output 1o a pipe to be read by other processes that have
redirected their standard input to come from the pipe. The data that the first
processes write into the pipe is the input for the second processes. The second
processes could also redirect their output, and 5o on, depending on programming
need. Again, the processes need not know what type of file their standard output is;
they work regardless of whether their standard output is a regular file, a pipe, or a
device. When using the smaller programs as building blocks for a larger, more
complex program, the programmer uses the pipe primitive and redirection of /0 to
integrate the piece parts. Indeed, the system tacitly encourages such programming
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Figure 8.6, Example of Fair Share Scheduler — Three Processes, Two Groups

8.1.6 Real-Time Processing

Real-time processing implies the capability to provide immediate response to
specific external events and, henee, to schedule particular processes to run within a
specified time limit after occurrence of an event. For example, a computer may
monitor the life-support systems of hospital patients to take instant action on a
change in status of a patient. Processes such as text editors are not considered
real-time processes: It is desirable that response to the user be quick, but it is not
that critical that a user cannot wait a few extra seconds (although the user may
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Figure 8.3. Movement of a Process on Priority Queues

thus give quicker response to processes, because they do not have 10 wait up to @
second 1o run; on the other hand, the kernel has more overhead because of extra
context switches.

8.1.3 Examples of Process Scheduling

Figure 8.4 shows the scheduling priorities on System V for 3 processes A, B, and C,
under the following assumptions: They are created simultancously with initial
priority 60, the highest uscr-level priority is 60, the clock interrupts the system 60
times a second, the processes make no system calls, and no other processes are
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« The clock handler adjusts the prioritics of all processes in user mode at 1 sccond
intervals (on System V) and causes the kernel 10 go through the scheduling
algorithm to prevent a process from monopolizing use of the CPU.

The clock may interrupt a process several times during its time quantum; at
every clock interrupt, the clock handler increments a field in the process table that
records the recent CPU usage of the process. Once a second, the clock handler also
adjusts the recent CPU usage of each process according to a decay function,

decay(CPU) = CPU/2;

on System V. When it recomputes recent CPU. usage, the clock handler also
recalculates the priority of every process in the “preempted but ready-to-run” state
according 1o the formula

priority=(“recent CPU usage"/2) + (basc level user priority)

where “base level user priority" is the threshold priority between kernel and user
mode described above. A numerically low value implies a high scheduling priority.
Examining the functions for recomputation of recent CPU usage and process
priority, the slower the ecay rate for recent CPU usage, the longer it will take for
the priority of a process 10 reach its base level; consequently, processes in the
“ready-to-run” state will tend to oceupy more priority levels.

The effect of priority recalculation once a second is that processes with user-
level priorities move between priority queues, as illustrated in Figure 8.3.
Comparing this figure to Figure 8.2, one process has moved from the queue for
user-level priority 1 to the queue for user-level priority 0. In a real system, all
processes with user-level priorities in the figure would change priority queues, but
only one has been depicted. The kernel does not change the priority of processes in
kernel mode, nor does it allow processes with user-level priority to cross the
threshold and attain kernel-level priority, unless they make a system call and go to
sleep.

The kernel attempts to recomputc the priority of all active processes once &
second, but the interval can vary slightly. If the clock interrupt had come while the
kernel was executing a critical region of code (that is, while the processor execution
Tevel was raised but, obviously, not raised high enough 1o block out the clock
interrup), the kernel does not recompute priorities, since that would keep the
Kernel in the critical region for too long a time. Instead, the kernel remembers that
it should have recomputed process priorities and does so at a succeeding clock
interrupt when the “previous™ processor execution level is sufficiently low. Periodic
recalculation of process priority assures a round-robin scheduiing policy for
processes exccuting in user mode. The kernel responds naturally to interactive
requests such as for text editors or form entry programs: such processes have a
high idle-time-to-CPU usage ratio, and consequently their priority value naturally
rises when they are ready for execution (see page 1937 of [Thompson 78)). Other
implementations of the scheduling mechanism vary the time quantum between 0
and 1 sccond dynamically, depending on system load. Such implementations can
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process A 60 times (to 60). The kernel forces a context switch at the 1-sccong
mark and, after recalculating the priorities of all processes, schedules process B for
exccution. The clock handler increments the CPU usage field of process B 60 times
during the next second and then recalculates the CPU usage and priority of all
processes and forces a context switch. The pattern repeats, with the processes
taking turns to execute.

Now consider the processes with priorities shown in Figure 8.5, and assume
other processes are in the system. The kernel may preempt process A, leaving it in
the state “ready to run,” after it had received several time quanta in succession on
the CPU, and its user-level priority may therefore be low (Figure 8.52). As time
progresses, process B may enter the “ready-to-run” state, and its user-level priority
may be higher than that of process A at that instant (Figure 8.5b). If the kernel
does not schedule cither process for a while (it schedules other processes), both
processes could eventually be at the same user priority level, although process B
would probably enter that level first since its starting level was originally closer
(Figures 8.5c and 8.54). Nevertheless, the kernel would choose to schedule process
A ahead of process B because it was in the state “ready to run” for a longer time
(Figure 8.5¢): This s the tie-breaker rule for processes with equal priority.

Recall from Section 6.4.3 that the kernel schedules a process at the conclusion
of a context switch: A process must do a context switch when it goes o sleep or
exits, and it has the opportunity to do a context switch when returning to user
mode from kernel mode. The kernel preempts a process about to rewrn to user
mode if a process with higher priority is ready to run. Such a process exists if the
kernel awakened a process with higher priority than the currently running process,
or if the clock handler changed the priority of all “ready-to-run” processes. In the
first case, the current process should not run in user mode given that a higher-
priority kernel mode process is available. In the second case, the clock handler
decides that the process used up its time quantum, and since many processes had
their priorities changed, the kernel does a context switch to reschedule.

8.1.4 Controlling Process Priorities

Processes can exercise crude control of their scheduling priority by using the nice
system call

nice(value);

where value is added in the calculation of process priority:

priority=(“recent CPU usage"/constant) + (base priority) +. (nice value)

The nice system call increments or decrements the nice ficld in the process table by
the value of the parameter, although only the superuser can supply ice values that
increase the process priority.  Similarly, only the superuser can supply a nice valuc
below a particular threshold. Users who invoke the nice system call to lower their
process priority when executing computation-intensive jobs are “nice” to other users
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e 8.4, Example of Process Scheduling

ready to run. The kernel calculates the decay of the CPU usage by
CPU = decay(CPU) = CPU/2;

and the process priority as
priority = (CPU/2) +

Assuming process A is the first to run and that it starts running at the beginning of
a time quantum, it runs for 1 second: During that time the clock interrupts the
system 60 times and the interrupt handler increments the CPU usage field of
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Figure 8.2. Range of Process Priorities

time and system throughput are better. Second, a process waiting for a frec
buffer may be waiting for a buffer held by the process waiting for completion of
1/0. When the 1/0 completes, both processes wake up because they slecp on
If the process waiting for the buffer were to run first, it
anyway until the other process frecs the buffer; hence its

© The kernel adjusts the priority of a process that returns from kernel mode to
user mode. The process may have previously entered the sleep state, changing
its priority to a kernel-level priority that must be lowered to a user-level priority
when returning to user mode. Also, the kernel penalizes the cxecuting process
in fairness to other processes, since it had just used valuable kernel resources.
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8.1.2 Scheduling Parameters

Each process table entry contains a priority field for process scheduling. The
priority of a process in user mode is a function of its recent CPU usage, with
processes getting a lower priority if they have recently used the CPU. The range of
processpriorities can be partitioned into two classes (see Figure 8.2): user
priorities and kernel priorities. Each class contains several priority values, and each
priority has a queue of processes logically associated with it. Processes with user-
level priorities were precmpted on their return from the kernel to user mode, and
processes with kernel-lovel priorities achieved them in the sleep algorithm. User-
level priorities are below a threshold value, and kernel-level priorities are above the
threshold value. Kernel-level priorities are further subdivided: Processes with low
kernel priority wake up on receipt of a signal, but processes with high kernel
priority continue o sleep (sec Section 7.2.1).

Figure 8.2 shows the threshold priority between user priorities and kernel
priorities as the double line between priorities “waiting for child exit” and “user
level 0. The priorities called “swapper,” “waiting for disk 1/0,” “waiting for
buffer,” and “waiting for inode™ are high, noninterruptible system prioritics, with 1,
3,2, and 1 processes queued on the respective priority level, and the priorities
called “waiting for tty input,” “waiting for tty output,” and “waiting for child exit”
are low, interruptible system prioritics with 4, 0, and 2 processes queued,
respectively. The figure distinguishes user priorities, calling them “user level 0,
“user level 1,” to “user level n,"} containing 0, 4, and 1 processes, respectively.

‘The kernel calculates the priority of a process in specific process states.

« It assigns priority to a process about to g0 to sleep, correlating a fixed, priority
value with the reason for slecping. The priority does not depend on the run-
time characteristics of the process (1/O bound or CPU bound), but instead is a
constant value that is hard-coded for each call t0 sleep, dependent on the reason
the process is sleeping. Processes that sleep in lower-level algorithms tend to
cause more system bottlenecks the longer they are inactive; hence they receive a
higher priority than processes that would cause fewer system bottlenecks. For
instance, a process sleeping and waiting for the completion of disk 1/O has a
higher priority than a process waiting for a free buffer for several reasons:
First, the process waiting for completion of disk 1/0 already has a buffer; when
it wakes up, there is a chance that it will do enough processing to release the
buffer and, possibly, other resources. The more resources it frees, the better the
chances are that other processes will not block waiting for resources. The
system will have fewer context switches and, consequently, process response

1. The highest
and soon

fority value on the system is 0. Thus, user level 0 b higher priority than user level 1,





index-258_1.png
4.

.

PPROCESS CONTROL

init 2

at the console to change the state of inif 10 state 2 (multi-user). The console shell
Jorks and execs init. What should happen in the system, given that only one i
process should be active?

The format of eniries in the file “/etc/inittab” allows specification of an action
associated with each generated process. For example, the action typically associated
with getty is respawn, meaning that inif should recreate the process if it dies.
Practically, this means that int will spawn another gefty process when a uscr logs off,
allowing another uscr to access the now inoperative terminal line. How can init
implement the respawn action?

Several kernel algorithms require a scarch of the process table. The search time can
be improved by use of parent, child, and sibling pointers: The parent pointer points to
the parent of the process, the child pointer points o any child process,

pointer points to another process with the same parent. A process finds all its children
by following its child pointer and then following the sibling pointers (loops are illcga).
‘What algorithms benefit from this implementation? What algorithms must remain the
same?






index-367_1.png
11

INTERPROCESS
COMMUNICATION

Interprocess communication mechanisms allow arbitrary processes to exchange data
and synchronize exccution. We have already considered several forms of
interprocess communication, such as pipes, named pipes, and signals. Pipes
(unnamed) suffer from the drawback that they are known only to processes which
are descendants of the process that invoked the pipe system call: Unrelated
processes cannot communicate via pipes. Although named pipes allow unrelated
processes to communicate, they cannot generally be used across a network (see
Chapter 13), nor do they readily lend themselves to setting up multiple
communications paths for different sets of communicating processes: it is
impossible to multiplex a named pipe to provide private channels for pairs of
communicating processes. Arbitrary processes can also communicate by sending
signals via the kill system call, but the “message” consists only of the signal
number.

‘This chapter describes other forms of interprocess communication. It starts off
by examining process tracing, whereby one process traces and controls  the
exccution of another process and then explains the the System V IPC package:
messages, shared memory, and semaphores. It reviews the traditional methods by
processes communicate with processes on other machines over a network and,
finally, gives a user-level overview of BSD sockets. It does not discuss network-
specific issues such as protocols, addressing, and name service, which are beyond
the scope of this book.
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EXERCISES s

when the shell executes the following loop. Enhance the sample shell code to handle
this case.

while truth
do

truth &
done

Why must the shell create the processes (© handle the two command components of a
pipeline in the indicated order (Figure 7.29)?
Make the sample code for the shell loop more general in how it handles pipes. That is,
allow it 1o handle an arbitrary number of pipes on the command line.
The environment variable PATH describes the ordered set of dircctorics that the shell
should scarch for cxccutable files. The library functions execlp and execvp prepend
directories listed in PATH 1o file name arguments that do not begin with 4 slash
character. Implement these functions
‘A superuser should sct up the PATH environment variable 5o that the shell does not
Search for executable fles in the current directory. What security problem exists f it
attempts to exccute fles in the current directory?
How docs the shell handle the ed (change directory) command? For the command
line

cd pathname &
‘what does the shell do?
When the user types a “delete” or “break” key at the terminal, the terminal driver
sends an interrupt signal to all processes in the process group of the login shell. The
user intends to stop processes spawned by the shell but probably does not want to log
off. How should the shell loop in Figure 7.28 be enhanced?
The user can type the command

‘nohup command_line

to disallow receipt of hangup signals and quit signals in the processes generated for
“command line.” How should the shell loop in Figure 7.28 hande this?
Consider the sequence of shell commands

nroff —mm bighilel > biglout &
nroff ~mm bighile2 > big2out

and recxamine the shell loop shown in Figure 7.28. What would happen if the first
nrof finished exccuting before the second one? How should the cod for the shell loop
be modified (o handle this case correctly?

‘When executing untested programs from the shel, a common error message printed by
the shell is “Bus error — core dumped.” The program apparently did something
illegal how does the shell know that it should print an error message?

Only one init process can exccute as process | on a system. However, a system
administrator can change the state of the system by invoking inir. For cxample, the
system comes up in single uscr state when it is booted, meaning that the system
console s active but user terminals arc not. A system administrator types the
command
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THE 1/0 SUBSYSTEM

Design a scheme for virtval terminals (windows) using conventional (nomtresn
drivers.

Design a method for implementing virtual terminals using streams such that o
module, rather than a user process, multiplexes 1/0 between the virtual and physy
terminals. Describe a mechanism for connecting the streams 1o allow fan-in and g
out. Is it better to put a multplexing module inside the kernel or construct it a3
user process?

The command ps reporis interesting_information on process actvity in a runing
system. I traditional implementations, ps reads the information in the process tayy
dircctly from Kernel memory. Such a method is unstable in a developmen
environment where the size of process table entries changes and ps cannot casily fng
the correct fields in the process table. Encode a driver that is impervious to 3
changing environment.
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background. For example, typing the command

who
causes the system to execute the program stored in the file /binfvho,* which prints &
list of people who are currently logged in to the system. While who exccutes, the
shell waits for it o finish and then prompts the user for another command. By
typing

who &
the system executes the program who in the background, and the shell is ready to
accept another command immediately.

Every process exccuting in the UNIX system has an exccution environment that
includes a current directory. The current directory of a process is the start
directory used for all path names that do not begin with the slash character, The
user may execute the shell command ed, change directory, to move around the file
system tree and change the current directory. The command line

cd fust/secluts
changes the shell’s current directory to the directory “/usr/sre/uts”. The command
line

o

changes the shell’s current directory to the directory that is two nodes “closer” to
the root node: the component “.” refers to the parent directory of the current
directory.

Because the shell is a user program and not part of the kernel, it is casy to
modify it and tailor it to a particular environment. For instance, users can use the
C shell to provide a history mechanism and avoid retyping recently used commands,
instead of the Bourne shell (named after its inventor, Steve Bourne), provided as
part of the standard System V release. Or some users may be granted usc only of
a restricted shell, providing a scaled down version of the regular shell. The system
can execute the various shells simultaneously. Users have the capability 10 execute
many processes simultancously, and processes can create other processes
dynamically and synchronize their exccution, if desired. These features provide
users with a powerful execution environment.  Although much of the power of the
shell derives from its capabilities as a programming language and from its
capabilities for pattern matching of arguments, this section concentrates on the
process environment provided by the system via the shell. Other important shell

4. The dircctory “/bin” contains many useful commands and is usually included in the sequence of
ditcctories the shel searches.
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ptrace(cmd, pid, addr, data);

where cmd specifies various commands such as reading data, writing data, resuming
exccution and so on, pid is the process ID of the traced process, adar is the virtual
address 10 be read or written in the child process, and data is an intcger value o be
written. When exccuting the pirace system call, the kernel verifies that the
debugger has a child whose ID is pid and that the child s in the traced state and
then uses a global trace data structure (o transfer data between the two processes.
It locks the trace data structure to prevent other tracing processes from overwriting,
it, copies cmd, addr, and data into the data structure, wakes up the child process
and puts it into the “ready-to-run” state, then sleeps until the child responds.
When the child resumes execution (in kernel mode), it does the appropriate trace
command, writes its reply into the trace data structure, then awakens the debugger.
Depending on the command type, the child may reenter the trace state and wait for
a new command or return from handling signals and resume execution. When the
debugger resumes execution, the kernel saves the “return value” supplied by the
traced process, unlocks the trace data structure, and returns to the user.

If the debugger process is not sleeping in the waif system call when the child
enters the trace state, it will not discover its traced child until it calls wait, at
which time it returns immediately and proceeds as just described.

daul32];
main()

{

int

for (=0 i <32 i++)
printf(datal%d] = %d\n",

printfCptrace data addr Ox%x\n’

dataliD;
" data);

Figure 11.2. Trace — A Traced Process

Consider the two programs in Figures 11.2 and 113, called trace and debug,
respectively. Running trace at the terminal, the array values for data will be 0; the
process prints the address of data and exits. Now, running debug with a
parameter cqual 1o the value printed out by frace, debug saves the paraneter in
addr, creates a child process that invokes pirace to make itself eligible for tracing,
and execs trace. The kernel sends the child process (call it trace) a SIGTRAP
signal at the end of exec, and trace enters the trace state, waiing for a command
from debug. 1 debug had been slecping in wait, it wakes up, finds the traced child
process, and returns from wait. Debug then calls pirace, writes the value of the
Ioop variable i into the data space of race at address addr, and increments addr;
in trace, addr is an address of an entry in the array data. Debug’s last call to
Pirace causes trace to run, and this time, the array dafa contains the values 0 to
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On a time sharing system, the kernel allocates the CPU to a process for a period of
time called a time slice or time quantum, preempts the process and schedules
another one when the time slice expires, and reschedules the process to continue
exceution at a later time. The scheduler function on the UNIX system uses
relative time of exccution as a parameter to determine which process to schedule
next. Every active process has a scheduling priority; the kernel switches context to
that of the process with the highest priority when it does a context switch. The
Kernel recalculates the priority of the running process when it returns from kernel
mode to user mode, and it periodically readjusts the priority of every “ready-to-
run” process in user mode.

Some user processes also have a need to know about time: For example, the
time command prints the time it t0ok for another command to execute, and the
date command prints the date and time of day. Various time-related system calls
allow processes o set or retrieve kernel time values or to ascertain the amount of
process CPU usage. The system keeps time with a hardware clock that interrupts
the CPU at a fixed, hardware-dependent rate, typically between 50 and 100 times a
second. Each occurrence of a clock interrupt is called a clock ick. This chapter
explores time related activities on the UNIX system, considering process
scheduling, system calls for time, and the functions of the clock interrupt handler.

247





index-368_1.png
386 INTERPROCESS COMMUNICATION

111 PROCESS TRACING

The UNIX system provides a primitive form of interprocess ‘communication for
tracing processes, useful for debugging. A debugger process, such as sdb, Spawns 3
proces {o be traced and controls ts exccution with the pirace sysim call, seing
and clearing break points, and reading and writing data in its virtual address space,
Process tracing thus consists of synchronization of the debugger process and the
traced process and controlling the execution of the traced process

T (Gid = fork0) == 0)
(

7° child = traced process */
pirace(0, 0,0, 0);
exec("name of traced process here

/* debugger process continues here */

for )

(
wait(Gnt *) 0);
read(input for tracing instructions)
ptrace(cmd, pid, ..);
if Guiting trace)

break;

Figure 11.1. Structure of Debugging Process

The pscudo-code in Figure 11.1 shows the typical structure of a debugger
program. The debugger spawns a child process, which invokes the pirace system
call and, as a result, the kernel sets a trace bit in the child process table entry. The
child now execs the program being traced. For example,if a user s debugging the
program a.out, the child would exec a.our. The kernel exccutes the exec call as
usual but at the end notes that the trace bit is set and sends the child a “trap”
signal. The kenel checks for signals when returning from the exee system call, just
as it checks for signals after any system call, finds the “trap” signal it had just sent
tself, and exceutes code for process tracing as a special case for handling signals.
Noting that the trace bit is set in its process table entry, the child awakeny the
parent from its sleep in the wait system call (as will be seen), enters a special trace
§aie similar to the sleep state (not shown in the process state diagram in Figure
6.1), and does a context switch

Typically, the parent (debugger) process would have meanwhile entered a user-
level loop, waiting to be awakened by the traced process. When the traced process
awakens the debugger, the dcbugger rewrns from wair, reads user. input
commands, and converts them to a series of pirace calls to control the child
(traced) process. The syntax of the purace system call is
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Comment on the following statement: A process can slecp on any event in the wair
algorithm, and the system would work correctly.
Consider implementation of & new system call,

nowait(pid);

Where the process ID pid identiis a child of the process issuing the call. When
ssuing the call, the process informs the kernel that it will never wait for the child
process 10 exi, 50 that the kerncl can immediately clean up the child process slot when
the child dies. How could the kernel implement such a solution?  Discuss the meriz
of such a system call and compare it o the use of “death of child" signals.

The C loader automatically includes a startup routine that calls the function main in
the user program. If the user program does not call exif internally, the startup routine
calls exit for the user after the return from main. What would happen if the call to
exit were missing from the startup routine (because of a bug in the loader) when the
process returns from main?

What information does wair find when the child process invokes exit without 3
parameter? That i, the child process cals exir() instead of exit(u). 1f a programmer
consstently invokes exit without a parameter, how predictable is the value that wait
cxamines? Demonstratc and prove your claim.

Describe what happens when a process excouting the program in Figure 7.36 execs
itself. How docs the kernel avoid deadiocks over locked inodes?

main(arge, g
int arge;
char *argl);

{
)

exec(argv(0), argv(0], 0);

Figure 7.36. An Interesting Program

By convention, the frst argument (o exec is the (last component of the) fle name that
the process exccutes. What happens when a user exccutes the program in Figure 7.37.
What happens if “a.0ut" is the load module produced by compling the program in
Figure 7.367

Suppose the C language supported a new data type “read-only,” such that a process
incurs a protection fault whenever it attempts to write “read-only” data. Describe an
implementation. (Hint: Compare 1o shared text) What algorithms in the kenel
change? What other objects could onc consider for implementation as regions?
Descibe bow the algorithms for open, chmod. unlnk, and wnmount change fox
sic les._For cxample, what should the kernel do with a sticky-bit file w

file s wnlinked? it e vhen e
The superuser is the only user who has permission (o0 write the password fle
“Jetc/passwd”, preventing maliious or errant uscrs from corrupting its contents. The
passwd program allows users to change their password entry, but it must make sure
that they do not change other people’s entrics. How should it work?
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cannot go to sleep, because they would be putting an arbitrary process to sleep (the

one that was interrupted). Modules must save their statc information internally,

making their code more cumbersome than it would be if sleeping were allowed.
Several anomalies exist in the implementation of streams.

« Process accounting is difficult under streams, because modules do not necessarily
run in the context of the process that is using the stream. I is false to assume
that all processes uniformly share execution of streams modules, because some
processes may require use of complicated network protocols, whereas others may
use simple terminal line disciplines

« Users can put a terminal driver into raw mode, such that read calls return after
a short time if no data is available (for example, if newtty.c_cc[VMIN] = 0; in
Figure 10.17). It is difficult to implement this feature with streams, unless
special-case code is introduced at the stream-head level.

« Streams are lincar connections and do not easily allow multiplexing in the
kernel. For cxample, the window example in the previous section does the
multiplexing in a user-level process.

In spite of these anomalies, streams holds great promise for improving the design of
driver modules.

10.5 SUMMARY

This chapter presented an overview of device drivers on the UNIX system. Devices
are cither block devices or character devices; the interface between them and the
rest of the kernel depends on the device type. The block device interface is the
block device switch table, which consists of entry points for device open, closc, and
strategy procedures. The strategy procedure controls data transfer to and from the
block device. The character device interface is the character device switch table,
which consists of entry points for device open, close, read, write, and ioctl
procedures. The foctl system call uses the ioctl interface to character devices,
which permits control information to be sent between processes and devices. The
kernel calls device interrupt handlers on receipt of a device interrupt, based on
information stored in the interrupt vector table and on parameters supplied by the
interrupting hardware.

Disk drivers convert logical block numbers used by the file system to locations
on the physical disk. The block interface allows the kernel to buffer data. The raw
interface allows faster 1/0 to and from the disk but bypasses the buffer cache,
allowing more chances for file system corruption.

Terminal drivers support the primary interface to users. The kernel associates
three clists with each terminal, one for raw input from the keyboard, one for
processed input to account for erase and kill characters and carriage returns, and
one for output. The ioct! system call allows processes to control how the kernel
treats input data, placing the terminal in canonical mode or setting various
parameters for raw mode. The gefry process opens terminal lines and waits for &
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Hinclude <signalh>
main0

extern catcher

signal (SIGCLD, catcher);
if (fork() == 0)

exit0;
/* pavse suspends execution until receipt of a signal */
pause0;
)
cateher()
(

printf("“parent caught sig\n");
signal (SIGCLD, catcher);

Figure 7.35. Catching Death of Child Signals

The conventional implementation of the mkdir command invokes the mknod system
call to create the directory node, then calls the fink system call twice to link the
directory entries *. and *.” to the directory node and its parent dircctory. Without
the three operations, the directory will not be in the correct format. What happens if
mkdir receives a signal while executing? What if the signal is SIGKILL, which
cannot be caught? Reconsider this problem if the system were to implement & mkdir
system call.

A process checks for signals when it enters or leaves the slecp state Gif it sleeps at an
interruptible _priority) and when it returns to user mode from the kernel after
‘completion of a system call or after handling an interrupt. Why docs the process not
have to check for signals when entering the system for exccution of a system call?
Suppose a process is about 10 return to user mode after executing a system call, and it
finds that it has no outstanding signals. Immediately after checking, the kernel
handles an interrupt and sends the process a signal. (For instance, a user hits the
“break” key.) What docs the process do when the kernel returns from the interrupt?
If scveral signals are sent (0  process simultancously, the kernel handles them in the
order that they are listed in the manual. Given the thre possibilities for responding to
receipt of a signal — catching the signals, exiting after dumping a corc image of the
process, and exiting without dumping a core image of the process — is there a better
order for handling simultaneous signals? For example, if a process receives a quit
signal (causes a core dump) and an interrupt signal (no core dump), does it make
‘more sense to handle the quit signal or the interrupt

Implement a new system call

‘newpgrp(pid, ngy

that rescts the process group of another proces, identified by process ID pid o ngrp.
Discuss possible uses and dangers of such a system call
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new process opens the other member of the ply pair. Mpx pushes & messyy
module onto its piy stream to convert control messages to data messages (explaiacg
in the next paragraph), and the child process pushes a line discipline module ong
its pty stream before execing the shell. That shell is now running on a vinuy
terminal; t0 the user, it is indistinguishable from a physical terminal.

‘The mpx process is a multiplexer, forwarding output from the virtual terminaiy
10 the physical terminal and demultiplexing input from the physical terminal 1o the
correct virtual terminal. Mpx waits for the arrival of data on any linc, using the
select system call. When data arrives from the physical terminal, mpx decides
whether it is a control message, informing it to create a new window or delete an
old one, or whether it is a data message to be sent to processes reading a virtual
terminal. In the latter case, the data has a header that identifies the target virtal
terminal; mpx strips the header from the message and writes the data to the
appropriate pty stream. The piy driver routes the data through the terminal line
discipline to reading processes. The reverse procedure happens when a process
writes the virtual terminal: mpx prepends a header onto the data, informing the
physical terminal which window the data should be printed to.

If a process issues an foctl on a virtual terminal, the terminal line discipline sets
the necessary terminal settings for its virtual line; settings may differ for cach
virtual terminal. However, some information may have to be sent to the physical
terminal, depending on the device. The message module converts the control
messages that are generated by the ioctl into data messages suitable for reading
and writing by mpx, and these messages are transmitted 10 the physical device.

1042 Analysis of Streams

Ritchie mentions that he tried to implement streams only with put procedures or
only with service procedures. However, the service procedure is necessary for flow
control, since modulcs must sometimes enqueue data if neighboring modules cannot
receive any more data temporarily. The put procedure interface is also necessary,
because data must sometimes be delivered 1o a neighboring module right away
For example, a terminal line discipline must ccho input data back to the terminal
as quickly as possible. It would be possible for the write system call to invoke the
put_ procedure of the next queue directly, which in turn would call the put
procedure of the next queue, and so on, without the need for a scheduling
mechanism. A process would sleep if the output queues were congested. However,
modules cannot sleep on the input side, because they are invoked by an interrupt
handler and an innocent process would be put to slecp. Intermodule
communication would not be symmetric in the input and output directions,
detracting from the clegance of the scheme.

It would also have been preferable o implement cach module as a separate
process, but use of a large number of modules could cause the process table o
overflow.  They are implemented with a special scheduling mechanism — software
interrupt — independent of the normal process scheduler. Therefore, modules

{
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pir = malloc(sze);
free(pu);

‘where size is an unsigned integer representing the number of bytes to allocate, and piy
is 8 character pointer that points to the newly acquired space. When used as 4
parameter for free, pir must bave been previously returned by malloc. Implement the
library routines.

25, What happens when running the program in Figure 7.397 Compare to the resuls
predicted by the system manual.

main0

(
inti;
char *ep;

extern char *sbrk0;

op = sbrk(10);

for G=0; i <10, i+4)
opbd = e+

sbrk(=10);

ep = sbrk(10);

for G=0; i <10; i+4)

Figure 7.39. A Simple Sbrk Example

30. When the shell creates a new process (o execute a command, how does it know that
the file s exccutable? If it is executable, how does it distinguish between  shell script
and a fle produced by a compilation? What is the correct sequence for checking the
above cases?

31, The shell symbol “> >

run >> outfle

appends output o the specified file: for example,

erears the file “outfle” if it does not already exist and writes the fil, or it opens the
fle and writes after the existing data. Write code to implement this.

main0
{
exit(0);

Figure 7.40. Truth Program

32 The shell tests the exit return from a process, treating & 0 value as true and a non-0
value as false (note the inconsistency with C). Suppose the name of the executable
fle corresponding to the program in Figure 7.40 is trurh. Describe what happens
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EXERCISES 8

When mounting a fle system, the kernel invokes the driver open procedure but later
releases the inode for the device special fle at the cnd of the mount call. When
mouning a fle system, the Kernel accesses the inode of the deviee special filc, invokes
e driver close procedure, and releases the inode. Compare the sequence of inode
operations and drver open and close cals to the sequence when opering and closing a
block device. Comment.

Run the program in Figure 10.18 but direct the output 10 a file. Compare the
contents of the fle o the output when output goes 1o the terminal. You will have to
nterrupt the processes 1o stop them; let them run long cnough to get & suffcient
amount of output. What happens if the write callin the program is replaced with

printf(output);
What happens when a user attempts (0 do text cditing in the background:

ed fle &

Why?

Terminal files typically have aceess permissions sct as in
crw——w—-w— 2mjb s 33,11 0ct252027 uy6l

when a user is logged on. That is, read/write permission is permitted for user “mjb."
but only write permission is allowed other users. Why?

Assuming you know the terminal device fle name of  friend, write a program that
allows you 1o write messages to your friend's terminal. What other information do you
need 10 cncode a reasonable facsimile of the ususl write command?

Implement the sity command: with no parameters, it retieves the values of terminal
setings and reports them to the uscr.  Otherwise, the user can set various seitings
interactively.

Encode a line discipline that writes the machine name at the beginning of cach linc of
output.

In canonical mode, a user can temporarily top output 10 a terminal by typing control
5" at the terminal and resume output by typing "contral q." How should the standard
line discipline implement this feature?

. The init process spawns a gety process for cach terminal line in the system. What

would happen if two gelty processes were 1o exist simultaneously for one terminal,
waiting for a user to log in? Can the kernel prevent this?

Suppose the shell were coded so that it gnored" the end of filc and continued to read
ts standard input. What would happen when a user (i the login shell) hits end of file
and continues typing?

. Suppose a process reads its control terminal but ignores or catches hangup signals.

‘What happens when the process continucs to read the control terminal after a hangup?
The getty program is responsible for opening a terminal linc, and login is responsible
for checking login and password information. What advantages are there for doing the
two functions in separate programs?

‘Consider the two methods for implementing the indirect terminal driver (“/dev/ty"),
described in Section 10.3.6. What differences would a user perceive? (Hint: Think
about the system calls star and fstat)

Design a method for scheduling streams modules, where the kernel contains a special
process that exccutes module service procedures when they are scheduled o exccute.
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0
if fork0 == 0)
(
excclC“a.out”, 0);
printf “exec failed\n

)

Figure 7.37. An Unconventional Program

* 25, Explain the security problem that exists if a setuid program s not write-protected.
26, Excaute the following sequence of shell commands, where the file “aout” is an
exccutable file.
chmod 4777 a.out
chown root a.out
‘The chmod command turns on the setuid bit (the 4 in 4777), and the owner “root” is
conventionally the superuser. Can exccution of such a sequence allow a simple breach
of security?
27, What happens if you run the program in Figure 7.387 Why?

main0

{
char *endp;
char *sbrk0;
int brk0;
endpt = sbrk(0);

printf(“endpt = %ud after sbrkin’”, Gind) endpt);

while (endpt==)
(
1: (brk(endpt) == ~1)

printf(“brk of %ud failed\n”, endp0);
exit0;

Figure 7.38. A Tight Squeeze

28, The library routine malloc allocates more data space Lo a process by invoking the brk
system call, and the library routine free reicass memory previously allocated by
malloc. The syntax for the calls is
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process group so that the login shell is eventually a proces
group leader, initializes terminal parameters via ioctl, and prompis the uses
through a login sequence. The control terminal thus set up sends signals 1o
processes in the process group, in response to cvents such as when the user hangs
up or presses the break key.

Streams are a scheme for improving the modularity of device drivers and
protocols. A stream is a full-duplex connection between processes and device
drivers, which may contain line disciplines and protocols to process data en route,
Streams modules are characterized by well-defined interfaces and by their
fexibility for use in combination with other modules. The flexibility they offer has
strong benefits for network protocols and drivers.

10.6 EXERCISES

* 1. Suppose a system contains two device files that have the same major and minor
number and are both character devices. IF two processes wish to open the physical
device simultancously, show that it makes no difference whether they open the same
device fie or different device files. What happens when they close the device?

* 2. Reall from Chapter S that the mknod system call requires superuser permission 1o
create a device special file. Given that device access is governed by the permission
modes of a file, why must mknod require superuser permission?

3. Write a program that verifis that the fle systems on a disk do not overlap. The
program should take two arguments: a device fil that represents a disk volume and &
descriptor fle that gives section numbers and section lengths for the disk type. The
program should read the super blocks 1o make sure that fle systems do not overlap.
Wil such a program always be correct?

4. The program mifs initializes a fle system on a disk by creating the super block,
leaving space for the inode list, putting all the data blocks on a linked list, and making
the root inode directory. How would you program mifs? How docs the program
change if there is a volume table of contents? How should it initialize the volume
table of contents?

5. The programs mkfs and fick (Chapter 5) are user-evel programs instead of part of
the kernel. Comment.

6. Suppose a programmer wanis (o write a data base system 10 run on the UNIX system.
The data base programs run at user level, not as part of the kernel. How should the
system interact with the disk? Consider the following issucs:

# Use of the regular fle system interface versus the raw disk,

« Need for specd,

+ Need to know when data actually resides on disk,

* Size of the data base: Does it fit nio one file system, an entire disk volume, or
several disk volumes?

7. The UNIX Kernel tacitly assumes that the fil system is contained on perfect disks.
Howeer, disks could contain faults that incapacitate certain sectors although the
remainder of the disk is stll “good.* How could a disk driver (or intlligent disk
contoller) make allowances fo small numbers of bad sectors. How would this afec
performance?
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8.1 PROCESS SCHEDULING

The scheduler on the UNIX system belongs to the general class of operating system
schedulers known as round robin with multilevel feedback, meaning that the kernel
llocates the CPU t0 a process for a time quantum, preempts a process that exceeds
its time quantum, and feeds it back into one of several priority queucs. A process
may need many iterations through the “feedback loop” before it finishes. When
the kernel does a context switch and restores the context of a process, the process
resumes execution from the point where it had been suspended.

algorithm schedule_process.
input: none

output: none

{

(o process picked o execute)

for (every process on run queue)

‘pick highest priority process that is loaded in memory;
if (8o process cligible to execute)

idle the machine;

7% interrupt takes machine out of idle state */

i
remove chosen process from run queue;
switch context o that of chosen process, resume its execution;

Figure 8.1. Algorithm for Process Scheduling

8.11 Algorithm

At the conclusion of a context switch, the kernel exceutes the algorithm to schedule
a process (Figure 8.1), selecting the highest priority process from those in the states
“ready to run and loaded in memory” and “preempted.” It makes no sense o
select a process if it is not loaded in memory, since it cannot execute until it is
swapped in. If several processes tie for highest priority, the kernel picks the one
that has been “ready to run” for the longest time, following a round robin
scheduling policy. If there are no processes cligible for cxecution, the processor
idles until the next interrupt, which will happen in at most one clock tick; after
handling that interrupt, the kernel again attempts to schedule a process to run.
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#include  <fontlh>
int fdrd, fdwt;
charc;

‘main(arge, argy)
int arge;
char *argy{];

ifarge 1=3)
exit(1);
fork(;

if (fdrd = open(argy{1), O_RDONLY)) == —1)
exit(1);
if ((fdwt = creat(argv[2], 0666)) ==~ 1) &&
(fawt = open(argy(2), 0_WRONLY)) ==~ 1))
exit(1);
rdwrt0;
)
rawrt)
(
for ()
(
if (read(fdrd, &, 1) 1= 1)
rewrn;
write(fdwt, &c,

Figure 734, Program where Parent and Child Do Not Share File Access

« The kenel does not change the signal-handling function untl the wser explicitly
requests to do so;
* The kernel causes the process o ignore the signal until the user cals signal again.
9. Redesign the algorithm for handiing signals such that the kernel automatically
arranges for a process to ignore further instances of a signal it is handling until the
signal handler returns. How can the kernel find out when the signal handir, running
in user mode, returns? This specification i closer to the treatment of signals on BSD
systems
*10. 1f a process receives a signal while slecping at an inerruptible priority in a system call
it longjmps out of the system call. The kernel arranges for the process to execute its
signal handler, if specified; when the process returns from the signal handier it
‘appears 10 have returned from the system call with an error indication (interrupted)
on System V. The BSD system automatically restarts the system call for the process
How can this feature be implemented?
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7+ assume il descriptors 0 and | already refer to physical tty /.
for () /*loop */
{

select(input); 1% wait for some line with input */
read input line;
switch (line with input data)

(
case physical uy: 7 imput on physical tty line */
if (control command)  /* e.g. create new window */
1
open a free pseudo—tty:
fork a new process:
if (parent)
{
push a msg discipline on mpx side;
continue;  /* back to for loop */
)
7* child here */
close unnecessary file descripto
open other member of pscudo-ty pair, get
stdin, stdout, stderr;
push ty line discipline:
exec shell 7* looks like virtual tty */
i
7# “regular” data from tty coming up for virtual tty */
demultiplex data read from physical ty, strip off
headers and write 10 approprate py;
continue; 14 back to for loop */
case logical tty: /* a virtual ty is writing a window */

encode header indicating what window data is for;
write header and data 10 physical tty;
continue; 1 back to for loop */

Figure 10.24. Pscudo-code for Multiplexing Windows

49

When it receives notification that a user wants to create a new window, mpx
creates a process to control the new window and communicates with it over a

pseudo-terminal (abbreviated piy). A piy is a software device that operates in

pairs: Output directed to one member of the pair is sent o the input of the other
member; input is sent to the upstream module. To set up a window (Figure 10.24),
mpx allocates a pty pair and opens one member, establishing a stream to it (the
driver open insures that the piy was not previously allocated). Mpx forks, and the
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using another foct/ system call.
ioctl(fd, POP, 0);

Given that a terminal line discipline module implements regular terminal processing

the underlying device can be a network connection instead of 4
to a single terminal device. The line discipline module works the same
way, regardless of the module below it. This example shows the greater flexibility
derived from the combination of kernel modules.

1041 A More Detailed Example of Streams.

Pike describes an implementation of multiplexed virtual terminals using streams
(sec [Pike 84]). The user sees several virtual terminals, each occupying a separate
window on a physical terminal. Although Pike's paper describes a scheme for an
intelligent graphics terminal, it would work for dumb terminals, too; each window
would occupy the entire screen, and the user would type a control sequence to
switch between virtual windows.

User Level LSPL 2 mpx
Kernel Level |

tyld) tyld)

Pty
pair 1

Tty
driver

Figure 10.23. Windowing Virtual Terminals on a Physical Terminal

Figure 10.23 shows the arrangement of processes and kernel modules. The user
invokes a process, mpx, 1o control the physical terminal. Mpx reads the physical
terminal line and waits for notification of control events, such as creation of a new
window, switching control to another window, deletion of a window, and so on.
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algorithm start 7 system startup procedure */
input: none.
output: none

initialize all kernel data structures;
pscudo-mount of root;

hand-craft environment of process 0;
fork process 1:

{

1% process 1 in here */
allocate region;
attach

copy code from kernel spac to init user space 10 exec init;
change mode: return from kernel o user mode;

7% init never gets here---as result of above change mode,
exec's /etc/init and becomes a “normal” user process
* with respect to invocation of system calls

-/

)

7* proc 0 continues here */

fork kernel processes;
79 process 0 invokes the swapper (o manage the allocation of

* process address space to main memory and the swap devices.
* This is an infinite loops_process 0 usually sleeps in the.

* loop unless there is work for it t0 do.

K
execute code for swapper algorithm;

Figure 7.30. Algorithm for Booting the System

kernel, but that would be more complicated than the implementation just described.
To follow the latter procedure, exec would have o parse file names in kernel space,
not just in uscr space, as in the current implementation. Such generality, nceded
only for init, would complicate the exec code and slow its performance in more
common cases.

The init process (Figure 7.31) is a process dispatcher, spawning processes that
allow users to log in to the system, among others. Init reads the file “/etc/inittab”
for instructions about which processes to spawn. The file “/etc/inittab” contains
lines that contain an “id,” a state identifier (single user, multi-user, ctc), an
“action” (see exercisc 7.43), and a program specification (see Figure 7.32). Init
reads the file and, if the state in which it was invoked matches the state identificr
of a line, creates a process that executes the given program specification. For
example, when invoking init for the multi-user state (state 2), init typically spawns
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and the other for output. When a process writes data 10 a stream, the kernel sends
the data down the output queues; when a device driver receives input data, it sends
the data up the input queucs to a reading process. The queues pass messages (o
neighboring queues according to a well-defined interface. Each queuc pair is
associated with an instance of a kernel module, such as a driver, line discipline, or
protocol, and the modules manipulate data.passed through its queucs.

Each queue is a data structure that contains the following clements:

An open procedurc, called during an open system call

A close procedure, called during a close system call

‘A “put” procedure, called to pass a message into the queue

A “service” procedure, called when a queuc is scheduled to exceute

‘A pointer to the next queue in the stream

A pointer to a list of messages awaiting service

‘A pointer to a private data structure that maintains the state of the queue
Flags and high- and low-water marks, used for flow control, scheduling, and
maintaining the queue state

The kernel allocates queuc pairs, which are adjacent in memory; hence, a queue
can casily find the other member of the pair.

~————_ | Inodeof

Stream Head [ OUPUE | Tnput doice e
queue | queue
a queue pair
Driver [ ORPU | Taput
queve | queue

Figure 10.20. A Stream after Open

A device with a streams driver is a character device; it has a special field in the
character device switch table that points 10 a streams initialization structure,
containing the addresses of routines and high- and low-water marks mentioned
above. When the kernel exccutes the open system call and discovers that the device
fle is character special, it examines the new field in the character device switch
table. If there is no entry there, the driver is not a streams driver, and the kernel
follows the usual procedure for character devices. However, for the first open of a
streams driver, the kernel allocates two pairs of queues, one for the stream-head
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asynchronously, and the output of one process goes (o the input of the other
process. The parent shell meanwhile waits for its child process (we) to exit, then
proceeds as usual: The entire command line completes when we exits. The shell
loops and reads the next command.

7.9 SYSTEM BOOT AND THE INIT PROCESS

To initialize a system from an inactive state, ar
“bootstrap” sequence: The administrator “boots” the system. Boot procedures
vary according to machine type, but the goal is common t0 all machines: to get a
copy of the operating system into machine memory and 0 start executing it. This
is usually done in a series of stages; hence the name bootstrap. The administrator
may set switches on the computer console to specify the address of a special hard-
coded bootstrap program or just push a single button that instructs the machine to
load a bootstrap program from its microcode. This program may consist of only a
few instructions that instruct the machine to exccute another program. On UNIX
systems, the bootstrap procedure eventually reads the boot block (block 0) of a
disk, and loads it into memory. The program contained in the boot block loads the
kernel from the file system (from the file “/unix”, for example, or another name
specified by an administrator). After the kernel is loaded in memory, the boot
program transfers control to the start address of the kernel, and the kernel starts
running (algorithm start, Figure 7.30)

‘The kernel initializes its internal data structures. For instance, it constructs the
linked lists of frec buffers and inodes, constructs hash queues for buffers and inodes,
initializes region structures, page table entries, and so on. After completing the
initialization phase, it mounts the root file system onto root (/") and fashions the
environment for process 0, creating a  area, initializing slot 0 in the process table
and making root the current directory of process 0, among other things.

‘When the environment of process 0 is set up, the system is running as process 0.
Process 0 forks, invoking the fork algorithm directly from the kernel, because it is
exccuting in kernel mode. The new process, process 1, running in kernel mode,
creates its user-level context by allocating a data region and attaching it to its
address space. It grows the region 1o its proper size and copies code (described
shortly) from the kernel address space t0 the new region: This code now forms the
user-level context of process 1. Process 1 then sets up the saved user register
context, “returns” from kernel to user mode, and exceutes the code it had just
copied from the kernel. Process 1 is a user-level process as opposed 1o process 0,
which is a kernel-level process that executes in kernel mode. The text for process 1,
copied from the kernel, consists of a call to the exec system call to execute the
program “/etc/init”. Process 1 calls exec and executes the program in the normal
fashion. Process 1 is commonly called init because it s responsible for initialization
of new processes.

‘Why does the kernel copy the code for the exec system call to the user address
space of process 17 It could invoke an internal version of exec directly from the

administrator goes through a
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algorithm Togin 7 procedure for logging in */
(
getty process executes:
set process group (setpgrp system cal
open tty line; 1% slecps until opened */
f (open successful)
(

exc login program:
prompt. for user name;
turn off cho, prompt for password;
if (successful) 1+ matches password in /etc/passwd */
1
put ty in canonical mode (ioct);
exce shell;
1
clse
‘ount login attempts, try again up to a point;

Figure 10.19. Algorithm for Logging In

10.4 STREAMS

The scheme for implementation of device drivers, though adequate, suffers from
some drawbacks, which have become apparent over the years. Different drivers
tend to duplicate functionality, particularly drivers that implement network
protocols, which typically include a device-control portion and a protocol portion.
Although the protocol portion should be common for all network devices, this has
not been the case in practice, because the kernel did not provide adequate
mechanisms for common use. For cxample, clists would be useful for their
buffering capability, but they arc expensive because of the character-by-character
manipulation. Attempis to bypass this mechanism for greater performance cause
the modularity of the 1/0 subsystem to break down. The lack of commonality at
the driver level percolates up to the user command level, where several commands
may accomplish common logical functions but over different media. Another
drawback of the driver scheme is that network protocols require a line discipline-
like capability, where cach discipline implements one part of a protocol and the
‘component parts can be combined in a flexible manner. However, it is difficult to
stack conventional line disciplines together.

Ritchic has recently implemented a scheme called streams to provide greater
modularity and flexibility for the I/O subsystem. The description here is based on
his work [Ritchic 84b), although the implementation in System V differs slightly.
A stream is a full-duplex connection between a process and a device driver. It
consists of a set of lincarly linked queuc pairs, one member of cach pair for input
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main(arge, argy)
int arge;
char *argil); |

7 assume 2 args: source file and target file */
if (fork() == 0)

execl(*copy”, "eopy’, argvl 1], arg(2], 0);
wait((int *) 0);
printf("copy done\n’);

)

Figure 1.4. Program that Creates a New Process to Copy Files

run oldfile newfile

the process copies “oldfle” to “newfile” and prints out the message. Although this
program adds litle to the “copy” program, it exhibits four major system calls used
for process control: fork, exec, wai, and, discreetly, exit.

Generally, the system calls allow users to write programs that o sophi
operations, and as a esult, the kernel of the UNIX system does not contain many
functions that are part of the “kernel” in other systems. Such functions, including
compilers and editors, are user-level programs in the UNIX system. The prime
example of such a program is the shell, the command interpreter program that
users typically execute after logging into the system. The shell interprets the first
word of a command line as a command name:  for many commands, the shell forks
and the child process execs the command associated with the name, treating the
remaining words on the command line as parameters o the command.

The shell allows three types of commands. First, a command can be an
exccutable file that contains object code produced by compilation of source code (a
C program for example). Sccond, 2 command can be an executable file that
contains a sequence of shell command lines. Finally, a command can be an internal
shell command (instead of an executable fle). The internal commands make the
shell a programming language in addition to a command interpreter and include
commands for looping (for-in-do-done and while-do-done), commands for
conditional execution (if-then-else-fi), a “case” statement command, a command to
change the current directory of a process (cd), and several others. The shell syntax
allows for pattern matching and parameter processing. Users execute commands
without having to know their types.

‘The shell scarches for commands in a given sequence of directories, changeable
by user request per invocation of the shell. The shell usually executes a command
synchronously, waiting for the command to terminate before reading the next
command line. However, it also allows asynchronous execution, where it reads the
next. command line and executes it without waiting for the prior command to
terminate. Commands executed asynchronously are said to execute in the
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scheduling mechanism; that scheduler calls the service procedures of each queue on
the list. The kernel could schedule modules by software interrupt, similar to how it
invokes functions in the callout table (as described in Chapter 8); the software
interrupt handler calls the individual service procedures.

| Inodeof

___ vie fil
[Outpat | Taput device file
queue | queue

Stream Head

Line utput | Tnput
Discipline | _queue | queue

Terminal [Output | Taput
Driver | queue | queue

Figure 10.22. Pushing a Module onto a Stream

Processes can “push” modules onto an opened stream by issuing foctl system
calls. The kernel inserts the pushed module immediately below the stream head
and connects the queue pointers to keep the structure of the doubly linked list
Lower modules on the stream do not care whether they are communicating with the
stream head or with a pushed module: The interface is the put procedure of the
next queue on the stream; the next queue belongs to the module just pushed. For
example, a process can push a line discipline module onto a terminal driver stream
10 do erase and kill character processing (Figure 10.22); the line discipline module
does not have the same interfaces as the line disciplines described in Section 10.3,
but its function is the same. Without the line discipline module, the terminal driver
does not process input characters, and such characters arrive unaltered at the
stream-head. A code segment that opens a terminal and pushes a line discipline
may look like this:

£d = open(*/dev/ttyxy", O RDWR);
ioctl(fd, PUSH, TTYLD);
where PUSH is the command name and TTYLD is a number that identifies the linc

discipline module. There is no restriction to how many modules can be pushed onto
astream. A process can “pop” the modules off a stream in last-in-first-out order,
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7% it process, process 1 of the system 7

algorithm
input: none
output: none

1d = open(*/etc/i O_RDONLY);
while (line_read(fd, buffer))

72 read every line of fle */

if Ginvoked state 1= buffer state)
continue; /* loop back to w

7* state matched */

if (fork0 == 0)

(

execl Cprocess specified in buffer”);
exit0;

/* init process does not wait */
7% loop back to while */

while (Gd = wait(Gint *) 0)) t= -1)

{

1% check bere if a spawned child died;
* consider respawning it */
1% otherwise, just continue */

Figure 7.31. Algorithm for Init

Format: identifir, state, action, process specification
Fields scparated by colons.
Comment at end of line preceded by *#"

cotrespawns/etc/getty console console # Console in machine room
46:2respawn:/etc/getty 4 60 tty46 4800H _# comments here

Figure 7.32. Sample Inittab File

4B
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and the other for the driver. The stream-head module is identical for all instancey
of open streams: It has generic put and service procedures and is the interface 1
higher-level kernel modules that implement the read, write, and ioctl system call,
The kernel initializes the driver queue structure, assigning queue pointers ang
copying addresses of driver routines from a per-driver initialization structure, ang
invokes the driver open procedure. The driver open procedure does the usus)
initialization but also saves information to recall the queue with which it i
associated. Finally, the kernel assigns a special pointer in the in-core inode 1o
indicate the stream-head (Figure 10.20). When another process opens the device,
the kernel finds the previously allocated stream via the inode pointer and invokes
the open procedure of all modules on the stream.

Modules communicate by passing messages to neighboring modules on a stream
A message consists of a linked list of message block headers; cach block header
points 1o the start and end location of the block's data. There are two types of
messages — control and data — identified by a type indicator in the message
header.  Control messages may result from ioct! system calls or from special
conditions, such as a terminal hang-up, and data messages may result from write
system calls or the arrival of data from a device.

Message 1 Message 2 Message 3

Block —\_»f —/\)’ l

Figure 10.21. Streams Messages

When a process writes a stream, the kernel copies the data from user space into
message blocks allocated by the stream-head. The stream-head module invokes the
put procedure of the next queue module, which may process the message, pass it
immediately to the next queue, or enqueue it for later processing. In the latter
case, the module links the message block headers on a linked list, forming a two-
way linked list (Figure 10.21). Then it sets a flag in its queue data structure to
indicate that it has data to process, and schedules itself for servicing. The module
places the queue on a linked list of queues requesting service and invokes &
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7 read command linc until “end of fle” /.

while (read (stdin, buffer, numchars))

{
/* parse command line */
if (/* command line contains & */)

amper =

else
amper = 0;

/# for commands not part of the shell command language */

if (orkQ == 0)

(

/* redirection of 107 */
if (/* redirect output */)

£d = creat(newfle, fmask);
close (stdout);

dup(fd);

close(fd);

7% stdout i now redirected */

)
|[l(/' piping */)

pipe(ides);

Figure 7.28. Main Loop of the Shell

returns from the interrupt, the process has the necessary stack space to continue.

7.8 THE SHELL

This chapter has covered enough material to explain how the shell works. The
shell is more complex than described here, but the process relationships arc
illustrative of the real program. Figure 7.28 shows the main loop of the shell and
demonstrates asynchronous execution, redirection of output, and pipes.

The shell reads a command line from its standard input and interprets it
according 0 a fixed set of rules. The standard input and standard output file
deseriptors for the login shell are usually the terminal on which the user logged in,
as will be seen in Chapter 10. If the shell recognizes the input string as a built-in
command (for example, commands cd, for, while and others), it executes the
command internally without creating new processcs; otherwise, it assumes the
command is the name of an executable fle.
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terminal or when any number of characters are reccived and about 10 scconds
clapse since the first was received. When it receives an interrupt signal, the process
resets the original terminal options and terminates

Hinclude <fentlh>

main0
(

register int i, n;
int 1d;
char bufl256);

/* open terminal read—only with no—delay option */
if ((fd = open(*/dev/ty”, O_RDONLY | O NDELAY)) == 1)
exit0;

a1
for () /* for ever */
{

for (=0; i <m i)

if (read(fd, buf, sizeof (uD) > 0)
(
printf(“read at n %d\n”, )
i

else  /*nodata read; returns due to no—delay */
o

Figure 10.18. Polling a Terminal

1034 Terminal Polling

It s sometimes convenient to poll a device, that i, to read it if there is data present
but to continue regular processing otherwise. The program in Figure 10.18
illustrates this case: By opening the terminal with the “no delay” opti
subscquent reads will not sleep if there is no data present but will return
immediately (refer to algorithm terminal_read, Figure 10.15). Such a method also
works if a_process is monitoring many devices: it can open cach device “no delay”
and poll all of them, waiting for input from any of them. However, this method
wastes processing power.
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Finclude <signalh>
char *cp;
int callno;

main

(
char *sbrk0;
extern catcher0;

signal(SIGSEGY, catcher);
cp = sbrk(0);

printfCoriginal brk value %u\n”, cp):
for G

eprt =1

i

catcher(signo)
int signo;
{

callno+;
printfCcaught sig % %dth call at addr %u\n",signo, callno, cp);
sbrk(256);

signal (SIGSEGY, catcher);

original brk value 140924
caught sig 11 1th call at addr 141312
caught sig 11 2th call at addr 141312
caught sig 11 3th call at addr 143360
... Game address printed out to 10th call)
‘caught sig 11 10th call at addr 143360
caught sig 11 11th call at addr 145408
... (same address printed out to 18th call)
caught sig 11 18th call at addr 145408
caught sig 11 19th call at addr 145408

Figure 7.27. Use of Brk and Sample Output

stack, the machine incurs a memory fault, because the process is attempting to
access a location outside its address space. The kernel determines that the reason
for the memory fault was because of stack overflow by comparing the value of the
(faulted) stack pointer to the size of the stack region. The kernel allocates new
space for the stack region exactly as it allocates space for brk, above. When it
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Finclude  <signalh>

#include  <termioh>
struct termio savetty;
main®

{
extern sigeatchO;
struct termio newtty;
int nrd;
char bufl32];
signal (SIGINT, sigeatch);
if Gioctl(0, TCGETA, &savetty) == ~1)
(

printf(“ioct failed: not a ty\n");
exit0;

1

newtty = saveity:

newtty.c_Iflsg &= ICANON; /% turn off canonical mode */
newity.c Ifag &= ECHO;  /* turn off character echo */
newtty.c_cc[VMIN] = 5; /# minimum $ chars */
newtty.c ol VTIME] = 100;  /* 10 sec interval */

if (Goctl(0, TCSETAF, &newty) == —1)

(

printf(“cannot put tty into raw modeln”);
exit0;
]
for )
(
nrd = read(0, buf, sizeof (buf);
buflrd] = 0;
printf(“read %d chars "%s\n”, nrd, bun;

]
zvlcnch()

ioctl(0, TCSETAF, &savetty);
exitO;

Figure 10.17. Raw Mode — Reading 5-Character Bursts

TCGETA instructs the driver to retrieve the settings and save them in the structure
savetty in the user's address space. This command is commonly used to determine
if a file is a terminal or not, because it does not change anything in the system: 1f
it fails, processes assume the file is not a terminal. Here, the process does a second
ioctl call to put the terminal into raw mode: It turns off character echo and
arranges to satisfy terminal reads when at least 5 characters arc received from the
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The figure shows that the child process has access o a copy of the shel
command line after the fork. To redirect standard output to a file, as in

nroff —mm bigdocument > output

the child creats the output file specified on the command line; if the crear fails (for
creating a file in a directory with wrong permissions, for example), the child would
exit immediately. But if the crear succeeds, the child closes its previous standard
output file and dups the file descriptor of the new output file. The standard output
file descriptor now refers to the redirected output file. The child process closes the
file descriptor obtained from crear to conserve file descriptors for the execed
program. The shell redirects standard input and standard error files in a similar
way.

exit

@ wait

read

@ write

Figure 7.29. Relationship of Processes for Is ~1 | we

The code shows how the shell could handle a command i

e with a single pipe,

Is =1 we

After the parent process forks and creates a child process, the child creates a pipe.
The child process then forks; it and its child cach handle one component of the
command line. The grandchild process created by the sccond fork executes the first
command component (Is): It writes to the pipe, 50 it closes its standard output file
descriptor, dups the pipe write descriptor, and closes the original pipe write
descriptor since it is unnccessary. The parent (wc) of-the last child process (s) is
the child of the original shell process (sce Figure 7.29). This process (we) closes

s standard input file and dups the pipe read descriptor, causing it to become the
standard input file descriptor. It then closes the otiginal pipe read descriptor since
it no longer needs it, and execs the second command component of the original
command line. The two processes that execute the command line execute
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10.3.6  Indirect Terminal Driver

Processes frequently have a need to read or write data directly to the control
terminal, even though the standard input and output may have been redirccted to
other files. For example, a shell script can send urgent messages directly 1o the
terminal, although its standard output and standard error files may have been
redirected clsewhere. UNIX systems provide “indirect” terminal access via the
device file “/dev/uty”, which designates the control terminal for every process that
has one. Users logged onto separate terminals can access “/dev/ity”, but they
access different terminals.

There are two common implementations for the kernel to find the control
terminal from the file name “/dev/tty”. First, the kernel can define a special
device number for the indirect terminal file with a special entry in the character
device switch table. When invoking the indirect terminal, the driver for the
indirect terminal gets the major and minor number of the control terminal from the
u area and invokes the real terminal driver through the character device switch
table. The second implementation commonly used to find the control terminal from
the name “/dev/tty” tests if the major number is that of the indircct terminal
before calling the driver open routine. If so, it releases the inode for “/dev/uty”,
allocates the inode for the control terminal, resets the file table entry to point to the
control terminal inode, and calls the open routine of the terminal driver. The file
descriptor returned when opening “/dev/tty” refers directly to the control terminal
and its regular driver.

1037 Logging In

As described in Chapter 7, process 1, init, executes an infinite loop, reading the file
“/etc/inittab"” for instructions about what to do when entering system states such as
“single user” or “multi-user.” In multi-user state, a primary responsibility of init is
10 allow users to log into terminals (Figure 10.19). It spawns processes called getty
(for get terminal or get “tty”) and keeps track of which getty process opens which
terminal; cach getty process resets its process group using the setpgrp system call,
opens a particular terminal line, and usually sleeps in the open until the machine
senses a hardware connection for the terminal. When the open returns, getty execs
the login program, which requires users to identify themselves by login name and
password. IF the user logs in successfully, login finally execs the shell, and the user
starts working. This invocation of the shell is called the login shell. The shell
process has the same process ID as the original gerty process, and the login shell is
thercfore a process group leader. If a user does not log in successfully, login exits
after a suitable time limit, closing the opened terminal line, and init spawns another
getty for the line. Init pauses until it receives a death of child signal. On waking
up, it finds out if the zombie process had been a login shell and, if so, spawns
another getty process to pen the terminal in place of the one that died.
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if (fork() == 0)
(
/* first component of command line */
close(stdout):
dup(Fides1;
close(fdes(1]);
close(idesloD;
7+ stdout now goes to pipe */
/* child process does command */
excelp(command1, command], 0);
)
/* 2nd command component of command line
close(stdin);
dup(Gidesto;
close(fildes(0]
close fldes{ 1
/* standard input now comes from pipe */

)
excevelcommand2, command2, 0);
]
7% parent continues over here.
* waits for child to exit if required
.
if (amper == 0)
retid = wait (&status);

Figure 7.28. Main Loop of the Shell (continued)

The simplest command lines contain a program name and some parameters,
such as

who
grep —n include *.c
Is =1

‘The shell forks and creates a child process, which execs the program that the user
specified on the command line. The parent process, the shell that the user is using,
waits until the child process exits from the command and then loops back to read
the next command.

To run a process asynchronously (in the background), as in

nroff —mm bigdocument &

the shell sets an internal variable amper when it parses the ampersand character.
If it finds the variable set at the end of the loop, it does not execute wait but
immediately restarts the loop and reads the next command linc.
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The BSD system has a select system call that allows device poll
of the call is

select(nfds, rfds, wids, efds, timeout)

where nfds gives the number of file descriptors being selected, and r/ds, wfds ang
efds point to bit masks that “select” open file descriptors. That is, the bit / << fg
(1 shifted left by the value of the file descriptor) is set if a user wants to select that
file descriptor. Timeout indicates how long select should sleep, waiting for data 1
arrive, for cxample; if data arrives for any file descriptors and the timeout value has
not cxpired, select returns, indicating in the bit masks which file descriptors were
selected. For instance, if a user wished to sleep until receiving input on file
descriptors 0, 1 or 2, rfds would point to the bit mask 7; when select returns, the
bit mask would be overwritten with a mask indicating which file descriptors had
data ready. The bit mask wfds does a similar function for write file descriptors,
and the bit mask efds indicates when exceptional conditions exist for particular fle
descriptors, useful in networking.

The syntay

10.3.5  Establishment of a Control Terminal

The control terminal is the terminal on which a user logs into the system, and it
controls processes that the user initiates from the terminal. When a process opens
a terminal, the terminal driver opens the line discipline. If the process is a process
group leader as the result of a prior setpgrp system call and if the process does not
have an associated control terminal, the line discipline makes the opened terminal
the control terminal. It stores the major and minor device number of the terminal
device file in the u area, and it stores the process group number of the opening
process in the terminal driver data structure. The opening process is the control
process, typically the Iogin shell, as will be seen later.

The control terminal plays an important role in handling signals. When a user
presses the delete, break, rubout, or quit keys, the interrupt handler invokes the line
discipline, which sends the appropriate signal t0 all processes in the control process
group.  Similarly, if the user hangs up, the terminal interrupt handler receives &
hangup indication from the hardware, and the line discipline sends a hangup signal
to all processes in the process group. In this way, all processes initiated at @
particular terminal receive the hangup signal; the default reaction of most processes
is to exit on reccipt of the signal; this is how stray processes are killed when a user
suddenly shuts off a terminal. After sending the hangup signal, the terminal
interrupt handler disassociates the terminal from the process group so that
processes in the process group can- no longer receive signals originating at the
terminal.
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The shell and init use standard system calls to provide sophisticated functions
normally found in the kernel of other systems. The shell uses the system calls to
interpret user commands, redirecting standard input, standard output and standard
error, spawning processes, seiting up pipes between spawned processes,
synchronizing _execution with child processes, and recording the exit status of
commands.  Similarly, ini spawns various processes, particularly to control
terminal exceution. When such a process exits, init can respawn a new process for
the same function, if so specified in the file “/etc/inittab”.

7.11 EXERCISES
1. Run the program in Figure 7.33 at the terminel. Redircet its standard output to a file
and compare the results
main0
1
printfChello\n”);

if (fork() == 0)
printfCworld\a™);

Figure 7.3, Fork and the Standard 1/0 Package

2. Describe what happens in the program in Figure 7.34 and compare to the results of
Figure 7.4

3. Reconsider the program in Figure 7.5, where two processes exchange messages through
a pair of pipes. What happens if they try to exchange messages through one pipe?

4. In general, could there be any loss of information if a process receives scveral instances
of a signal before it has a chance to react? (Consider a process that counts the
number of interrupt signals it receives.) Should this problem be fixed?

5. Describe an implementation of the kill system call.

6. The program in Figure 7.35 catches “death of child" signals, and like many signal-
catcher functions, rescts the signal catcher. What happens in the program?

7. When a process receives certain signals and docs not handle them, the kernel dumps
an image of the process as it cxisted when it received the signal. The kernel creates 8
file called “core" in the current directory of the process and copics the u area, text,
data, and stack regions into the fle. A user can subsequently investigate the dumped
image of the process with standard debugging tools. Describe an algorithm the kernel
ould follow 1o create a core file. What should the algorithm do if a file “core”
already exists in the current dircctory? What should the kernel do if mult
processes dump “core” files in one dircctory?

8. Reconsider the program in Figure 7.12 where a process bombards another process with
signals that the second process catches. Discuss what would happen if the signal-
handling algorithm were changed in cither of the following two ways:
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getty processes to monitor the terminal lines configured on a system. When a user
successfully logs in, getty goes through a login procedure and execs a login shell,
described in Chapter 10. Meanwhile, init executes the wait system call, monitoring
the death of its child processes and the death of processes “orphancd” by exiting
parents.

Processes in the UNIX system are either user processes, daemon processes, or
Kernel processcs. Most processes on typical systems are user processes, associated
with users at a terminal. Daemon processes are not associated with any users but
do system-wide functions, such as administration and control of networks, exccution
of time-dependent activities, line printer spooling, and so on. [nit may spawn
daemon processes that exist throughout the lifetime of the system or, on occasion,
users may spawn them. They are like user processes in that they run at user mode
and make system calls to access system services.

Kernel processes exccute only in kernel mode. Process O spawns Kernel
processes, such as the page-reclaiming process vhand, and then becomes the
swapper process. Kernel processes are similar to daemon processes in that they
provide system-wide scrvices, but they have greater control over their exccution
priorities since their code is part of the kernel. They can access kernel algorithms
and data structures directly without the use of system calls, 5o they arc extremely
powerful. However, they are not as flexible as dacmon processes, because the
kernel must be recompiled to change them.

7.10 SUMMARY

This chapter has discussed the system calls that manipulate the process context and
control its execution. The fork system call creates a new process by duplicating all
the regions attached to the parent process. The tricky part of the fork
implementation is to initialize the saved register context of the child process, so that
it starts executing inside the fork system call and recognizes that it is the child
process. All processes terminate in a call to the exit system call, which detaches
the regions of a process and sends a “death of child” signal to its parent. A parent
process can synchronize cxecution with the termination of a child procss with the
wait system call. The exec system call allows a process 1o invoke other programs,
overlaying its address space with the contents of an exccutable file. The kernel
detaches the old process regions and allocates new regions, corresponding to the
exccutable file. Shared-text files and use of the sticky-bit mode improve memory
utilization and the startup time of execed programs. The system allows ordinary
users 10 exccute with the privileges of other users, possibly superuser, with seruid
programs and use of the setuid system call. The brk system call allows a process to
change the size of its data region. Processes control their reaction to signals with
the signal system call. When they catch a signal, the kernel changes the user stack
and the user saved register context 1o set up the call to the signal handler.
Processes can send signals with the kill system call, and they can control receipt of
signals designated for particular process groups through the sepgrp system call.
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There are several forms of interprocess communication, ranging from asynchronous
signaling of events to synchronous transmission of messages between processes.

Finally, the hardware control is responsible for handling interrupts and for
communicating with the machine. Devices such as disks or terminals may interrupt
the CPU while a process is executing. If 5o, the kernel may resume execution of
the interrupted process after scrvicing the interrupt: Interrupts are not serviced by
special processes but by special functions in the kernel, called in the context of the
currently running process.

2.2 INTRODUCTION TO SYSTEM CONCEPTS

‘This section gives an overview of some major kernel data structures and describes
the function of modules shown in Figure 2.1 in more detail.

2.2.1 An Overview of the File Subsystem

The internal representation of a file is given by an inode, which contains a
description of the disk layout of the file data and other information such as the file
owner, access permissions, and access times. The term inode is a contraction of the
term index node and is commonly used in literature on the UNIX system. Every
file has onc inode, but it may have several names, all of which map into the inode.
Each name is called a fink. When a process refers to a file by name, the kernel
parses the file name one component at a time, checks that the process has
permission to scarch the directories in the path, and eventually retrieves the inode
for the file.For example, if a process calls

open(*/fs2/mjb/rje/sourcefle”, 1);

the kernel retrieves the inode for “/fs2/mjb/rje/sourccfile”. When a process
creates a new file, the kernel assigns it an unused inode. Inodes are stored in the
file system, as will be scen shortly, but the kernel reads them into an in-core” inode
table when manipulating files.

‘The kernel contains two other data structures, the file table and the user file
descriptor table. The file table is a global kernel structure, but the user file
descriptor table is allocated per process. When a process opens or creats a file, the
kernel allocates an entry from cach table, corresponding to the file’s inode. Entrics
in the three structures — user file descriptor table, file table, and inode table —
maintain the state of the file and the user’s access to it. The file table keeps track
of the byte offset in the file where the user's next read or write will start, and the

1. The term core refers to primary memry of & machine, not 1o hardware technology.
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When the user types an “end of file” character (ASCII control-d), the line
discipline satisfies terminal reads of the input string up o, but not including, the
end of file character. It returns no data (return valuc 0) for the read system call
that encounters only the end of file on the clists; the calling process is responsible
for recognizing that it has read the end of file and that it should no longer read the
terminal. Referring to the code examples for the shell in Chapter 7, the shell loop
terminates when a user types control-d: The read call returns 0, and the shell
exits,

This section has considered the case of dumb terminal hardware, which
transmits data o the machine one character at a time, precisely as the user types
it. Intelligent terminals cook their input in the peripheral, frecing the CPU for
other work. The structure of their terminal drivers resembles that of dumb
terminal drivers, although the functions of the line discipline vary according to the
capabiliies of the peripherals.

1033 The Terminal Driver in Raw Mode

Users set terminal parameters such as erase and kill characters and retrieve the
values of current settings with the octl system call. Similarly, they control whether
the terminal echoes its input, set the terminal baud rate (the rate of bit transfers),
flush input and output character queues, or manually start up or stop character
output. The terminal driver data structure saves various control settings (sec
[SVID 85) page 281), and the line discipline receives the parameters of the ioct/
call and sets or gets the relevant fields in the terminal data structure. When a
process sets terminal parameters, it does so for all processes using the terminal.
The terminal settings are not automatically reset when the process that changed the
settings exits.

Processes can also put the terminal into raw mode, where the line discipline
transmits characters exactly as the user typed them: No input processing is done at
all. Still, the kernel must know when to satisfy user read call, since the carriage
return is treated as an ordinary input character. It satisfies read system calls after
a minimum number of characters are input at the terminal, or after waiting a fixed
time from the receipt of any characters from the terminal. In the latter case, the
Kernel times the entry of characters from the terminal by placing entries into the
callout table (Chapter 8). Both criteria (minimum number of characters and fixed
time) are set by an ioctl call. When the particular criterion is met, the line
discipline interrupt handler awakens all sleeping processes. The driver moves all
characters from the raw clist to the canonical clist and satisfies the process read
request, following the same algorithm as for the canonical case. Raw mode is
particularly important for screen oriented applications, such as the screen editor i,
which has many commands that do not terminate with a carriage return. For
example, the command dw deletes the word at the current cursor position.

Figure 10.17 shows a program that does an ioctl 10 save the current terminal
settings of file descriptor 0, the standard input file descriptor. The ioct/ command
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swap device, it is faster to load the text from a swap device than from the fle
system, as will be seen in Chapter 9. )
‘The kernel removes the entries for sticky-bit text regions in the following cases

1. 1f a process opens the file for writing, the write operations will change the
contents of the file, invalidating the contents of the region.

2. If a process changes the permission modes of the file (chmod) such that the
sticky-bit is no longer set, the file should not remain in the region table.

3. If a process unlinks the file, no process will be able to exec it any more
because the file has no entry in the file system; hence no new processes wil
access the files region table entry. Because there is no need for the text
region, the kernel can remove it to free some resources.

4. 1f a process unmounts the file system, the file is no longer accessible and no
processes can exec it, 50 the logic of the previous case applies.

5. If the kernel runs out of space on the swap device, it attempts to free
available space by frecing sticky-bit regions that are currently unused
Although other processes may need the text region soon, the kernel has more
immediate needs.

The sticky text region must be removed in the first two cases because it no longer
reflects the current state of the file. The kernel removes the sticky entrics in the
Iast three cases because it is pragmatic to do so. Of course, the kernel frees the
region only if no processes currently use it (its reference count is 0); otherwise, the
system calls open, unlink, and umount (cases 1, 3 and 4) fail.

‘The scenario for exec is slightly more complicated if a process execs itself. If a
user types

sh script

the shell forks and the child process execs the shell and exccutes the commands in
the file “Seript”. If a process execs itself and allows sharing of its text region, the
kernel must avoid deadlocks over the inode and region locks. That is, the kernel
cannot lock the “old” text region, hold the lock, and then attempt to lock the
“new” text region, because the old and new regions arc one region. Instead, the
kernel simply leaves the old text region attached to the process, since it will be
reused anyway.

Processes usually invoke exec after fork; the child process thus copies the parent
address space during the fork, discards it during the exec, and executes a different
program image than the parent process. Would it not be more natural to combine
the two system calls into one to invoke a program and run it as a new process?
Ritchic surmises that fork and exec exist as separate system calls because, when
designing the UNIX system, he and Thompson were able to add the fork system
call without having to change much code in the existing kernel (see page 1584 of
[Ritchic 84al). But separation of the fork and exec system calls is functionally
important too, because the processes can manipulate their standard input and
standard output file descriptors independently to set up pipes more clegantly than if
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output data from user space to the output clist, and calls driver procedures to
transmit the data to the terminal, as described earlier.

If multiple processes write to a terminal, they follow the given procedure
independently. The output could be garbled; that is, data written by the processes
may be interleaved on the terminal. This could happen because a process may
write the terminal using several write system calls. The kernel could switch context
while the process is in user mode between successive write system calls, and newly
scheduled processes could write the terminal while the original process slceps.
Output data could also be garbled at a terminal because a writing process may
Sleep in the middle of a wrie system call while waiting for previous output data to
drain from the system. The kernel could schedule other processes that write the
terminal before the original process is rescheduled. Because of this case, the kernel
does not guarantee that the contents of the data buffer to be output by a write
system call appear contiguously on the terminal.

“Char forml] = “this is a sample output string from child s
main0
{

char outputl128);

inti

for (=0 i<
{

switch (fork0)
(

case=1:  /* error === hit max procs */
exit0;

default:  /* parent process */
break;

case 0: /% child process */

/* format output string in variable output */
sprintf(output, “%s%d\ns%d\a”, form, i, form, );
for )

write(1, output, sizeof (output));

Figure 10.14. Flooding Standard Output with Data

Consider the program in Figure 10.14. The parent process creates up to 18
children; each child process formats a string (via the library function sprintf) in the
array output, which includes a message and the value of i at the time of the fork
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O_RDONLY  open for reading only.

O_WRONLY  open for writing only

ORDWR  open for reading and writing.

O'NDELAY  For special devices, open returns without waiting for carrier.
if set. For named pipes, open will return immediately (with an
error if O WRONLY set), instead of waiting for another process 1o
open the named pipe.

O_APPEND  causes all writes 10 append data 1o the end of the il

OLCREAT  create the il if it does not exist. Mode specifcs permissions
as in creat system call. The flag has no meaning if the file
already exists.

OTRUNC  Truncate length of file t0 0.

O EXCL Fail the open call if this bit and O_CREAT are set and file exists
This is a so-called exclusive open.

Open returns a file descriptor for use in other system calls.

pause
pause()

Pause suspends the execution of the calling process until it receives a signal.

pipe
pipe(fildes)
int fildes(2);

Pipe returns a read and write file descriptor (ildes/0] and fildes(1], respectively).

Data s transmitted through a pipe in first-in-first-out order; data cannot be read
twice.

plock
#include <sys/lock h>
plock(op)
int op:

Plock locks and unlocks process regions in memory according to the value of op:

PROCLOCK lock text and data regions in memory.
TXTLOCK  lock text region in memory.
DATLOCK  lock data region in memory.
UNLOCK  remove locks for all regions.
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When the process detaches the text region during exit or exec, the kernel
decrements the inode reference count an extra time in freereg, unless the inode has
the sticky-bit mode set, as will be seen

Tabl
Inode Table possibe scenario Region Table

if /bin/date reference
count could be 0

Text region
“for /bin/who

T-core node

for /bin/date’ H
Text region
pointer

i eore inode | _Tor [in/date

Figure 7.24. Relationship of Inode Table and Region Table for Shared Text

For example, reconsider the exec of “/bin/date” in Figure 7.21, and assume
that the file has separate text and data sections. The first time a process executes
“/bin/date”, the kernel allocates a region table entry for the text (Figure 7.24) and
leaves the inode reference count at | (after the exec completes). When
“/bin/date” exits, the kernel invokes detachreg and freereg, decrementing the
inode reference count to 0. However, if the kernel had not incremented the inode
reference count for “/bin/date” the first time it was execed, its reference count
would be 0 and the inode would be on the free list while the process was running.
Suppose another process execs the file “/bin/who", and the kernel allocates the in-
core inode previously used for “/bin/date” to “/bin/who”. The kernel would search
the region table for the inode for “/bin/who” but find the inode for “/bin/date”
instead. Thinking that the region contains the text for “/bin/who" it would
execute the wrong program. Consequently, the inode reference count for running,
shared text files is at least 1, so that the kernel cannot reallocate the inode.

The capability to share text regions allows the kernel to decrease the startup
time of an execed program by using the sticky-bir. System administrators can set
the sticky-bit file mode with the chmod system call (and command) for frequently
used executable files. When a process exccutes a file that has its sticky-bit set, the
kernel does not release the memory allocated for text when it later detaches the
region during exit or exec, even if the region reference count drops to 0. The
kernel leaves the text region intact with inode reference count 1, even though it is
no longer attached o any processes. When another process execs the file, it finds
the region table entry for the file text. The process startup time is small, because it
does not have t0 read the text from the file system: If the text i still in memory,
the kernel does not do any 1/0 for the text; if the kernel has swapped the text to a
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characters in the cblock (Figure 10.11d); then, it adjusts the clist pointer to poin;
to the next cblock, which becomes the first one on the linked list. Similarly, Figure
10.12 depicts how the kernel puts characters onto a clist; assuming a cblock holds
up to § characters, the kernel tinks a new cblock onto the end of the linked lis
(Figure 10.12d).

1032 The Terminal Driver in Canonical Mode

The data structures for terminal drivers have three clists associated with them:
clist to store data for output to the terminal, a clist to store “raw” input data
provided by the terminal interrupt handler as the user typed it in, and a clist to
store “cooked" input data, after the line discipline converts special characters in the
raw clist, such as the erase and kil characters.

aigorithm terminal write
(
while (more data o be copied from user space)
(
if Gty fooded with output data)
(
start write operation to hardware with data
on output clst;
sleep (event: ty can accept more data);
continue; /% back 1o while loop */
)
copy cblock size of data from user space (o output clst
line discipline converts tab characters, etc;

)

start write operation to hardware with data on output clist;

Figure 10.13. Algorithm for Writing Data to a Terminal

When a process writes a terminal (Figure 10.13), the terminal driver invokes
the line discipline. The line discipline loops, reading output characters from user
address space and placing them onto the output clist, until it exhausts the data.
The line discipline processes output characters, expanding tab characters to a series
of space characters, for example. If the number of characters on the output clist
becomes greater than a high-water mark, the line discipline calls driver procedures
10 transmit the data on the output clist to the terminal and puts the writing process
10 slecp. When the amount of data on the output clist drops below a low-water
mark, the interrupt handler awakens all processes asleep on the event the terminal
can accept more data. The line discipline finishes its loop, having copied all the
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msgrev(id, msgp, size, type, flag)
int id, size, type, lag;
struct msgbuf *msgmp;

Msgsnd sends a message of size bytes in the buffer msgp 1o the message queue id.
Msgbuf is defined as
struct msgbuf

long mty,
char mtext(]

k
If the IPC_NOWAIT bit is off in flag, msgsnd slecps if the number of bytes on the
message queue exceeds the maximum, or if the number of messages system-wide
exceeds a maximum value. If IPC_NOWAIT is set, msgsnd returns immediately in
these cases.

Msgrev reccives messages from the queue identified by id. If type is 0, the first
message on the queue is received; if positive, the first message of that type is
received; if negative, the first message of the lowest type less than or equal to type
is received. Size indicates the maximum size of message text the user wants to
receive. If MSG_NOERROR is set in flag, the kernel truncates the received
message if its size is larger than size. Otherwisc it returns an error. If
IPC_NOWAIT is not set in flag, msgrv sleeps until a message that satisfies type is
sent. If IPC_NOWAIT is set, it returns immediately. Msgrev returns the number
of bytes in the message text.

nice

nice(increment)
int increment;

Nice adds increment 1o the process nice value. A higher nice value gives the
process lower scheduling prioriti

open
#include <fentlh>
open(filename, flag, mode)

char *filename;
int flag, mode;

Open opens the specified fle according 10 the value of flag. The value of flag is a
combination of the following bits (exactly one of the first three bits must be used).
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invocations.

copy copy.c newcopy.c
copy copy newcopy

both work. The old file can also be a directory. For instance,
copy . dircontents

copies the contents of the current directory, denoted by the name “.", to a regular
file, “dircontents"; the data in the new file is identical, byt for byte, to the contents
of the directory, but the file is a regular file. (The system call mknod creates a
new directory.) Finally, either file can be a device special file. For example,

copy /dev/tty terminalread

reads the characters typed at the terminal (the special file idevity is the user's
terminal) and copies them to the file terminalread, terminating only when the user
types the character control-d. Similarly,

copy /dev/tty /dev/tty
reads characters typed at the terminal and copies them back.

132 Processing Emironment

A program is an executable file, and a process is an instance of the program in
exccution. Many processes can execute simultancously on UNIX systems (th
feature s sometimes called multiprogramming or multitasking) with no logical limit
to their number, and many instances of a program (such as copy) can exist
simultancously in the system. Various system calls allow processes (o create new
processes, terminate processes, synchronize stages of process execution, and control
reaction to various events. Subject to their use of system calls, processes execute
independently of each other.

For example, a process exccuting the program in Figure 1.4 exccutes the fork
system call to create a new process. The new process, called the child process, gets
2 0 return value from fork and invokes execl to execute the program copy (the
program in Figure 1.3). The execl call overlays the address space of the child
process with the file “copy”, assumed t0 be in the current directory, and runs the
program with the user-supplied parameters. If the exec/ call succeeds, it never
returns because the process executes in a new address space, as will be seen in
Chapter 7. Meanwhile, the process that had invoked fork (the parent) receives a
non-0 return from the call, calls wait, suspending its execution until copy finishes,
prints the message “copy done,” and exis (every program exirs at the end of its
‘main function, as arranged by standard C program librarics that are linked during
the compilation process). For example, if the name of the executable program is
run, and a user invokes the program by
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algorithm terminal read

if (no data on canonical clist)
{
‘while (no data on raw clist)
(
if Gty opencd with no delay option)
return;
if (tty in raw mode based on timer and timer not active)
arrange for timer wakeup (callout table);
sleep (cvent: data arrives from terminaD;

/* there is data on raw clist */
if Gty in raw mode)
opy all data from raw clis to canonical clist;
clse  /*tyis in canonical mode */
{
while (characters on raw clist)
(
‘copy one character at a time from raw clist
0 canonical clist:
do erase, kill processing;
if (char is carriage return or end—of~fle)
break; 7 out of while loop */

)

while (characters on canonical list and read count not satisfied)
‘copy from cblocks on canonical list to user address space;

Figure 10.15. Algorithm for Reading a Terminal

there should be only one input clist. However, this would require the interrupt
handler to process erase and kill characters, making it more complex and time
consuming, and blocking out other interrupts at a critical time. Use of two input
clists means that the interrupt handler can simply dump characters onto the raw
clist and wake up reading processes, which properly incur the cxpense of processing.
input data. Nevertheless, the interrupt handler puts input characters immediately
on the output clist, 5o that the user experiences minimal delay in secing typed
characters on the terminal.

Figure 10.16 shows a program where a process creates many child processes
that read their standard input file, contending for terminal data. Terminal input is
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semetl(id, num, cmd, arg)
int id, num, emd:
union semun
int val;
struct semid_ds *buf;
ushort *array

) arg;
Semetl does the specified cmd on the semaphore queuc indicated by id.

GETVAL  return the value of the semaphore whose index is num
SETVAL  set the value of the semaphore whose index is num 10 arg val.
GETPID  return value of last PID that did a semop on the semaphore
whose index is num.
GETNCNT  return number of processes waiting for semaphore value to
become positive.
GETZCNT  return mumber of processes waiting for semaphore value to become 0.
GETALL  return values of all scmaphores into array argarray.
SETALL  set values of all scmaphores according to array argarray.
IPC_STAT  read structure of semaphore header for id into arg,bu.
IPCCSET  sct sem_perm.uid, sem_per.gid, and sem_perm.mode (low-order 9 bits)
according to arg buf.
IPC.RMID  remove the semaphores associated with id.

Num gives the number of semaphores in the set to be processed. The structure
semid_ds is defined by:

aruct semid_ds (
struc ipe_perm  sem_perm; /* permission siruct

int * pad: 7# used by system */
ushort sem_nsems; /* number of semaphores in set */
time_t sem_otime; /* last semop operation time */
time_t sem_ctime; /* last change time */

i

The structure ipc_perm is the same as defined in mgetl.

semget
#include <sys/types.h>

#include <sys/ipe.h>
#include <sys/sem.h>

semget(key, nsems, flag)
key_t key;
int nsems, flag;
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the two system calls were combined. The example of the shell in Section 7.
highlights this feature.

7.6 THE USER ID OF A PROCESS

The kernel associates two user IDs with a process, independent of the process IL
the real user ID and the effective user ID or setuid (set user ID). The real user I
identifies the user who is responsible for the running process. The effective user I
is used to assign ownership of newly created files, to check file access permis

and to check permission to send signals to processes via the kill system call. Tt
kernel allows a process to change its effective user 1D when it execs a setu
program or when it invokes the setuid system call explicitly.

A sewuid program is an exccutable file that has the seruid bit set in
permission mode field. When a process execs a setuid program, the kernel sets t
effective user ID fields in the process table and u area to the owner ID of the fi
To distinguish the two fields, let us call the field in the process table the saved us
ID. An example illustrates the difference between the two fields.

‘The syntax for the setuid system call is

setuid (uid)

where uid is the new user ID, and its result depends on the current value of tt
effective user ID. If the effective user ID of the calling process is superuser, th
kernel resets the real and effective user ID fields in the process table and u area t
uid. If the effective user ID of the calling process is not superuser, the kern
resets the effective user ID in the u area t0 uid if uid has the value of the real us
ID or if it has the value of the saved user ID. Otherwise, the system call return
an error. Generally, a process inherits its real and effective user IDs from i
parent during the fork system call and maintains their values across exec syster
calls.

The program in Figure 7.25 demonstrates the setuid system call. Suppose th
exccutable file produced by compiling the program has owner “maury” (user II
8319), its seruid bit is on, and all users have permission to execute it. Furthe
assume that users “mjb” (user ID 5088) and “maury” own the files of thei
respective names, and that both files have read-only permission for their owner
User “mjb” sees the following output when executing the program:

uid 5088 euid 8319

fdmjb —1 fdmaury 3

after setuid (5088): uid 5088 cuid 5088
fdmjb 4 fdmaury ~1

‘The system calls getuid and geteuid return the real and cffective user IDs of th
process, 5088 and 8319 respectively for user “mjb”. Therefore, the process canno
open file “mjb”, because its effective user ID (8319) does not have read permissio
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and then goes into a loop, wriring the string 1o its standard output file during cacy
iteration. If the standard output is the terminal, the terminal driver regulates the
flow of data to the terminal. The output string is more than 64 characters long, tog
large to fit into a cblock (64 bytes long) in System V implementations. Hence, the
terminal driver needs more than one cblock for each write call, and output coulq
become garbled. For example, the following lines were part of the output produced
when running the program on an AT&T 3B20 computer:

this is a sample output string from child 1
this is a sample outthis is a sample output string from child 0

Reading data from a terminal in canonical mode is a more complex operation
The read system call specifies the number of bytes the process wants to read, but
the line discipline satisfies the read on receipt of a carriage return even though the
character count is not satisfied. This is practical, since it is impossible for a process
to predict how many characters the user will enter at the keyboard, and it does ot
make sense to wait for the user to type a large number of characters. For example,
users type command lines to the shell and expect the shell to respond to the
command on receipt of a carriage return character. It makes no difference whether
the commands are simple, such as “date” or “who,” or whether they are more
complicated command sequences such as

pic fle* | tbl | eqn | troff —mm ~Taps | apsend

‘The terminal driver and line discipline know nothing about shell syntax, and rightly
50, because other programs that read terminals (such as editors) have different
command syntax. Hence, the line discipline satisfies read calls on receipt of a
carriage return.

Figure 10.15 shows the algorithm for reading a terminal. Assume the terminal
is in canonical mode; Section 10.3.3 will cover the case of raw mode. If no data is
currently on cither input clist, the reading process sleeps until the arrival of a line
of data. When data is cntered, the terminal interrupt handler invokes the line
discipline “interrupt handler,” which places the data on the raw clist for input to
reading processes and on the output clist for echoing back to the terminal. If the
input string contains a carriage return, the interrupt handler awakens all sleeping
reader processes. When a reading process runs, the driver removes characters from
the raw clist, does erase and kill character processing, and places the characters on
the canonical clist. It then copies characters to user address space until the
carriage return character or until it satisfies the count in the read system call,
‘whichever number is smaller. However, a process may find that the data for which
it woke up no longer exists: Other processes may read the terminal and remove the
data from the raw clist before the first process is rescheduled. This is similar to
what happens when multiple processes read data from a pipe.

Character processing in the input and output direction is asymmetric, evidenced
by the two input clists and the one output clist. The line discipline outputs data
from user space, processes it, and places it on the output clist. To be symmetric,
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profil

profil(buf, size, offset, scale)

char *buf;

int size, offset, scale;

Profil requests that the kernel give an execution profile of the process. Buf is ap
array in the process that accumulates frequency counts of execution in different
addresses of the process.  Size is the size of the buf array, offse is the starting
‘address in the process that should be profiled, and scale is a scaling factor.

ptrace

ptrace(cmd, pid, addr, data)
int emd, pid, addr, data;

Prrace allows a process (o trace the execution of another process, pid, according to
the value of cmd.

0 cnable child for tracing (called by child).
12 return word at location addr in traced process pid.
3 return word from offset addr in traced process u area.
as value of data into location addr in traced process.
6 value of data into offset addr in u area.
7 cause traced process to resume execution.
8 causc traced process to exit.
9 machine dependent — set bit in PSW for single-stepping exccution.
read

read(fildes, buf, size)

int fildes,

char *buf;

int size;

Read reads up o size bytes from the file fildes into the user buffer buf. Read
returns the number of bytes it read. For special devices and pipes, read returns
immediately if O_VDELAY was set in open and no data is available for return.

semetl

#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/sem.h>

o i
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old program but exccutes the program “date™ When the “date” program
completes, the parent process receives its exit status from the wait call.

‘Until now, we have assumed that process text and data occupy separate sections
of an exccutable program and, hence, separate regions of a running process. There
are two advantages for keeping text and data separate: protection and sharing. If
text and data were in the same region, the system could not prevent a process from
overwriting its instructions, because it would not know which addresses contain
instructions and which contain data. But if text and data are in separate regions,
the kernel can set up hardware protection mechanisms to prevent processes from
overwriting their text space. If a process mistakenly attempts to overwrite its text
space, it incurs a protection fault that typically results in termination of the
process.

Finclude <signalh>
main0
(

int i, *ip:

extern 10, sigcatch0;

ip = Gint *)f; /% assign ip to addres of function f */
for (i=0; i<20; i+4)
signalG, sigcatch);

tip=1; /% attempt to overwrite address of f */
printf(Cafter assign to ip\n’);
10;

)

0

(

)

sigeatch(n)
int n;

(
priniCeaught sig %\, n);
exit(1);

Figure 7.22. Example of Program Overw

ing its Text

For example, the program in Figure 7.22 assigns the pointer ip o the address of
the function f and then arranges to catch all signals. If the program is compiled so
that text and data are in separate regions, the procss executing the program incurs
@ protection fault when it atiempts to write the contents of ip, because it is writing
its write-protected text region. The kernel sends a SIGBUS signal to the process on
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Next Start End Char Array
Pir_Offset Offset 0123456789 14

7 | 14 |[elalr|olalele|l]| [elafn] |I

Figure 10.10. A Cblock

1031 Clists
; Line disciplines manipulate data on clists. A clist, or character list, is a variable-
length linked st of cblocks with a count of the number of characters on the list.
A cblock contains a pointer 10 the next cblock on the linked list, a small character
array to contain data, and a set of offsets indicating the position of the valid data in
the cblock (Figure 10.10). The start offset indicates the first location of valid data
in the array, and the end offset indicates the first location of nonvalid data.
‘The kernel maintains a linked list of free cblocks and has six operations on clists
and cblocks.

1. It has an operation to assign a cblock from the free lst to a driver.

2. It also has an operation o return a cblock to the free list.

3. The kernel can retrieve the first character from a clist: It removes the first
character from the first cblock on the clist and adjusts the clist character
count and the indices into the cblock so that subsequent operations will not
retrieve the same character. If a retrieval operation consumes the last
character of a cblock, the kernel places the empty cblock on the free list and
adjusts the clist pointers. If  clist contains no characters when a retrieval
operation is done, the kernel returns the null characer.

4. The kernel can place a character onto the end of a clist by finding the last
cblock on the clist, putting the character onto it, and adjusting the offset
values. If the cblock is full, the kernel allocates a new cblock, links it onto
the end of the clist, and places the character into the new cblock.

5. The kernel can remove a group of characters from the beginning of a clist one
cblock at a time, the operation being equivalent to removing all the characters
in the cblock one at a time.

6. The kernel can place a cblock of characters onto the end of a clist.

Clists provide a simple buffer mechanism, useful for the small volume of data
transmission typical of slow devices such as terminals. They allow manipulation of
data one character at a time or in groups of cblocks. For example, Figure 10.11
depicts the removal of characters from a the kernel removes one character at
a time from the first cblock on the clist (Figure 10.11a—c) until there are no more
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ioetl
ioctl (fldes, cmd, arg)
int fildes, cmd;

Toctl does device-specific operations on the open device whose file descriptor is
fildes. Cmd specifies the command to be done on the device, and arg is a
parameter whose type depends on the command.

kil

kill(pid, sig)
int pid, sig;
Kill sends the signal sig t0 the processes identified by pid.

pid positive  send signal to process whose PID is pid.

pid0 send signal to processes whose process group ID is PID of sender.

pid =1 if effective UID of sender is super user, send signel t0 all processes
otherwise, send signal to all processes whose real UID equals
effctive UID of sender.

Pid <=1 send signal to processes whose process group ID is pid.

The effective UID of the sender must be superuser, or the sender's real or effective
UID must equal the real or effective UID of the receiving processes.

link
link (flenamel, filename2)
char *filenamel, *filename2;

Link gives another name, filename2, to the file filenamel. The file becomes
accessible through either name.

Iseek
Iseck (ildes, offset, origin)
int fildes, origin;
long offset;

Lseek changes the position of the read-write pointer for the file descriptor fildes
and returns the new value. The value of the pointer depends on origin:

0 set the pointer to offset bytes from the beginning of the fle.
1 increment the current value of the pointer by offset.
2 set the pointer to the size of the file plus offset bytes.
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The support of raw mode implies the use of an asynchronous terminal, becau
processes can read characters as they are typed instead of waiting until a user hiy,
e return or “enter” key.

Ritchie notes that the original terminal line disciplines used during system
development in the carly 19705 were in the shell and editor programs, not in the
kernel (see page 1580 of [Ritchie 841). However, because their function is needeq
by many programs, their proper place is in the kernel. Although the line discipline
performs a function that places it logically between the terminal driver and the res
of the kernel, the kernel does not invoke the line discipline directly but only through
the terminal driver. Figure 109 shows the logical flow of data through the
terminal driver and line discipline and the corresponding flow of control through the
terminal driver. Users can specify what line discipline should be used via an ioci
system call, but it is difficult to implement a scheme such that one device uses
several line disciplines simultaneously, where each line discipline module
successively calls the next module to process the data in turn.

Data Flow Control Flow

Process read/write Process read/write

Voo Voot
Line discipline| - i

v

Terminal driver Line discipline

v

Driver input/output|

vt

Device input/output

output -

Figure 10.9. Call Sequence and Data Flow through Line Discipline
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O_APPEND append written data to end of file)
F.GETFL  get file status flags

struct flock

short _type;  /*F_RDLCK for read lock, F_WRLCK for write lock,
F_UNLCK for unlock operations */
* lock offet i from beginning of fle (0), current position of e
pointer (1), or end of fl (2) */

long I_start; /" byte offet, interpreted according (o 1_whence ¥/

fong 1 len; /* number ofbytes o lock. 0, lock from I_star o end of e

fong 17pid; /*ID of proces that locked file %/

long 1 sysid; /* sys 1D of process that locked file */

short 1_whence;

F.GETLK  get firstlock that would prevent application of the lock specified by arg
and overwrite arg. If no such lock exists, change 1_type in arg to
F_UNLCK

FSETLK  lock or unlock the fil as specified by arg. Return -1 if unable to lock.

FSETLKW lock or unlock data in  file as specified by arg. Sleep if unable to lock.

Several read locks can overlap in a fle. No locks can overlap a write lock

fork
fork()

Fork creates a new process. The child process is a logical copy of the parent
process, except that the parent’s return value from the fork is the process ID of the
child, and the child's return value i 0,

getpid
getpid)

Getpid returns the process ID of the calling process. Other calls that use this entry
point are getpgrp, which returns the process group of the calling process, and
getppid, which returns the parent process ID of the calling process.

getuid
getuid()

Getuid returns the real user 1D of the calling process. Other calls that use this
system call entry point are geteuid, which returns the effective user 1D, getgid,
which returns the group ID, and getegid, which returns the effective group 1D of
the calling process.
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algorithm zalloc 7* allocate and initialize text region */
input:  inode of exccutable fle

if (exccutable fle does not have separate text region)
return;

if (ext region associated with text of inode)

{

7* text region already exists..attach 1o it */
lock region;
while (contents of region not ready yet)

/% manipulation of reference count prevents total
* removal of the region

o ‘
increment region reference count;
unlock region;
sleep (event contents of region ready);
lock region;
decrement region reference count; ‘
)}
attach region to process (algorithm attachreg);
unlock region;
return;

)
/* nosuch text region exists--create one */
allocate text region (algorithm allocreg); /* region is locked */
if (inode mode has sticky bt set)
turn on region sticky fiag;
attach region 0 virtual address indicated by inode fl header
Glgorithm attachreg);
if (il speially formaticd for paging system)
/* Chapter 9 discusses this case */
clse /% not formatied for paging system */
read file text into region (algorithm loadreg);
change region protection in per process region table (o read only;
unlock region;

Figure 7.23. Algorithm for Allocation of Text Regions

10 the region. If the reference count were 10 drop to 0, the kernel could reallocate
the in-core inode to another file, compromising the meaning of the inode pointer in
the region table: If a user were to exec the new file, the kernel would find the text
region of the old file by mistake. The kernel avoids this problem by incrementing
the inode reference count in allocreg ', preventing reassignment of the in-core inode.
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struct msqid_ds (
struct ipe_perm  msg_perm;  /* permission struct */

short padil7l; /% used by system */

ushort msg_qnum; /* mumber of messages on q */
ushort msg_gbytes: /% max number of bytes on g */
ushort msg_lspid: /* pid of last msgsnd operation */
ushort msglrpid: /* pid of last msgrev operation */
time_t msg_stime;  /* last msgsnd time */

time t msg_rtime; /% last msgrev time */

time_t msg_ctime; /* last change time */

The commands and their meaning are as follows:

IPC_STAT  Read the message queue header assocated with id nto buf.
IPCSET  Set the valucs of msg_perm.uid, mg_permgid, msg_perm.made (9

low-order bits), and msg_gbytes from the corresponding values in buf.
IPCRMID  Remove the message queue for id.

msgget
#include <sys/typesh>

#include <sys/ipe.h>
#include <sys/msgh>

msgget (key, flag)
key_tkey;
int flag;

Msgger returns an identifier to a message queue whose name is key. Key can
specify that the returned queue identifier should refer to a private queue
(IPC_PRIVATE), in which case a new message queu is created. Flag specifies if
the queue should be created (IPC_CREAT), and if creation of the queue should be
exclusive (IPC_EXCL). In the latter case, msgge fails if the queu already exists.

‘msgsnd and msgrev

#include <sys/types.h>
#include <sys/ipe.h>
include <sys/msg.h>

msgsnd(id, msgp, size, flag)
int id, size, flag
struct msgbuf *msgp;
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an AT&T 3B20 computer, although other implementations may send other signals.
The process catches the signal and exifs without executing the print statement in
main. However, if the program were compiled so that the program text and data
were part of one region (the data region), the kernel would not realize that a
process was overwriting the address of the function f. The address of f contains the
value 11 The process cxccutes the print statement in main but executes an illegal
instruction when it calls f. The kernel sends it a SIGILL signal, and the process
exits.

Having instructions and data in separate regions makes it easier to protect
against addressing errors. Early versions of the UNIX system allowed text and
data 10 be in the same region, however, because of process size limitations imposed
by PDP machines: Programs were smaller and required fewer “segmentation”
registers if text and data occupied the same region. Current versions of the system
do not have such stringent size limitations on processes, and future compilers will
not support the option to load text and data in one region.

The second advantage of having separate regions for text and data is to allow
Sharing of regions. If a process cannot write its text region, its text does not change
from the time the kernel loads it from the executable file. If several processes
execute a file they can, therefore, share one text region, saving memory. Thus,
when the kernel allocates a text region for a process in exec, it checks if the
executable file allows s text to be shared, indicated by its magic number. If so, it
follows algorithm xalloc to find an existing region for the file text or to assign a
new one (see Figure 7.23).

In xalloc, the kernel scarches the active region list for the file's text region,
identifying it as the one whose inode pointer matches the inode of the executable
file. If no such region exists, the kernel allocates a new region (algorithm
allocreg), attaches it to the process (algorithm attachreg), loads it into memory
(algorithm loadreg), and changes its protection to read-only. The latter step
causes a memory protection fault if & process attempts to write the text region. If,
in searching the active region list, the kernel locates a region that contains the file
text, it makes sure that the region is loaded into memory (it sleeps otherwise) and
attaches it to the process. The kernel unlocks the region at the conclusion of xalloc
and decrements the region count later, when it executes detachreg during exit or
exec. Traditional implementations of the system contain a fext table that the
kernel manipulates in the way just described for text regions. The set of text
regions can thus be viewed as a modern version of the old text table.

Recall that when allocating a region for the first time in allocreg (Section
6.5.2), the kernel increments the reference count of the inode associated with the
region, after it had incremented the reference count in namei (invoking iget) at the
beginning of exec. Because the kernel decrements the reference count once in iput
at the end of exec, the inode reference count of a (shared text) file being cxecuted
is at least 1: Therefore, if a process unlinks the file, its contents remain intact.
The kernel no longer needs the file after loading it into memory, but it needs the
pointer to the in-core inode in the region table to identify the file that corresponds
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Figure 10.11. Removing Characters from a Clist
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mknod
mknod (flename, modes, dev)
char *filename;

int mode, dev;
Mbknod creates a special file, directory, or FIFO according to the type of modes:

010000 FIFO (named pipe)
020000  character special device file
040000 directory

060000 block special device file

The 12 low order bits of modes have the same meaning as described above for
chmod. 1f the file is block special or character special, dev gives the major and
minor numbers of the device.

‘mount(specialfle, dir, rwilag)

char *specialfile, *dir;

int rwflag;
Mount mounts the file system specified by specialfile onto the directory dir. If the
low-order bit of rflag is 1, the file system is mounted read-only.

msgetl

#include <sys/typesh>
#include <sys/ipe.h>
#include <sys/msg.h>

msgetl(id, emd, buf)

int id, emd;

struct msqid_ds *buf;
Mgetl allows processes 10 set or query the status of the message queue id, or to
remove the queuc, according 1o the value of emd. The structure msgid_ds is
defined as follows: N

struct ipe_perm

ushort /% current user id */
ushort 7% current group id */
ushort /9 creator user id */
ushort 1% creator group id */
ushort /% access modes */
short 7% used by system */

long, 7% used by system */
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the result of the most recent setuid system call or the exec of a setuid program; i
s solely responsible for detrmining file access permissions. The saved user ID i
the process table allows a process to reset its effective user ID to it by executing th
setuid system call, thus recalling its original, effective user ID.

The login program cxccuted by users when logging into the system is a typica
program that calls the setuid system call. Login is setuid to root (superuser) an
therefore runs with effective user ID root. It queries the user for variou
information such as name and password and, when satisfied, invokes the setui
system call 10 set its real and effective user ID to that of the user trying to log i
(found in fields in the file “/ctc/passwd™). Login finally execs the shell, which run
with its real and cffective user IDs set for the appropriate user.

The mkdir command is a typical setuid program. Recall from Section 5.8 tha
only a process with effective user ID superuser can create a directory. To allo
ordinary users the capability to create directorics, the mkdir command is a setui
program owned by root (superuser permission). When exccuting mikdir, th
process runs with superuser access rights, creates the directory for the user vi
mknod, and then changes the owner and access permissions of the directory to tha
of the real user.

7.7 CHANGING THE SIZE OF A PROCESS

A process may increase or decrease the size of its data region by using the br
system call. The syntax for the brk system call is

brk(endds);

where endds becomes the value of the highest virtual address of the data region o
the process (called its break value). Alternatively, a user can call

oldendds = sbrk(increment);

where increment changes the current break value by the specified number of byte
and oldendds is the break value before the call. Sbrk is a C library routine tha
calls brk. If the data space of the process increases as a result of the call, th
newly allocated data space is virtually contiguous 10 the old data space; that is, th
virtual address space of the process extends continuously into the newly allocate
data space. The kernel checks that the new process size is less than the systen
maximum and that the new data region does not overlap previously assigned virtua
address space (Figure 7.26). If all checks pass, the kernel invokes growreg
allocate auxiliary memory (c.g., page tables) for the data region and increments th
process size field. On a swapping system, it also atiempts to allocate memory fo
the new space and clear its contents to zero; if there is no room in memory, i
swaps the process out to get the new space (explained in detail in Chapter 9). 1
the process is calling brk 0 free previously allocated space, the kernel releases th
memory; if the process accesses virtual addresses in pages that it had released, i
incurs 2 memory fault.
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3
a

char inputl2561;

main0).
(

register int ; ;

for (i=0; i <18 i+4)
(

switch (fork0)

{

case=1: /% error */
intf(“error cannot fork\n");
exitQ;

defauli:  /* parent process */
break;

case /# child process */

for )

{
read(0, input, 2560,/ read lne */
printf(“d read %s\n", i inpu

Figure 10.16. Contending for Terminal Input Data

usually t00 slow to satisfy all the reading processes, so the processes will spend
most of their time sleeping in the terminal_read algorithm, waiting for input data
When a user enters a line of data, the terminal interrupt handler awakens all the
reading processes; since they slept at the same priority level, they are eligible to run
at the same priority. The user cannot predict which process runs and read' the lint
of data; the successful process prints the value of i at the time it was spawned. All
other processes will eventually be scheduled to run, but they will probably find no
input data on the input clists and go back to sleep. The entire procedure is
repeated for cvery input line; it is impossible to guarantee that one process does not
hog all the input data.

1t is inherently ambiguous to allow multiple readers of a terminal, but the
kernel copes with situation as best as it can. On the other hand, the kernel must
allow multiple processes to read a terminal, otherwise processes spawned by the
shell that read standard input would never work, because the shell still accesscs
standard input, t00. In short, processes must synchronize terminal access at user
level.
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Hinclude <fontlh>
main

(
int uid, evid, fdmjb, fdmaury;

uid = getuid0; /% get real UID */
cuid = geteuidQ;  /* get cffective UID */
printf(uid %d euid %d\n”, uid, evid):

fdmjb = apen(“mjb”, O RDONLY);
fdmaury = open(“maury”, O_RDONLY);
printf(“fdmjb %d fdmaury %d\n", fdmjb, fdmaury);

fdmib = open(“mjb", O_RDONLY);
fdmaury = open(“maury”, O_RDONLY);
imjb % fdmaury %d\n", fdmjb, fdmaury);

setwid euid); 3
printf“after setuid (%d): uid %d euid %d\n", cuid, getwid), geteuid);

Figure 7.25. Example of Execution of Setuid Program

for the file, but the process can open file “maury”. After calling setuid to reset the
effective user ID of the process to the real user ID (“mjb”), the second print
statement prints values 5088 and 5088, the user ID of “mjb”. Now the process can
open the file “mjb”, because its effective user ID has read permission on the file,
but the process cannot open file “maury”. Finally, after calling seruid to reset the
effective user ID to the saved seruid value of the program (8319), the third print
statement prints values 5088 and 8319 again. The last case shows that a process
can exec a setuid program and toggle its effective user ID between its real user ID
and its execed setuid.
User “maury” sees the following output when exccuting the program:

uid 8319 euid 8319
fdmjb —1 fdmaury 3
after setuid (8319): uid 8319 cuid 8319,
fdmib 1 fdmaury 4
after setuid(8319): uid 8319 euid 8319

The real and effective user IDs arc always 8319: the process can never open fle
“mjb”, but it can open file “maury”. The effective user ID stored in the  area
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this discussion. An cxample later on will illustrate these points.

The figure partitions the set of system calls into those that interact with the fil
subsystem and those that interact with the process control subsystem. The file
subsystem manages files, allocating file space, administering frec space, controlling
access to files, and retrieving data for users. Processes interact with the fil
Subsystem via & specific set of system calls, such as open (10 open a fil for reading
or writing), close, read, write, stat (query the atiributes of a file), chown (change
the record of who owns the file), and chmod (change the access permissions of a
fle). These and others will be examined in Chapter 5.

"The file subsystem accesses file data using a buffering mechanism that regula
data flow between the kernel and secondary storage devices. The buffering
mechanism interacts with block 1/0 device drivers 1o initiate data transfer to and
from the kernel. Device drivers are the kernel modules that control the operatior
of peripheral devices. Block 1/0 devices are random access storage devices
alternatively, their device drivers make them appear o be random access storage
devices to the rest of the system. For example, a tape driver may allow the kerne
to treat a tape unit as a random access storage device. The file subsystem als
interacts directly with “raw” 1/O device drivers without the intervention of ¢
buffering mechanism. Raw devices, sometimes called character devices, include al
devices that are not block devices.

The process control subsystem is responsible for process synchronization
interprocess communication, memory management, and process scheduling. Th
file subsystem and the process control subsystem interact when loading a file int
memory for exccution, as will be scen in Chapter 7: the process subsystem read:
exccutable files into memory before executing them.

Some of the system calls for controlling processes are fork (create a nev
process), exec (overlay the image of a program onto the running process), exi
(finish executing a process), wai (synchronize process execution with the exit of
previously forked process), brk (control the size of memory allocated to a process).
and signal (control process response to extraordinary events). Chapter 7 will
examine these system calls and others.

The memory management module controls the allocation of memory. If at any
time the system does not have enough physical memory for all processes, the kernel
moves them between main memory and secondary memory so that all processes get
a fair chance to execute. Chapter 9 will describe two policies for managing
memory: swapping and demand paging. The swapper process is sometimes called
the scheduler, because it “schedules” the allocation of memory for processes and
influences the operation of the CPU scheduler. However, this text will refer to it as
the swapper to avoid confusion with the CPU scheduler.

‘The scheduler module allocates the CPU 10 processes. It schedules them to run
in turn until they voluntarily relinquish the CPU while awaiting a resource or unti
the kernel preempts them when their recent run time exceeds a time quantum. The
scheduler then chooses the highest priority eligible process to run; the original
process will run again when it is the highest priority eligible process available
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Semget creates an array of semaphores, corresponding to key. Key and flag take
on the same meaning as they do in msgger.

semop
semop(id, ops, num)
int id, num;
struct sembuf **ops;
Semop docs the set of scmaphore operations in the array of structures ops, to the
st of scmaphores identified by id. Num is the number of entries in ops. The
structure of sembufs:

struct sembuf {

short L /# semaphore number */
short sem_op;  /* semaphore operation */
short sem g /*flag %/

%

Sem_num specifies the index in the semaphore array for the particular operation,
and sem fig specifies flags for the operation. The operations sem op for
semaphores are:

negative if sum of semaphore value and sem_op >= 0, add sem_op to
1o semaphore value. Otherwise, slecp, a per flag.

positive  add sem_op to semaphore value.

2er0 continue, if semaphore value s 0. Otherwise, sleep as per flag.

If IPC_NOWAIT is st in sem_fig for a particular operation, semop returns
immediately for those occasions it would have slept. If the SEM_UNDO flag is sct,
the operation is subtracted from a running sum of such values. When the process
exits, this sum is added to the value of the semaphore. Semop returns the value of
the last semaphore operation in 0ps at the time of the call.

setpgrp
setpgrp()

Seipgrp sets the process group ID of the calling process to its process ID and
returns the new value.

setuid

setuid (uid)
int uid;
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algorithm brk
input:  new break value
output: old break value

{

Tock process data regi
if (region size incrcasi
if (new region size s illcgal)

unlock data region;
return(erron);
}
change region size (algoritim growreg);
2¢10 out addresses in new data space;
unlock process data region;

Figure 7.26. Algorithm for Brk

Figure 7.27 shows a program that uses brk and sample output when run on an
AT&T 3B20 computer. After arranging to catch segmentation violation signals by
calling signal, the process calls sbrk and prints out its initial break value. Then it
loops, incrementing a character pointer and writing its contents, until it attempts to
write an address beyond its data region, causing a segmentation violation signal.
Catching the signal, catcher calls sbrk to allocate another 256 bytes in the data
region; the process continues from where it was interrupted in the loop, writing into
the newly acquired data space. When it loops beyond the data region again, the
entire procedure repeats. An interesting phenomenon occurs on machines whosc
memory is allocated by pages, as on the 3B20. A page is the smallest unit of
memory that is protected by the hardware and so the hardware cannot detect when
a process writes addresses that are beyond its break value but still on a “semilegal”
page. This is shown by the output in Figure 7.27: the first sbrk call returns
140924, meaning that there are 388 bytes left on the page, which contain 2K bytes
on a 3B20. But the process will fault only when it addresses the next page, at
address 141312. Catcher adds 256 to the break value, making it 141180, still
below the address of the next page. Hence, the process immediately faults again,
printing the same address, 141312, After the next sbr, the kernel allocates a new.
page of memory, so the process can address another 2K bytes, to 143360, even
though the break valuc is not that high. When it faults, it will call sbrk § times
until it can continue. Thus, a process can sometimes cheat beyond its offcial break
value, although it is poor programming style.

The kernel automatically extends the size of the user stack when it overflows,
following an algorithm similar to that for brk. A process originally contains
enough (user) stack space 10 hold the exec parameters, but it overflows its initial
stack area as it pushes data onto the stack during exceution. When it overflows its
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Figure 4.20. Requesting and Frecing Disk Blocks
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410 EXERCISES

1. The C language convention counts array indices from 0. Why do inode numbers start
from 1 and not 07

2. If a proccss sleeps in algorithm iget when it finds the inode locked in the cache, why
must it start the loop again from the beginning after waking up?

3. Describe an algorithm that takes an in-corc inode as input and updates the
corresponding disk inode.

4. The algorithms iger and iput do not require the processor execution level to be raised
10 block out interrupts. What does this imply?

5. How cfficiently can the loop for indirect blocks in bmap be encoded?

‘midir junk
foriin12345
do

echo hello > junk/$i
done

Is —1d junk

s = junk
chmod —r junk
s —Id junk

Is junk

Is =1 junk

od junk

pwd

Is=1

echo *

od.

chmod +1 junk
chmod —x junk
Is junk

Is =1 junk

od junk

chmod +x junk

Figure 421, Difference between Read and Search Permission on Directories

6. Execute the shell command script in Figure 4.21. It creates a directory “junk” and
creates five files in the directory.  After doing some control Is commands, the chmod
‘command turns of read permission for the dircctory. What happens when the various
s commands are executed now? What happens after changing dircctory into “junk
Aftes restoring read permission but removing exccute (search) permission from “junk”,
repeat the experiment. What happens? What is happening in the kernel to cause this
behavior?

7. Given the current structure of a directory entry on a System V system, what is the
‘maximum number of fles a file system can contain?
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438 OTHER FILE TYPES

The UNIX system supports two other file types: pipes and special files. A pipe,
sometimes called a fifo (for “first-in-first-out”), differs from a regular file in that ity
data is transient: Once data is read from a pipe, it cannot be read again. Also, the
data i read in the order that it was written to the pipe, and the system allows no
deviation from that order. The kernel stores data in @ pipe the same way it stores
data in an ordinary file, except that it uses only the direct blocks, not the indirect
blocks. The next chapter will examine the implementation of pipes.

‘The last file types in the UNIX system are special files, including block device
special files and character device special files. Both types specify devices, and
therefore the file inodes do not reference any data. Instead, the inode contains two
numbers known as the major and minor device numbers. The major number
indicates a device type such as terminal or disk, and the minor number indicates
the unit number of the device. Chapter 10 examines special devices in detail.

49 SUMMARY

‘The inode is the data structure that describes the attributes of a file, including the
layout of its data on There are two versions of the inode:  the disk copy that
stores the inode information when the file is not in use and the in-core copy that
records information about active files. Algorithms ialloc and iffee control
assignment of a disk inode to a file during the creat, mknod, pipe, and unlink
system calls (next chapter), and the algorithms iget and iput control the allocation
of in-core inodes when a process accesses a file. Algorithm bmap locates the disk
blocks of a file, according to a previously supplied byte offset in the file. Directories
are files that correlate file name components to inode numbers. Algorithm namei
converts file names manipulated by processes to inodes, used internally by the
kernel. Finally, the kernel controls assignment of new disk blocks to a file using
algorithms alloc and free.

The data structures discussed in this chapter consist of linked lists, hash queues,
and lincar arrays, and the algorithms that manipulate the data structures arc
therefore simple. Complications arise due to race conditions caused by the
interaction of the algorithms, and the text has indicated some of these timing
problems.  Nevertheless, the algorithms are not elaborate and illustrate the
simplicity of the system design.

The structures and algorithms cxplained here are internal to the kernel and are
not visible to the user. Referring to the overall system architecture (Figure 2.1),
the algorithms described in this chapter occupy the lower half of the file subsystem.
The next chapter examines the system calls that provide the user interface to the
file system, and it describes the upper half of the file subsystem that invokes the
internal algorithms described here.






index-104_1.png
SYSTEM CALLS
FOR THE FILE SYSTEM

The last chapter described the internal data structures for the file system and the
algorithms that manipulate them. This chapter deals with system calls for the file
system, using the concepts explored in the previous chapter. It starts with system
calls for accessing existing files, such as open, read, write, Iseek, and close, then
presents system calls to create new files, namely, creat and mknod, and then
examines the system calls that manipulate the inode or that maneuver through the
file system: chdir, chroot, chown, chmod, stat, and ftat. It investigates more
advanced system calls: pipe and dup are important for the implementation of pipes
in the shell; mount and umount extend the file system tree visible to users; link and
unlink change the structure of the file system hierarchy. Then, it presents the
notion of file system abstractions, allowing the support of various file systems as
long as they conform to standard interfaces. The last section in the chapter covers
file system maintenance. The chapter introduces three kernel data structures:  the
file table, with one entry allocated for every opened file in the system, the user file
descriptor table, with one entry allocated for every file descriptor known to a
process, and the mount table, containing information for every active file system.

Figure 5.1 shows the relationship between the system calls and the algorithms
described previously. It classifies the system calls into several categories, although
some system calls appear in more than one category:

9
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dup
dupildes)
int fildes;
Dup duplicates the specified fle descriptor, returning the lowest available fle
descriptor. The old and new file descriptors use the same file pointer and share
other attributes.

exec

exceve(flename, argy, envp)

char *flename;

char *argvl];

char *envpl);
Execve cxecutes the program file filename, overlaying the address space of the
executing process. Argy is an array of character strings parameters (0 the execed
program, and envp is an array of character strings that are the environment of the
new process.

exit
exit(status)
int status;
Exit causes the calling process to terminate, reporting the § low-order bits of status
to its waiting parent. The kernel may call exit internally, in response to certain
ignals.

fentl

fentl(fildes, emd, arg)
int fildes, cmd, arg;

Fentl supports a set of miscellancous operations for open files, identified via the file
descriptor fildes. The interpretation of cmd and arg is as follows (manifest
constants are defined in file “/usr/include/fentl.h”):

F_DUPFD  return lowest numbered file descriptor >= arg
FISETFD  sct closc-on-crec flag to low order bt of arg
GE 1, fle i closed in cxce)
F.GETFD  return value of closc-on-cxec flag
FSETFL  set file status flags (O_NDELAY do not slecp for 1/0 and
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8. UNIX System V allows a maximum of 14 characters for a path name component,
Namei truncates extra characters in @ component. How should the file system and
respective algorithms be redesigned to allow arbitrary length component names?

9. Supposc a user has a private version of the UNIX system but changes it so that a path
name component can consist of 30 characters; the private version of the operating
system stores the directory entries the same way that the standard operating system
doss, except that the directory entries arc 32 bytes long instead of 16. If the user
‘mounts the private file system on a standard system, what would happen in algorithm
namei when a process accesses a file on the private fle system?

* 10. Consider the algorithm name for converting a path name into an inode. As the search
progresses, the kernel checks that the current working inode s that of  dircctory. Is
it possible for another process to remove (unlink) the directory? How can the kernel
prevent this? The next chapter will come back to this problem.

* 11. Design a directory structure that improves the effciency of scarching for path names
by avoiding the linear search. Consider two techniques: hashing and n-ary trees.

* 12. Design a scheme that reduces the number of dircctory scarches for file names by
caching frequently used names

* 13. 1deally, a file system should never contain a free inode whose inode number is less than
the “remembered” inode used by falloc. How is it possible for this assertion to be
false?

14, The super block is a disk block and contains other information besides the free block
list, as described in this chapter. Therefore, the super block free list cannot contain as
‘many free block numbers as can be potentially stored in a disk block on the linked list
of free disk blocks. What is the optimal number of free block numbers that should be
stored in a block on the linked list?

* 15. Discuss a system implementation that keeps track of free disk blocks with a bit map
instcad of a linked list of blocks. What are the advantages and disadvantages of this
scheme?
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operations, such as reading, writing, sceking, duplicating the file descriptor, setting
file 1/0 parameters, determining file status, and closing the file, use the file
descriptor that the open system call returns.

The kernel scarches the file system for the file name parameter using algorithm
namei (sce Figure 5.2). It checks permissions for opening the file after it finds the
in-core inode and allocates an entry in the file table for the open file. The file table
entry contains a_pointer to the inode of the open file and a field that indicates the
byte offset in the file where the kernel cxpects the next read or write o begin. The
kernel initializes the offset to 0 during the open call, meaning that the initial read
o write starts aj the beginning of a file by default. Alternatively, a process can
open a file in write-append mode, in which case the kernel initializes the offset to
the size of the file. The kernel allocates an entry in a private table in the process u
area, called the user file descriptor table, and notes the index of this entry. The
index is the file descriptor that is returned 0 the user. The entry in the user file
table points to the entry in the global file table

inputs: file name
type of open
ile permissions (for creation type of open)
quput: fie deseipor

convert file name to inode (algorithm name);
if (fle does not exist or not permitied access)

return(erron);
alloate fle table entry for inode, initilize count, offset;
allocate user fle descriptor entry, st pointer to file table entry;
if (ype of open specifics truncate fil)

free all file blocks Galgorithm frec);
unlock(inode); /7 locked above in namei */
return(user fle descriptor);

Figure 5.2. Algorithm for Opening a File

Suppose a process executes the following code, opening the file “/etc/passwd”
twics, once read-only and once write-only, and the file “local” once, or reading and
writing

1. All system calls return the value =1 if they fsl. The retrn value —1 willno be xplcl
mentioned when discussing the syntax of the system calls. ety
2. The deinionof the pen system cal speifle tree. parameers (L tird s wsed for he crete
e of ope). bt programmers usaly e oy the st o, The C compie dos e chck it
he numbet of parametes i orect. Sysem implemenaons ypeally pus the s e paramcles
4045 hird "gArbage” parameer (whatever bppens 10 b o the e 1o the kernl The hernl
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File System Calls
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File | namei | inodes| Auributes | 1/0 |Structure Manipulation
esc
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PIPe | chown mount| unlink sect
close] chmod umount|
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Figure 5.1 File System Calls and Relation to Other Algorithms

© System calls that return file descriptors for use in other system call
« System calls that use the namei algorithm to parse a path name
« System calls that assign and free inodes, using algorithms ialloc and ifree;
 System calls that set or change the attributes of a file;

« System calls that do 1/0 to and from a process, using algorithms alloc, free,

and the buffer allocation algorithms;
« System calls that change the structure of the file system;
* System calls that allow a process to change its view of the fle system tree.

5.1 OPEN

The open system call is the first step a process must take to access the data in a
file. The syntax for the open system call

£d = open(pathname, lags, modes);

where pathname is a file name, flags indicate the type of open (such as for reading
or writing), and modes give the file permissions if the fil s being created. The
open system call returns an integer' called the user file descriptor. Other filc
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Figure 5.3. Data Structures after Open

£d1 = open(“/etc/passwd”, O_RDONLY);
fd2 = open(“local”’, O_RDWR);
1d3 = open(“/ctc/passwd”, O_WRONLY);

Figure 5.3 shows the relationship between the inode table, file table, and user file
descriptor data structures. Each open returns a file descriptor 1o the process, and
the corresponding entry in the user file descriptor table points to a unique entry in

docs not check the third parameter unles the sccond parameter indicates that it must, allowing
programmers to cncode only two parameters.

S
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include <signalh>

‘main(arge, argv)
arge;

char *argv{];

int i, ret_val, ret_code;

if (arge >= 1) )
signal(SIGCLD, SIGIGN);  /* ignore death of children */
0 i< 1S i)

if (fork() == 0)

(

7* child proc here */
printf(“child proc %x\n’”, getpid0):
exit(;
)
ret_val = wait(&ret_code);
printf(“wait ret_val % ret_code %x\n”, ret_val, ret_code);

Figure 7.17. Example of Wait and Ignoring Death of Child Signal

The kernel does the above procedure cach time the parent receives a “death of
child” signal, until it finally goes through the waif loop and finds that the parent
has no children. The wait system call then returns a —1. The difference between
the two_invocations of the program is that the parent process wais for the
termination of any child process in the first case but waits for the termination of all
child processes in the second case.

Older versions of the UNIX system implemented the exit and wait system calls
without the “death of child” signal. Instead of sending a “death of child" signal,
exit would wake up the parent process. If the parent process was sleeping in the
wait system cal, it would wake up, find a zombie child, and return. If it was not
slecping in the wai system call, the wake up would have no effect; it would find 2
zombic child on its next wait call. Similarly, the init process would sleep in wait,
and exiring processes would wake it up if it were to adopt new zombie processes.

The problem with that implementation is that it is impossible to clean up
zombic processes unless the parent executes waif. If a process creates many
children but never executes wair, the process table will become cluttered with
zombie children when the children exit. For example, consider the dispatcher
program in Figure 7.18. The process reads its standard input file until it
encounters the end of file, creating a child process for cach read. However, the
parent process does not wait for the termination of the child process, because it
wants to dispaich processes as fast as possible and the child process may take to0
long until it exits.  If the parent makes the signal call to ignore “death of child”

|
|
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10.2 DISK DRIVERS

Historically, disk units on UNIX systems have been configured into sections that
contain individual file systems, allowing “the [disk] pack to be broken up into more
manageable pieces” (sce [System V 84b).  For instance, if a disk contains four file
systems, an administrator may leave one unmounted, mount another “read-only,”
and mount the last two “read-write.” Even though all the file systems coexist on
one physical unit, users cannot access files in the unmounted file system using the
access methods described in Chapters 4 and S, nor can any users write files in the
“read-only” file system. Furthermore, since each section (and hence file system)
spans contiguous tracks and cylinders of the disk, it is casier to copy entire file
Systems than if they were dispersed throughout an entire disk volume.

The disk driver translates a file system address, consisting of a logical d
number and block number, to a particular sector on the disk. The driver gets the
address in one of two ways: Either the strategy procedure uses a buffer from the
buffer pool and the buffer header contains the device and block number, or the read
and write procedures are passed the logical (minor) device number as a parameter;
they convert the byte offsct saved in the u area to the appropriate block address.
The disk driver uses the device number 1o identify the physical drive and particular
section 1o be used, maintaining internal tables to find the sector that marks the
beginning of a disk scction. Finally, it adds the block number of the file system to
the start sector number to identify the sector used for the I/O transmission.

Section _ Start Block _ Length in Blocks
Size of block = 512 bytes
0 0 64000
1 64000 944000
2 168000 840000
3 336000 672000
4 504000 504000
5 672000 336000
6 840000 168000
7 o 1008000

Figure 10.7. Disk Sections for RP07 Disk

Historically, the sizes and lengths of disk sections have been fixed according to
the disk type. For instance, the DEC RPO7 disk is partitioned into the sections
shown in Figure 10.7. Suppose the files “/dev/dsk0", “/dev/dsk1”, “/dev/dsk2"
zr[d ““/dev/dsk3” correspond to sections O through 3 of an RPO7 disk and have
‘minor numbers 0 through 3. Assume the size of a logical file system block is the
same as that of  disk block. IF the kernel atiempts to access block 940 in the fle
system contained in “/dev/dsk3", the disk driver converts the request to access
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EXERCISES a

Connection t0 the terminal. If a user hits the break key, how i the interrupt signal
SNt 10 processes in the process group executing on the client machine?

©16- The sharcd memary feature is inherently a localmachine operaion. Logicaly, it
would be possible for processes on different. machines 10 access a common piece. of
physical memory, whether the memory s local or remote. Describe . an
implementation.

* 17 The demand paging and swapping algorithms examined in Chapter 9 assume the use
of @ local swap device. What modifications must be made 10 these algorithms 19
support remote swap devices?

* 18. Suppose a remote machine crashes (or the network goes down) and the local network
protocol can recognize this fact. Design recovery schemes for a local system that
makes requests of a remote, server system. Conversely, design recovery schemes for a
server system that loses ts connection with client machincs.

* 19 When a process accesses & remotc file, the path name may stretch acrass several
machines until it is completely resolved. Following the path  mame
/ust/see/uts/3b2/0s" for example, “/usr” may be on machine A, the root of maching
B may be mounted on “/use/sec”, and the root of machine C may be mounted on
“fusr/sec/uts/3b2". Moving through several machines 1o get to the final destination o
called mulihop. 1 a ditect network connection cxists between A and C, however, i is
ineffiient {o transer data between the machincs via machine B. Describe s design for

0p in the Newcastle and transparent distribution models,
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algorithm wait
input:  address of variable o store status of exiting process
output: child 1D, child exit code

{

if (waiting process has no child processes)

return(erron);
for G) /" loop until return from inside loop */
(
if (waiting process has zombie child)
(
pick arbitrary zombie child;
2dd child CPU usage to parent;
free child process table entry;
return(child ID, child exit code);
)
if (process has no children)

return error;
sleep at interruptible priority (event child process exits);

Figure 7.16. Algorithm for Wait

 If the process ignores “death of child” signals, the kernel restarts the wait loop,
frees the process table slots of zombie children, and searches for more children.

For example, a user gets different results when invoking the program in Figure
7.17 with or without a parameter. Consider first the case where a user invokes the
program without a parameter (argc is 1, the program name). The (parent) process
creates 15 child processes that eventually exit with return code i, the value of the
loop variable when the child was created. The kernel, executing waif for the
parent, finds a zombie child process and returns its process ID and exit code. It is
indeterminate which child process it finds. The C library code for the exif system
call stores the exif code in bits 8 to 15 of ret_code and returns the child process ID
for the wait call. Thus rer_code equals 256%, depending on the value of i for the
child process, and ret_val equals the value of the child process ID.

1f a user invokes the above program with a parameter (arge > 1), the (parent)
process calls signal to ignore “death of child” signals. Assume the parent process
slecps in wait before any child processes exir: When a child process exits, it sends
a “death of child" signal to the parent process; the parent process wakes up because
its slecp in wait is at an interruptible priority. When the parent process eventually
runs, it finds that the outstanding signal was for “death of child"; but because it
ignores “death of child” signals, the kernel removes the entry of the zombie child
from the process table and continues executing wait as if no signal had happened.
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Figure 10.6. Device Interrupts

1013 Interrupt Handlers

As previously explained (Section 6.4.1), occurrence of an interrupt causes the
kernel to execute an interrupt handler, based on the correlation of the interrupting
device and an offset in the interrupt vector table. The kernel invokes the device
specific interrupt handler, passing it the device number or other parameters to
identify the specific unit that caused the interrupt. For example, Figure 10.6 shows
two entries in an interrupt vector table for handling terminal interrupts (“ttyinte”),
each handling interrupts for 8 terminals.  If device 11y09 interrupts the system, the
system calls the interrupt handler associated with the hardware position of the
interrupting device. Because many physical devices can be associated with one
interrupt vector entry, the driver must be able to resolve which device caused the
interrupt. In the figure, the two interrupt vector entries for “ttyintr” are labeled 0
and 1, implying that the system distinguishes between the two vector entries in
some way when calling the interrupt handler, such as using that number as a
parameter to the call. The interrupt handler would use that number and other
formation passed by the interrupt mechanism to ascertain that device rty09
interrupted the system and not t1!2, for example. This example s a simplification
of what happens on real systems, where several levels of controllers and their
interrupt handlers enter the picture, but it illustrates the general principles.

In summary, the device number used by the interrupt handler identifies a
hardware unit, and the minor number in the device file identifies a device for the
kernel. The device driver correlates the minor device number to the hardware unit
number.
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*9. As decribed i Secion 13.2 executon of the exif system call on Newssstle sy
results in a message being sent to the stub process that causes it 10 exit. This
at the library Jvel. What happens if the local proces receives a sgnal that cavse g
10 exit from the kernel?

*10.In a Newsastissyle system, where remote fls are designated by special prefac,
how should the system allow a user to use the . (parent directory) component 1y
back up over a remote mount point?

11, Recall from Chapter 7 that various signals cause a process (o dump a core fie in iy
current directory. What should happen if the current dircctory is in a remote g
system? What happens on a Newcastle system?

* 12, If someone on a remote processor Kill all stub or server processes, how should the loca)
processes hear the good news?

*13. In the transparent distribution system, discuss implementations of fink, which has two
possibly remote path names, and exec, which has several internal read operations
Consider the two desigas: remote procedure call and remote system call.

*14. When a (nonstub) server process accesses a device, it may have to sleep. untl the
device driver wakes it up. Given a fixed number of servers, i is conceivable that 4
system would be unable 10 satsfy any more requests from a local machine, because all
servers are sleeping in a device driver. Devise a scheme that is safe, in that not all
servers can sleep, waiting for device 1/0. A system call should not fal because all
servers are currently busy.

Client A_ Client B Client C

getty's

uy server
machine

W00 ty0l  wy02 wy03  ty0d uy0s

Figure 13.13. A Terminal Server Configuration

* 15. When a user logs into a system, the terminal line discipline saves information that the
terminal is a control terminal, noting the process group. In this way, processes receive
interrupt signals when a user hits the break key at the terminal. Consider a system
configuration where all terminals are physically connceted 10 one machine, but users
log in logically on other machines (Figure 13.13).  Specifically, a system spawns &
getty process for a remote terminal. If a pool of server processes handle remote system
calls, a server slecps in the driver open procedure, waiting for a connection. When the
server completes the open system call, it goes back into the process pool, severing its






index-22_1.png
13 USER PERSPECTIVE 9

Finclude <fentlh>
char buffer[2048];
int version = 1 /* Chapter 2 explains this */

main(arge, argy)
int arge
char *argHl];

int fdold, fdnew:

if Garge 1= 3)
t
printf("need 2 arguments for copy program\n’);
exit(1);
)
fdold = openargyl1], O RDONLY);  /* open source fle read only */
if (fdold == ~1)
(
printfCeannot open fle %\, argvl1D;
exit(D);

i
fdnew = creat(argyl2), 0666);  /* create target il rw for all %/
if (fdnew == —1)
(
printfCeannot create fle %s\n", argi{2D;
exit(1);
)
copy({dold, fdnew);
exit(0);

)

copy(old, new)
int old, new;
{

int count;

while ((count = read(old, buffe, sizeof (buffer))) > 0)
write (new, buffer, count);

Figure 1.3, Program to Copy a File

The program copies any files supplied to it as arguments, provided it has
permission to open the existing file and permission to create the new file. The file
can be a file of printable characters, such as the source code for the program, or it
can contain unprintable characters, cven the program itsclf. Thus, the two
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{

Hinclude “Tentl -
mainQ

char buf1(4096], buf2(4096);
int fd1, 42, i

i (((Gd1 = open(*/dev/dsks", O RDONLY)) == =1 ||
((1d2 = open(*/dev/rdsks", © RDONLY)) == =1))
{

printfCfailure on opern®);
exit0;

)

Iseek(fd1, 8192L, 0);
Iseek(fd2, 8192L, 0);

-0

if (read(@d1, buf1, sizeof (buf1)) == —1) || (read(fd2, buf2, sizeof (buf2))

printfCfailure on read\n’);
exit0;

)

for (i = 0; i < sizeof(bufl); i++)
if (buf1li] 1= bur2lil)
{
printf(Cdifferent at offset %d\n”, i)

)

printf("reads match\n?);

Figure 10.8. Reading Disk Data Using Block and Raw Interface

the block device switch table and the character device switch table, respectively,
and the minor number 21 informs the driver which disk section is being accessed —
for example, physical drive 2, section 1. Because the minor numbers are identical
for each file, both refer to the same disk section, assuming this is one device.? Thus,
a process executing the program opens the same driver twice (through different
interfaces), Iseeks to byte offset 8192 in the devices, and reads data from that

3

There s no way (0 verify that a character driver and a block driver refr 10 the same devi, except
by examination of the system configuration tables and the driver code.
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patterns 4 (for read), 2 (for write), and 1 (for exccute). The real-user ID is
checked instead of the effective user ID.

acet

acet(filename)
char *filename;

Acct enables system accounting if ilename is non-null, and disables it otherwise

alarm

unsigned alarm seconds)
unsigned seconds;

Alarm schedules the occurrence of an alarm signal for the calling process in the
indicated number of seconds. It returns the amount of time remaining until the
alarm signal at the time of the call.

brk

int brk(end_data_seg)
char *end_data_seg;

Brk sets the highest address of a process’s data region to end_data_seg. Another
function, sbrk, uses this system call entry point and changes the highest address of
a process's data region according to a specified increment.

chdir

chdir (flename)
char *filename;

Chair changes the current directory of the calling process to flenamme.

chmod

chmod (filename, mode)

char *filename;
Chmod changes the access permissions of the indicated file to the specified mode,
which is a combination of the following bits (in octal):

04000 setuid bit
02000 set group ID bit
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include<signalh>

main(arge, argy)

(
char bufl256;

if (arge = 1)
Signal(SIGCLD, SIG_IGN);  /* ignore death of children */
while (read (0, buf, 256))
if (fork0) == 0)
(
/% child proc here typically does something with buf */
exit(0);

Figure 7.18. Example Depicting the Reason for Death of Child

signals, the kernel will release the cntries for the zombie processes automatically.
Otherwise, zombie processes would eventually fill the maximum allowed slots of the

process table.

7.5 INVOKING OTHER PROGRAMS

The exec system call invokes another program, overlaying the memory space of a
process with a copy of an executable file. The contents of the user-level context
that existed before the exec call are no longer accessible afterward except for exec's
parameters, which the kernel copies from the old address space to the new address
space. The syntax for the system call is
execve(filename, argv, envp)

where filename is the name of the executable file being invoked, argv is a pointer to
an array of character pointers that are parameters to the cxecutable program, and
envp is a pointer to an array of character pointers that are the environment of the
exccuted program. There are several library functions that call the exec system
call such as execl, execv, execle, and so on. All call execve eventually, hence it is
used here to specify the exec system call. When a program uses command I
parameters, as in

main(arge, argy)

the array argv is a copy of the argy parameter to exec. The character strings in
the environment are of the form “name=value” and may contain useful information
for programs, such as the user’s home directory and a path of directories to search
for executable programs. Processes can access their environment via the global





index-338_1.png
326 THE 1/0 SUBSYSTEM

block 336940 (section 3 starts at block 336000; 336000 + 940 = 336940) on the
disk.

The sizes of disk sections vary, and administrators configure file systems in
sections of the appropriate size: Large file systems go into large sections, and so
on. Sections may overlap on disk. For example, Sections 0 and 1 in the RPO7 disk
are disjoint, but together they cover blocks 0 to 1008000, the entire disk. Section 7
also covers the entire disk. The overlap of sections does not matter, provided that
the file systems contained in the sections are configured such that rhey do not
overlap. It is advantageous to have one section include the entire disk, since the
entire volume can thus be quickly copied.

The use of fixed sections restricts the flexibility of disk configuration. The
hard-coded knowledge of disk sections should not be put into the disk driver but
should be placed in a configurable volume table of contents on the disk. However,
it is difficult to find a generic position on all disks for the volume table of contents
and retain compatibility with previous versions of the system. Current
implementations of System V' expect the boot block of the first file system on a disk
to occupy the first sector of the volume, although that is the most logical place for a
volume table of contents. Nevertheless, the disk driver could contain hard-coded
information on where the volume table of contents is stored for that particular disk,
allowing variable sized disk sections.

Because of the high level of disk traffic typical of UNIX systems, the disk driver
‘must maximize data throughput 10 get the best system performance. Most modern
disk controllers take care of disk job scheduling, positioning the disk arm, and
transferring data between the disk and the CPU; otherwise, the disk driver must do
these tasks.

Utility programs can use cither the raw or block interface to access disk data
directly, bypassing the regular file system access method investigated in Chapters 4
and S.” Two important programs that deal directly with the disk arc mkfs and fock.
MKfs formats a disk section for a UNIX file system, creating a super block, inode
list, linked st of free disk blocks, and a root dircctory on the new file system. Fsck
checks the consistency of an existing file system and corrects errors, as presented
Chapter 5.

Consider_the program in Figure 108 and the files “/dev/dskls” and
“/dev/rdsk15", and suppose the Is command prints the following information.

Is =1 /dev/dsk1S /dev/rdsk1S

br-------- 2root oot 0,21 Feb1215:40 /dev/dskls
Srw-rw---- 2root root 7,21 Mar 709:29 /dev/rdsklS

It shows that */dev/dsk15" is a block device owned by “root,” and only “root” can
read it directly. ~Its major number is 0, and its minor number is 21 The flc
“/dev/rdsk15™ s a character device owned by “root” but allows read and write
permission for the owner and group (both root here). Its major number is 7, and
its minor number is 21. A process opening the files gains access to the device via

|
|
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This appendix contains a brief synopsis of the UNIX system calls. Refer 10 the
UNIX System V User Programmer's Manual for a complete specification of these
calls. The specification here is suficient for reference when reading the various
program examples in the book

The specified file names are null terminated character strings, whose individual
components are separated by slash characters. Al system calls return —1 on error,
and the external variable crmo indicates the specific error. Unless specified
otherwise, system calls return 0 on success. Some system calls are the entry point
for several functions: this means that the assembly language interface for the
functions is the same. The list here follows the usual conventions for UNIX system
manuals, but the programmer should not care whether a system call entry point
handles one or many system calls.

aceess

‘access (flename, mode)

char *flename;

int mode;
Access checks if the calling process has read, write, or execute permission for the
file, according to the value of mode. The value of mode is a combination of the bit

a4
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Memory
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TDB 107
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Figure 10.5. Memory Mapped 1/0 with the VAX DZ11 Controller

buffer and copics the data from the buffer to the user address specified in the
system call.

The precise method in which a driver communicates with a device depends on
the hardware. Some machines provide memory mapped 10, meaning that certain
addresses in the kernel address space are not locations in physical memory but are
special registers that control particular devices. By writing control parameters to
specified registers according to hardware specifications, the driver controls the
device. For example, 1/O controllers for the VAX-11 computer contain special
registers for recording device status (control and status registers) and for data
transmission (data buffer registers), which are configured at specific addresses in
physical memory. In particular, the VAX DZI1 terminal controller controls §
asynchronous lines for terminal communication (see [Levy 80] for more detail on
the VAX architecture). Assume that the control and status register of a particular
DZI1 is at address 160120, the transmit data buffer register is at address 160126,
and the receive data buffer register is at address 160122 (Figure 10.5). To writc a
character 10 terminal “/dev/tty09”, the terminal driver writes the number 1 (1 =9
modulo 8) 1o a specified bit position in the control and status register and then
writes the character 10 the transmit data buffer register. The operation of writing
the transmit data buffer register transmits the data. The DZI1 controller scts a
done bit in the control and status register when it is ready to accept more data.
The driver can optionally set a transmit interrupt enable bit in the control and
status register, which causes the DZ11 controller 10 interrupt the system when it is
ready to accept more data. Reading data from the DZ11 is similar.
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descriptor, the local kernel recognizes that the file is remote by examining its
(local) inode, formulates a message encapsulating the system call, and sends the
message to the remote machinc. The message contains the remote inode index so
that the stub can identify the remote file.

For all system calls, the local kernel may execute special code to take care of
the response and may cventually longjmp out of the system call, because
subsequent local processing, designed for a uniprocessor system, may be irrelvant,
Therefore, the semantics of kernel algorithms may change to support a remote
system call model. However, network traffic is kept to a minimum, allowing system
response (o be as fast as possible.

13.4 A TRANSPARENT DISTRIBUTED MODEL WITHOUT STUB
PROCESSES

Use of stub processes in the transparent distributed system model makes it casy for
the remote system o keep track of remote files, but the process table on the remote
system becomes cluttered with stubs that are idle most of the time. Other schemes
use special server processes on the remote machine to handle remote requests (see
[Sandberg 85] and [Cole 851). The remote system has a pool of server processes
and assigns them temporarily to handle each remote request s it arrives. After
handling a request, the scrver process reenters the pool and is available for
reassignment 10 other requests: The server does not remember the user context
(such as user ID) between system calls, because it may handle system calls for
several processcs. Consequently, each message from a client process must include
data about its environment, such as UIDs, current directory, disposition of signals,
and s0 on. Stub processes acquire this data at setup time or during the normal
course of system call execution.

When a process opens a remote file, the remote kernel allocates an inode for
later reference to the file. The local machine has the usual entries in the user file
descriptor table, file table, and inode table, and the inode entry identifies the remote
‘machine and inode. For system calls that use a file descriptor, likc read, the kernel
sends a message that identifies the previously allocated remote inode and passes
over process-specific information, such as the user ID, the maximum allowed file
size, and so on. When the remote machine dispatches a server, communication
with the client process is similar to what was described previously, but the
connection between the client and server exists only for the duration of the system
call.

Handling flow control, signals, and remote devices is more difficult using server
processes instead of stubs. If a remote machine is flooded with requests from many
machines, it must queue the requests if it does not have enough server processes.
This requires a_higher-level protocol than the one already provided with the
underlying network. In the stub model, on the other hand, a stub cannot be flooded
requests, because all transactions with a client are synchronous: A client can
have at most one outstanding request.
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Consider a process that opens the remote file “/usr/src/cmd/login.c”, where
“src” is the mount point. As the kernel parses the path name in namei-iger, it
detects that the file is remote and sends a request to the remote machine 10 return 2
locked inode. On receipt of a successful response, the local kernel allocates an in.
core inode that corresponds to the remote file. It then checks file modes for
necessary permissions (permission to read, for instance), by sending another
message to the remote machine. It continues executing the open algorithm as
presented in Chapter S, sending messages 1o the remote machine when necessary,
until it completes the algorithm and unlocks the inode. Figure 13.11 illustrates the
relationship of the kernel data structures at conclusion of the open.

For a read system call, the client kernel locks the local inode, sends a message
1o lock the remote inode, sends a message 10 read data, copies the data into local
memory, sends a message to unlock the remote inode, and unlocks the remote
inode. “This scheme conforms t0 the semantics of existing, uniprocessor kernel code,
but the frequency of network use (potentially several times per system call) hurts
performance. Several operations can be combined into one message 1o reduce
network traffic, however. In the read cxample, the client can send one “read”
message to the server, which knows that it has to lock and unlock its inode while
doing the read operation. Implementation of remote caches can further reduce
network traffic, as mentioned above, but care must be taken to maintain the
semantics of file system calls.

In a remote system call design, the local kernel recognizes that a system call
refers 10 a remote file, as above, and sends the parameters of the system call to the
remote system, which cxceutes the system call and returns the results to the client
The client machine receives the results of the remote system call and longjmps out
of the system call. Most system calls can be exccuted with only one network
message, resulting in reasonably good system response, but several kernel operations
do not ft the model. For instance, the kernel creates a “core” fil for a process on
receipt of various signals (Chapter 7). Creation of a core file does not correspond
10 one system call but entails several inode operations, such as creation of a file,
checking access permissions, and doing several write operations.

For an open system call, the remote system call message consists of the
remainder of the path name (the path name string after the component where the
remote path name was detected) and the various flags. Repeating the earlier
example for a process that opens the file “usr/src/cmd/login.c", the kernel sends
the path name “cmd/login.c” to the remote machinc. The message also cont:
identifying information, such as user 1D and group ID, needed to determine file
access capabilities on the remote machine. When the remote machine responds
that the open call succeeded, the local kernel allocates a free, local, in-core inode,
marks it “remote,” saves the information needed to identify the remote machine
and the remote inode, and allocates a new file table entry in the usual manner. The
inode on the local machine is a dummy for the real inode on the remote machine,
resulting in the same configuration as the remote procedure call model (Figure
13.11). When a process issucs a system call that aceesses a remote file by its file
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main0
(
int child;
if ((child = fork0) == 0)
(
prinf(Cchild PID %d\n", getpid0);
pauseQ;  /* suspend exccution until signal */
]
1 parent */
printfCCchild PID %d\n", child);
exit(ehild);

Figure 7.15. Example of Exit

pid = wait (stat_addr);

where pid is the process ID of the zombie child, and sta_addr is the address in
user space of an integer that will contain the exit status code of the child.

Figure 7.16 shows the algorithm for wait. The kernel searches for a zombic
child of the process and, if there are no children, returns an error. If it finds a
zombie child, it extracts the PID number and the parameter supplicd to the child's
exit call and returns those values from the system call. An exiting process can
thus specify various return codes to give the reason it exited, but many programs
do not consistently set it in practice. The kernel adds the accumulated time the
child process exceuted in user and in kernel mode to the appropriate fields in the
parent process  area and, finally, releases the process table slot formerly occupied
by the zombie process. The slot is now available for a new process.

If the process cxecuting wait has child processes but none are zombie, it sleeps
at an interruptible priority until the arrival of a signal. The kernel does not contain
an explicit wake up call for a process slecping in wait: such processes only wake up
on receipt of signals. For any signal except “death of child,” the process will react
as described above. However, if the signal is “death of child,” the process may
respond differently.

© In the default case, it will wake up from its sleep in wait, and sleep invokes
algorithm issig to check for signals. Issig (Figure 7.7) recognizes the special
case of “death of child” signals and returns “false.” Conscquently, the kernel
docs not “long jump" from sleep, but returns to wait. The kernel wil restart
the wai loop, find a zombic child — at least one is guaranteed to exist, release
the child’s process table slot, and return from the wai system call,

© If the process catches “death of child” signals, the kernel arranges 10 call the
user signal-handler routine, as it does for other signals.
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block number fields in the buffer header to identify where to find the data on the
device, and it uses the buffer address to identify where the data should be
transferred. Similarly, if @ process accesses a block device directly (that is, the
process opens the block device and reads or writes i), it uses the buffer cache
algorithms, and the interface works as just described.

10.1.25 Toctl

The ioctl system call is a generalization of the terminal-specific sty Gset ter
settings) and giry (get terminal settings) system calls available in carlier versions of
the UNIX system. It provides a general, catch-all entry point for device specific
commands, allowing a process to set hardware options associated with a device and
Software options associated with the driver. The specific actions specified by the
ioctl call vary per device and are defined by the device driver. Programs that use
joct] must know what type of file they are dealing with, because they are device-
specific. This is an cxception to the general rule that the system does not
differentiate between different file types. Section 10.3.3 provides more detail on the
use of ioct! for terminals.
The syntax of the system call is

11(6d, command, arg);

where fd is the file descriptor returned by a prior open system call, command is a
request of the driver to do a particular action, and arg is a parameter (possibly a
pointer 1o a structure) for the command. Commands are driver specific; hence,
each driver interprets commands according to internal specifications, and the
format of the data structure arg depends on the command. Drivers can read the
data structure arg from user space according to predefined formats, or they can
write device settings into user address space at arg. For instance, the ioct!
interface allows users to set terminal baud rates; it allows users to rewind tapes on
a tape drive; finally, it allows network operations such as specifying virtual circuit
numbers and network addresses.

10,126 Otber File System Related Calls

File system calls such as star and chmod work for devices as they do for regular
files; they manipulate the inode without accessing the driver. Even the seck system
call works for devices. For example, if a process Iseeks to a particular byte offset
on a tape, the kernel updates the file table offsct but does no driver-specific
operations. When the process later reads or writes, the kernel moves the file table
offset to the u area, as is done for regular files, and the device physically seeks to
the correct offset indicated in the u area. An example in Section 10.3 illustrates
this case.
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processor scheme consists of a tightly coupled set of processors that share the file
resources of a central processor. The Neweastle connection gives the appearance of
transparent, remote file access, but remote access is provided by a special
implementation ‘of the C library, not by the kernel. Consequently, programs must
be recompiled to use the Newcastle connection, sometimes a serious drawback.
Remote files are designated by special character sequences that identify the
‘machine that stores the file, another factor that can limit portability.

A transparent distributed system uses a variation of the mount system call to
give access 10 a remote file system, much as the usual mount system call extends
the local file system to newly mounted disk units. Inodes on the local system
indicate that they refer o remote files, and the local kernel sends messages to the
remote kernel, describing the kernel algorithm (system call), its parameters, and
the remote inode. Two designs support the remote transparent, distributed
operations: a remote procedure call model, where the messages instruct the remote
machine to execute inode operations, and a remote system call model, where the
messages instruct the remote machine to execute system calls. Finally, the chapter
examined the issues involved with serving remote requests with stub processes or
with server processes from a general pool.

13.6 EXERCISES

* 1. Describe an implementation of the exit system call on a satellite processor system.
How is this different from the case where a process exits as a result of receipt of an
uncaught signal? How should the kernel dump the “core” file?

2. Processes cannot ignore the SIGKILL signal; describe what happens on a satclite
system when a process receives this signal.

Describe an implementation of the exec system call on a satellite processor system.

* 4. How should a central processor assign processes 1o satellite processors to balance the
exccution load?

*5. What happens if a satellite processor does not contain enough memory for the
processes downloaded 1o it? How should it handle swapping or paging across a
network?

6. Consider a system that allows access to remote file server machines by recognizing
path names by special prefaces. Suppose a process executes.

execl (/. /sttig/bin/sh, “sh”, 0);

The exccutable image is on the remote machine but should exccute on the local
machine. Describe how the local system brings the remote executable file to the local
system to do the exec.

7. 1f an administrator wishes 10 add new machines to a Newcastle system, what is the
best way to inform the C library modules?

* 8. The kernel overwrites the address space of a process during exec, including the library
tables used by a Newcastle-style implementation to keep track of remote file
references. The process must still be able 10 access these files by their old file
deseriptors after the exec. Describe an implementat
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Figure 7.14 shows the algorithm for exit. The kernel first disables signal
handling for the process, because it no longer makes any sense to handle signals. 1f
the exiting process is a process group leader associated with a control terminal (see
Section 10.3.5), the kernel assumes the user is not doing any useful work and sends
a “hangup” signal o all processes in the process group. Thus, if a user types “end
of fle" (control-d character) in the login shell whilc some processes associated with
the terminal are still alive, the exiting process will send them a hangup signal. The
kernel also resets the process group number to 0 for processes in the process group,
because it is possible that another process will later get the process 1D of the
process that just exited and that it 100 will be a process group leader. Processes
that belonged to the old process group will not belong o the later process group.
The kernel then goes through the open file descriptors, closing cach onc internally
with algorithm close, and releases the inodes it had accessed for the current
directory and changed root (if it exists) via algorithm ipur

The kernel now releases all user memory by frecing the appropriate regions with
algorithm detachreg and changes the process state to zombic. It saves the exit
status code and the accumulated user and kernel execution time of the process and
its descendants in the process table. The description of waif in Section 7.4 shows
how a process gets the timing data for descendant processes. The kernel also writes
an accounting record to a_global accounting file, containing various run-time
statistics such as user 1D, CPU and memory usage, and amount of 1/O for the
process. User-level programs can later read the accounting file to gather various
statistics, useful for performance monitoring and customer billing. ~Finally, the
kernel disconnects the process from the process tree by making process 1 (inir)
adopt all its child processes. That is, process 1 becomes the legal parent of all live
children that the exiting process had created. If any of the children are zombie,
the exiting process sends init a “death of child” signal so that init can remove them
from the process table (sec Section 7.9); the exiting process sends its parent a
“death of child" signal, too. In the typical scenario, the parent process executes a
wait system call to synchronize with the exiting child. The now-zombie process
does a context switch so that the kernel can schedule another process to execute;
the kernel never schedules a zombie process to execute.

In the program in Figure 7.15,  process creates a child process, which prints its
PID and exccutes the pause system call, suspending itself unti it receives a sign;
The parent prints the child’s PID and exits, returning the child’s PID as its status
code. If the exit call were not present, the startup routine calls exit when the
process returns from main. The child process spawned by the parent lives on until
it receives a signal, even though the parent process is gone.

7.4 AWAITING PROCESS TERMINATION

A process can synchronize its execution with the termination of a child process by
exccuting the wait system call. The syntax for the system call is





index-334_1.png
m ‘THE 1/0 SUBSYSTEM

Other machines have programmed 110, meaning that the machine containg
instructions to control devices. Drivers control devices by executing the appropriate
instructions. For cxample, the IBM 370 computer has a Start J/O instruction 1o
initiate an 1/0 operation to a device. The method a driver uses to communicate
with peripherals is transparent to the user.

Because the interface between device drivers and the underlying hardware is
machine dependent, no standard interfaces cxist at this level. For both memory.
mapped 1/0 and programmed 1/0, a driver can issue control sequences to a device
t0 set up direct memory access (DMA) between the device and memory. The
system allows bulk DMA transfer of data between the device and memory in
parallel to CPU operations, and the device interrupts the system when such a
transfer has completed. The driver sets up the virtual memory mapping so that the
correct locations in memory are used for DMA.

High-speed devices can sometimes transfer data directly between the device and
the user’s address space, without intervention of a kernel buffer. This results in
higher transfer speed because there is one less copy operation in the kernel, and the
amount of data transmitted per transfer operation is not bounded by the size of
Kernel buffers. Drivers that make use of this “raw” 1/O transfer usually invoke the
block strategy interface from the character read and write procedures if they have
a block counterpart.

10124 Strategy Interface

The kernel uses the strategy interface to transmit data between the buffer cache
although as mentioned above, the read and write procedures of
s sometimes use their (block counterpart) strategy procedure to
transfer data directly between the device and the user address space. The strategy
procedure may queue 1/0 jobs for  device on a work list or do more sophisticated
processing to schedule 1/0 jobs. Drivers can set up data transmission for one
physical address or many, as appropriate. The kernel passes a buffer header
address to the driver strategy procedure; the header contains a list of (page)
addresses and sizes for transmission of data to or from the device. This is also how
the swapping operations discussed in Chapter 9 work. For the buffer cache, the
kernel transmits data from one data address; when swapping, the kernel transmits
data from many data addresses (pages). If data is being copied to or from the
user's address space, the driver must lock the process (or at least, the relevant
pages) in memory until the 1/ transfer is complete.

For example, after mounting a file system, the kernel identifies every file in the
file system by its device number and inode number. The device number is an
encoding of the device major and minor numbers. When the kernel accesses @
block from a fle, it copies the device number and block number into the buffer
header, as described in Chapter 3. When the buffer cache algorithms (bread or
bwrite, for example) access the disk, they invoke the strategy procedure indicated
by the device major number. The strategy procedure uses the minor number and
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Handling signals that interrupt a system call is also more complicated with
server processes, because the remote machine must find the correct server process
that is executing the system call. It is even possible that the system call request is
still waiting for service if all server processes were busy. Similarly, race conditions
are possible if the server returns the result of the system call to the calling process,
and the response passes the signal message en routc through the network. Each
message must be tagged so that the remote system can locate it and interrupt
server processes, if necessary. Using stub processes, the process servicing the client
system call is automatically identified, and it is casy to determine if it already
finished handling a system call when a signal arrives.

Finally, if a process issues a system call that causes the scrver process to slecp
indefinitely (reading a remote terminal, for example), the server process cannot
handlc other requests, effectively removing it from the server process pool. If many
processes access remote devices and if there is an upper bound on the number of
server processes, this can be a severe bottleneck. This cannot happen when using
stub processes, because the stubs are allocated per client process. Exercise 13.14
explores another problem in using server processes for remote devices.

In spite of the advantages for using process stubs, the need for process table
slots is so critical in practice that most schemes use a pool of service processes to
handle remote requests.

User System Call Library

Newcastle Layer

System Call Handler

- Satellite,
R ile System d
emote File System Handler <. <Rmm ‘System Call

Kemel File Subsystem <. Remote Procedure Call

Figure 13.12. Conceptual Kernel Layer for Remote

Access

13.5 SUMMARY

This chapter has described three schemes for allowing processes to access files
stored on remote machines, treating the remote file systems as an cxtension of the
Iocal file system. Figure 13.12 illustrates the architectural difference between them,
These systems are distinguished from the multiprocessor systems described in the
previous chapter, because processors do not share physical memory. The satellite
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Magic Number
Primary Header | Number of Scctions
Initial Register Values

Section Type
Section 1 Header Section Size
Virtual Address
ection Type

Section 2 Header Section Size
A Virtual Address

[ Section Type

Section n Header Section Size
Virtual Address
Section 1 Data (e, text)

Section 2 Data

Section n Data

Other Information

Figure 7.20. Image of an Exccutable

Specific formats have evolved through the years, but all executable files have
contained a primary header with a magic number.

‘The magic number is a short integer, which identifies the file as a load module
and cnables the kernel to distinguish run-time characteristics about it. For
example, use of particular magic numbers on a PDP 11/70 informed the kernel
that processes could use up to 128K bytes of memory instead of 64K bytes,? but the
magic number still plays an important role in paging systems, as will be seen in
Chapter 9.

2. The values of the magic numbers were the values of PDP 11 jump instructions; original versions of
the system executed the instructions, and the program counter Jumped to various locations depending
on the size of the header and on the type of exccutable fle being executed! This feature was no
Tonger n use by the time the system was writen in C.
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position. The results of the read calls should be identical, assuming no other e
system activity.

Programs that read and write the disk directly are dangerous because they can
read or write sensitive data, jeopardizing system security.  Administrators mus,
protect the block and raw interfaces by putting the appropriate permissions on the
disk device files. For example, the disk files “/dev/dsk15” and “/dev/rdskis™
should be owned by “root,” and their permissions should allow “root” 1o read the
file but should not allow any other users to read or write

Programs that read and write the disk directly can also destroy the consistency
of file system data. The file system algorithms explained in Chapters 3, 4, and §
coordinate disk 1/0 operations to maintain a consistent view of disk data structures,
including linked lists of free disk blocks and pointers from inodes to direct and
indirect data blocks. Processes that access the disk directly bypass these
algorithms.  Even if they are carefully encoded, there is still a consistency problem
if they run while other file system activity is going on. For this reason, fsck should
not be run on an active file system.

The difference between the two disk interfaces is whether they deal with the
buffer cache. When accessing the block device interface, the kernel follows the
same algorithm as for regular files, except that after converting the logical byte
offset into a logical block offset (recall algorithm bmap in Chapter 4), it treats the
logical block offset as a physical block number in the file system. It then accesses
the data via the buffer cache and, ultimately, the driver strategy interfac.
However, when accessing the disk via the raw interface, the kernel does not convert
the byte offsct into the file but passes the offset immediately to the driver via the
area. The driver read or write routine converts the byte offset to a block offset and
copies the data directly to the user address space, bypassing kernel buffers.

Thus, if one process writes a block device and a second process then reads a
raw device at the same address, the second process may not read the data that the
first process had written, because the data may stll be in the buffer cache and not
on disk. However, if the second process had read the block device, it would
automatically pick up the new data, as it exists in the buffer cache.

Use of the raw interface may also introduce strange behavior. If a process
reads or writes a raw device in units smaller than the block size, for example,
results are driver-dependent. For instance, when issuing 1-byte writes to a tape
drive, cach byte may appear in different tape blocks.

The advantage of using the raw interface is speed, assuming there is no
advantage to caching data for later access. Processes accessing block devices
transfer blocks of data whose size is constrained by the file system logical block
size. For example, if a file system has a logical block size of 1K bytes, at most 1K
bytes are transferred per 1/0 operation. However, processes accessing the disk as &
raw device can transfer many disk blocks during a disk operation, subject to the
capabilities of the disk controller. Functionally, the process sees the same result,
but the raw interface may be much faster. In Figure 10.8 for example, when a
process reads 4096 bytes using the block interface for a file system with 1K bytes

|
|
|
|
|
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Figure 2.6. Process States and Transitions

kernel executes the code until the comment and then does a context switch. The
doubly linked st is in an inconsistent state: the structure bp! is half on and half
off the linked list. If a process were 10 follow the forward pointers, it would find
bpI on the linked list, but if it were 1o follow the back pointers, it would not find
bpl (Figure 2.8). If other processes were to manipulate the pointers on the linked
list before the original process ran again, the structure of the doubly linked list
could be permanently destroyed. The UNIX system prevents such situations by
disallowing context switches when a process excutes in kernel mode. If a process
g0es 1o sleep, thereby permitting a context switch, kernel algorithms are encoded to
make sure that system data structures are in a safe, consistent state.

A related problem that can cause inconsistency in kernel data is the handling of
interrupts, which can change kernel state information. For example, if the kernel
was exceuting the code in Figure 2.7 and received an interrupt when it reached the
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algorithm cxes
input: (1) fle name
@) parameter list
(3) environment variables list
output: none
{
get fle inode (algorithm namei);
verify fle executable, user has permission to execute;
read file headers, check that it is a load module;
copy exec parameters from old address space to system space;
for (every region attached to process)
detach all old regions (algorithm detach);
for (every region specified in load module)

s Galgorithm allocrey
(algorithm attachre
Ioad region into memory if appropriate (algorithm loadreg);

opy exec parameers into new user stack region;
special processing for setuid programs, tracing;

e user register save arca for return to user mode;
release inode of file (algorithm ipu);

Figure 7.19. Algorithm for Exec

variable environ, initialized by the C startup routine.

Figure 7.19 shows the algorithm for the exec system call. Exec first accesses
the file via algorithm namei to determine if it is an exccutable, regular
(nondirectory) file and to determine if the user has permission 1o execute the
program. The kernel then reads the file header to determine the layout of the
exccutable file.

Figure 7.20 shows the logical format of an executable file as it exists in the file
system, typically generated by the assembler or loader. It consists of four parts:

1. The primary header describes how many sections are in the file, the start
address for process exccution, and the magic number, which gives the type of
the executable fle.

2. Section headers describe cach section in the file, giving the section size, the
virtual addresses the section should occupy when running in the system, and
other information.

3. The sections contain the “data,” such as text, that are initially loaded in the
process address space.

4. Miscellancous sections may contain symbol tables and other data, useful for
debugging.
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Figure 2.1, Block Diagram of the System Kernel

the operating system, as covered in more detail in Chapter 6. Assembly language
programs may invoke system calls directly without a system call library, however.
Programs frequently use other libraries such as the standard 1/0 library to provide
a more sophisticated use of the system calls. The libraries arc linked with the
programs at compile time and are thus part of the user program for purposes of
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01000 sticky bit
00400 read for owner
00200 write for owner
00100 execute for owner
00040 read for group
00020 write for group
00010 execute for group.
00004 read for others
00002 write for others
00001 execute for others

chown

chown(filename, owner, group)

char *filename;

int owner, grou
Chown changes the owner and group of the indicated file to the specified owner and
group IDs.

chroot

chroot(filename)
char *filename;

Chroot sets the private, changed-root of the calling process to filename.

close

close(fildes)
int fildes;

Close closes a fle descriptor obtained from a prior open, creat, dup, pipe, or fentl
system call, or a file descriptor inherited from a fork call,

creat

creat(filename, mode)
char *filename;
int mode;

Creat creates a new file with the indicated file name and aceess permission modes
Mode is as specified in access, except that the sticky-bit is cleared and bits set via
umask are cleared. If the file already exists, crear truncates the file. Creat returns
a file descriptor for use in other system calls
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the next section and in Chapter 11, respectively. Finally, it invokes algorithm iput,
releasing the inode that was originally allocated in the namei algorithm at the
beginning of exec. The use of namei and iput in exec corresponds 10 their use in
opening and closing a file; the state of a file during the exec call resembles that of
an open file cxcept for the absence of a file table entry. When the process
“returns” from the exec system call, it executes the code of the new program.
However, it is the same process it was before the execs its process 1D number does
not change, nor does its position in the process hierarchy. Only the user-level
context changes.

‘main0
(
int status;
if (forkQ == 0)
execl(“/bin/date”, “date”, 0);
wait(&status);

Figure 7.21. Use of Exec

For example, the program in Figure 7.21 creates a child process that invokes
the exec system call. Immediately after the parent and child processes return from
Jork, they execute independent copies of the program. When the child process is
about to invoke the exec call, its text region consists of the instructions for the
program, its data region consists of the strings “/bin/date” and “date”, and its
stack contains the stack frames the process pushed 10 get 10 the exec call. The
kernel finds the file “/bin/date” in the file system, finds that all users can exccute
it, and determines that it is an executable load module. By convention, the first
parameter of the argument list argv to exec is the (last component of the) path
name of the exccutable file. The process thus has access to the program name at
user-level, sometimes a useful feature’ The kernel then copies the strings
“/bin/date” and “date” 10 an internal holding area and frees the text, data, and
stack regions occupied by the process. It allocates new text, data, and stack regions
for the process, copics the instruction section of the file “/bin/date” into the text
region, and copics the data section of the file into the data region. The kernel
reconstructs the original parameter list (here, the character string “date”) and puts
itin the stack region. After the exec call, the child process no longer exccutes the

3.On System V for instanece, the standard programs for renaming a fle (), copying a file (cp), and
linking a file (1) are one cxecutable fle because they exccute similar code. The process looks 8 the
name the uer used o invoke it 1o determine what it should do.
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At this point, the kernel has accessed the inode for the executable file and has
verified that it can execute it. It is about to free the memory resources that
currently form the user-level context of the process. But since the parameters to
the new program are contained in the memory space about 0 be freed, the kernel
first copies the arguments from the old memory space to a temporary buffer until it
attaches the regions for the new memory space,

Because the parameters to exec are user addresses of arrays of character strings,
the kernel copies the address of the character string and then the character string
to kernel space for cach character string. It may choose several places 1o store the
character strings, dependent on the implementation. The more popular places are
the kernel stack (a local array in a kernel routine), unallocated areas (such as
pages) of memory that can be borrowed temporarily, or secondary memory such as
a swapping device.

The simplest implementation for copying parameters 1o the new user-level
context is to use the kernel stack. But because system configurations usually
impose a limit on the size of the kernel stack and because the exec parameters can
have arbitrary length, the scheme must be combined with another. Of the other
choices, implementations use the fastest method. If it is easy to allocate pages of
‘memory, such a method is preferable since access to primary memory is faster than
access to secondary memory (such as a swapping device).

After copying the exec parameters t0 a holding place in the kernel, the kernel
detaches the old regions of the process using algorithm detachreg. Special
treatment for text regions will be discussed later in this section. At this point the
process has no user-level context, 5o any errors that it incurs from now on result in
its termination, caused by a signal. Such errors include running out of space in the
kernel region table, attempting 10 load a program whose size exceeds the system
limit, attempting to load a program whose region addresses overlap, and others.
The kernel allocates and attaches regions for text and data, loading the contents of
the excoutable file into main memory (Galgorithms allocreg, attachreg, and
loadreg). The data region of a process is (initially) divided into two parts: datz
initialized at compile time and data not initialized at compile time (“bss"). The
al allocation and attachment of the data region is for the initialized data. The
kernel then increases the size of the data region using algorithm growreg for the
“bss” data, and initializes the value of the memory to 0. Finally, it allocates &
region for the process stack, attaches it 10 the process, and allocates memory to
store the exec parameters. If the kernel has saved the exec parameters in memory
pages, it can use those pages for the stack. Otherwise, it copics the exec
parameters to the user stack.

‘The kernel clears the addresses of user signal catchers from the u area, because
those addresses are meaningless in the new user-level context. Signals that are
ignored remain ignored in the new context. Then the kernel sets the saved register
context for user mode, specifically setting the initial user stack pointer and program
counter: The loader had written the initial program counter in the file header. The
Kernel takes special action for setuid programs and for process tracing, covered in
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per block, the kernel loops internally four times and accesses the disk during cach
iteration before returning from the system call, but when it reads the raw interface,
the driver may satisfy the read with one disk operation. Furthermore, use of the
block interface entails an extra copy of data between user address space and kernel
buffers, which is avoided in the raw interface.

10.3 TERMINAL DRIVERS

Terminal drivers have the same function as other drivers: to control the
transmission of data to and from terminals. However, terminals are special,
because they are the user’s interface to the system. To accommodate interactive
use of the UNIX system, terminal drivers contain an internal interface to line
discipline modules, which interpret input and output. In canonical mode, the line
discipline converts raw data sequences typed at the keyboard to a canonical form
(what the user really meant) before sending the data to a receiving process; the line
discipline also converts raw output sequences written by a process 1o a format that
the user expects. In raw mode, the line discipline passes data between processes
and the terminal without such conversions.

For cxample, programmers are notoriously fast but error-prone typists.
Terminals provide an “erase” key (or such a key can be so designated) such that
the user can logically erase part of the typed sequence and enter corrections. The
terminal sends the entire sequence 1o the machine, including the erase characters.*
In canonical mode, the line discipline buffers the data into lines (the sequence of
characters until a carriage-return® character) and processes erase characters
internally before sending the revised sequence to the reading process.

‘The functions of 4 line discipline are

« 1o parse input strings into

o 10 process erase characters;

* 10 process a “kill” character that invalidates all characters typed so far on the
current line;

« 0 echo (write) received characters to the terminal;

« 10 expand output such as tab characters to a sequence of blank spaces;

© 1o generate signals to processes for terminal hangups, line breaks, or in response
10 user hitting the delete key;

 10allow a raw mode that does not interpret special characters such as erase, kill
o carriage return.

4. This scction will ssume the use of dumb terminals, which transmit all characters typed by the user
without processing them.

5. This chapir will e the generic tem “cariage reur” for
characters.

and “new-ine”
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Hinclude <signal.h>

main0

{
extern catcher();
signal SIGINT, catcher);
Kill0, SIGINT);

1

catcher()
{
i

Figure 7.9. Source Code for a Program that Catches Signals

"5 VAX  DISASSEMBLER *+++

_main0

o
6 pushab  OxI8(pe)
e pushl  SOx2

# next line calls signal
e calls  S0x20x23(p0)
15 pushl S0
oodd -G

# next line calls kill library routine
0 calls  50x2,0x8(pc)

100 et
100 halt
102 halt
103 halt
_eatcher(
106
106 ret
107 halt
kil
108:
# next line traps into kernel

chmk $0x25

bgeau 06 <0xi14>
jmp OxI4(po)
al w0

et

Figure 7.10. Disassembly of Program that Catches Signals
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Figure 10.1. Driver Entry Points

special fle “/dev/mem” and its major number is 3, the kernel calls the routine
mmread in entry 3 of the character device switch table. The routine nulldev is an
“empty” routine, used when there is no need for a particular driver function.
Many peripheral devices can be associated with a major device number; the minor
device number distinguishes them from each other. Device special fles do not have
10 be created every time the system is booted; they need be changed only if the
configuration changes, such as when adding devices to an installation.

1012 System Calls and the Drirer Interface

This section describes the interface between the kernel and device drivers. For
system calls that use file descriptors, the kernel follows pointers from the user file
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ile access is remote and take the appropriate action. For both naming
entions, the C library parses the first components of a path name to determine
t a file s remote. This departs from usual implementations where the library
does not parsc path names. Figure 13.9 depicts how requests for file service ary
formulated. If a file name is local, the local kernel handles the request in the usug]
way. But consider execution of the system call

open(“/../sftig/fs1 /mjb/rje/file”, O_RDONLY);

The C library routine for open parses the first two components of the path name
and recognizes that the file should be on the remote machine “sftig”. It maintaing
a data structure 0 keep track of whether the process had previously established
communication to machine “sftig” and, if not, establishes a communications link to
a file server process on the remotc machine. When a process makes its first remote
request, the remote server validates the request, mapping user and group ID fields
as necessary, and creates a stub process t0 act s the agent for the client process.

‘The stub, executing requests for the client process, should have the same access
ights to files that the client user would have on the remote machine. That is, user
“mjb™ should access remote fles according to the same permissions that govern
access to local files. Unfortunately, the client user ID for “mjb™ may be that of «
different user on the remote machine. Either the system administrators of the
various machines must assign unique identifiers 10 all users across the network, or
they must assign a transformation of user IDs at the time of request for network
service. Failing the above, the stub process should execute with “other”
permissions on the remote machine.

Allowing superuser access permission on remote files is a more ticklish situation
On the one hand, a client superuser should not have superuser rights on the remote
system, because a user could thereby circumvent security measures on the remote
system. On the other hand, various programs would not work without remote
superuser capabilities. For instance, recall from Chapter 7 that the program
midir, which creates a new dircctory, runs as a seruid program with superuser
permissions. The remote system would not allow a client 1o create a new directory,
because it would not recognize remote superuser permissions. The problem of
creating a remote directory provides a strong rationale for implementing a mkdir
system call, which would automatically establish all necessary directory links
Nevertheless, exceution of seuid programs that access remote files as superuser is
stll a general problem that must be dealt with. Perhaps this problem could best be
solved by providing files with a separate set of access permissions for remote
superuser access; unfortunately, this would require changes to the structure of the
disk inode 10 save the new permission fields and would thus cause too much turmoll
in existing systems.

When an open call returns successfully, the local library makes an appropriate
notation in a user-level library data structure, including a network address, stub
process ID, stb file descriptor, and other appropriate information. The library
routines for the read and write system calls examine the file descriptor to sec if the
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is wrong with the process. The quit signal, however, induces a core dump cven
though it is initiated outside the running process. Usually sent by typing the
control-vertical-bar character at the terminal, it allows the programmer to obtain a
core dump of a running process, useful for one that s in an infinite loop.

When a process receives a signal that it had previously decided to ignore, it
continues as if the signal had never occurred. Because the kernel does not reset the
field in the u area that shows the signal is ignored, the process will ignore the signal
if it happens again, too. If a process receives a signal that it had previously decided
to cath, it executes the user specified signal handling function immediately when it
returns to user mode, after the kernel does the following steps.

The kernel accesses the user saved register context, finding the program

counter and stack pointer that it had saved for return to the user process.

It clears the signal handler field in the u area, setting it to the default state.

3. The kernel creates a new stack frame on the user stack, writing in the values
of the program counter and stack pointer it had retricved from the user saved
register context and allocating new space, if necessary. The user stack looks
as if the process had called a user-level function (the signal catcher) at the
point where it had made the system call or where the kernel had interrupted
it (before recognition of the signal).

4. The kernel changes the user saved register context: It resets the value for the

program counter 1o the address of the signal catcher function and sets the

value for the stack pointer to account for the growth of the user stack.

After returning from the kernel to user mode, the process will thus execute the
signal handling function; when it returns from the signal handling function, it
returns o the place in the user code where the system call or interrupt originally
oceurred, mimicking a return from the system call or interrupt.

For cxample, Figure 7.9 contains a program that catches interrupt signals
(SIGINT) and sends itsclf an interrupt signal (the result of the kill call here), and
Figure 7.10 contains relevant parts of a disassembly of the load module on a VAX
11/780. When the system cxecutes the process, the call to the kill library routine
comes from address (hexadecimal) ce, and the library routine cxecutes the chmk
(change mode to kernel) instruction at address 10a to call the ill system call. The
return address from the system call is 10c. In exccuting the system call, the kernel
sends an interrupt signal to the process. The kernel notices the interrupt signal
when it is about to return to user mode, removes the address 10c from the user
saved register context, and places it on the user stack. The kernel takes the address
of the function catcher, 104, and puts it into the user saved register context.
Figure 7.1 illustrates the states of the user stack and saved register context.

Several anomalies exist in the algorithm described here for the treatment of
signals. First and most important, when a process handles a signal but before it
returns 10 user mode, the kernel clears the field in the u area that contains the
address of the user signal handling function. If the process wants to handle the
signal again, it must call the signal system call again. This has unfortunate
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particular slot on the hardware backplane.

There are three stages at which device configuration can be specified. Firs,
administrators can hard-code configuration data into files that arc compiled ang
linked when building the kernel code. The configuration data is typically specified
in a simple format, and a configuration program converts it into a file suitable for
compilation. Second, administrators can supply configuration information after the
system is already running; the kernel updates internal configuration tables
dynamically. Finally, self-identifying devices permit the kernel to recognize which
devices are installed. The kernel reads hardware switches to configure itself. The
details of system configuration are beyond the scope of this book, but in all cases,
the configuration procedure generates or fils in tables that form part of the code of
the kernel.

The kernel to driver interface is described by the block device switch table and
the character device switch table (Figure 10.1).” Each device type has cntries in the
table that dircct the kernel 10 the appropriate driver interfaces for the system call.
The open and close system calls of a device file funnel through the two device
switch tables, according to the file type. The mount and umount system calls also
invoke the device open and close procedures for block devices. Read, write, and
ioctl system calls of character special files pass through the respective procedures in
the character device switch table. Read and write system calls of block devices and
of files on mounted file systems invoke the algorithms of the buffer cache, which
invoke the device strategy procedure. Some drivers invoke the strategy procedure
internally from their read and write procedures, as will be scen. The next section
explores each driver interface in greater deta

The hardware to driver interface consists of machine-dependent control registers
or 1/0 instructions for manipulating devices and interrupt vectors: When a device
interrupt occurs, the system identifics the interrupting device and calls the
appropriate interrupt handler. Obviously, software devices such as the kernel
profiler driver (Chapter 8) do not have a hardware interface, but other interrupt
handlers may call a “software interrupt handler” directly. For example, the clock
interrupt handler calls the kernel profiler interrupt handler

Administrators set up device special files with the mknod command, supplying
file type (block or character) and major and minor numbers. The mknod command
invokes the mknod system call to create the device file. For example, in the
command line

mknod /dev/ttyl3 ¢ 2 13

“/dev/tty13" is the file name of the device, ¢ specifies that it is a character special
fle (b specifies a block special flc), 2 is the major number, and 13 is the minor
number. The major number indicates a device type that corresponds to the
appropriate entry in the block or character device switch tables, and the minor
number indicatcs a unit of the device. If a process opens the block special file
“/dev/dsk1” and its major number is 0, the kernel calls the routine gdopen in entry
0 of the block device switch table (Figure 10.2); if a process reads the character
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systems exccute all system calls but where calls to the file subsystem may access
files on other machines.

These systems use one of two ways to identify remote files. Some systems insert
a special character into the path name: The component name preceding the special
character identifies a machine, and the remainder of the path name identifies a file
on that machine. For example, the path name.

“sftig!/fs) /mjb/rjc”
identifies the fle /fs1/mjb/rjc” on the machine “sftig”. This file naming scheme
follows the convention established by the wucp program for transferring files
between UNIX systems. Other naming schemes identify remote files by prepending
a special prefix such as

/../sftig/fs1 /mjb/rie

where the */..” informs the parser that the file reference is remote, and the second
component name gives the remote machine name. The latter naming scheme uses
the syntax of conventional file names on the UNIX system, so user software need
not be converted to cope with “irregularly constructed names” as in the former
scheme (see [Pike 85]).

Client Server
Open
C Library File b Read
e rocess  Message
Table (User Level)  Request
local / /T
~emote
Network Network
Kernel Interface Kernel Interface

|

Figure 13.9. Formulation of File Service Requests

The remainder of this section describes a system modeled after the Neweastle
connection, where the kernel does not participate in determining that a file is
remote; instead, the C library functions that provide the kernel interface detect that
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the names and attributes of files) can discover the fils in a directory.

Permission to access a file is controlled by access permissions associated wi
the file. Access permissions can be set independently to control read, write, ar
execute permission for three classes of users: the file owner, a file group, an
everyone else. Users may create files if directory access permissions allow it. Tt
newly created files are leaf nodes of the file system directory structure.

To the user, the UNIX system treats devices as if they were files. D
designated by special device files, occupy node positions in the file system director
structure. Programs access devices with the same syntax they use when accessin
regular files; the semantics of reading and writing devices are to a large degree th
same as reading and writing regular files. Devices are protected in the same wa
that regular files are protected: by proper setting of their (fle) access permissions
Because device names look like the names of regular fles and because the sam
operations work for devices and regular files, most programs do not have to knoy
internally the types of files they manipulate.

For example, consider the C program in Figure 1.3, which makes a new copy o
an existing file. Suppose the name of the executable version of the program i
€opy.. A user at a terminal invokes the program by typing

copy oldfile newfile

where oldfil is the name of the existing file and mewfle is the name of the new file
The system invokes main, supplying arge as the number of parameters in the lis
argy. and iniializing cach member of the array argy to point 0  user-supplied
porameter.  In the example above, arge is 3, argvl0] points to the character siring
<opy (the program name is conventionally the Oth parameter), argv(1] points to the
character string oldfle, and argvl2] points to the character string rwls. The
program then checks that it has been invoked with the proper number of
potineers. I so, it invokes the open system call “read-only” for the file oldfte,
and if the system call succeeds, invokes the crear system call 10 create newsle. e
permission modes on the newly created file wil be 0666 (octal), allowing il users

went wrong.

The open and crear system calls return an integer called a file descriptor, which
the program uses for subsequent references to the files. The program shon call the
purottine copy. which goes into a loop, invoking the read system call 1o youd <
butfer's worth of characters from the existing file, and imvoking the wrise system
gall to write the data to the new file, The read system call returns he e of
bytes read, returning O when it reaches the end of fle, The program finishes the
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aigorithm open 7% for device drivers */
input:  pathname
openmode
output: file descriptor
(

convert pathname to inode, increment inode reference count,
allocate entry in file table, user file descriptor,
as in open of regular file;

get major, minor number from inode;
save context algorithm setjmp) in case of long jump from driver;

if (block device)
{

use major number s index 10 block device switch table;
call driver open procedure for index:
‘pass minor number, open modes;

use major number as index to character device switch table;
call driver open procedure for index:
pass minor number, open modes;
)

if (open fails in driver)
decrement file table, inode counts;

Figure 10.3. Algorithm for Opening a Device

invokes the open procedure encoded in the block device switch table, and for a
character device, it invokes the open procedure in the character device switch table.
If a device is both a block and a character device, the kernel will invoke the
appropriate open procedure depending on the particular device file the user opencd:
‘The two open procedures may even be identical, depending on the driver.

The device-specific open procedure establishes a connection between the calling
process and the opened device and initializes private driver data structures. For a
terminal, for example, the open procedure may put the process o sleep until the
machine detects a (hardware) carrier signal indicating that a user is trying 1o log
in. It then initializes driver data structures according to appropriate terminal
settings (such as the terminal baud rate). For software devices such as system
memory, the open procedure may have no initialization to do.
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a fle access is remote and take the appropriatc action. For both naming
conventions, the C library parses the first components of a path name to determing
that a file is remote. This departs from usual implementations where the library
docs not parsc path names. Figure 13.9 depicts how requests for file service are
formulated. If a file name is local, the local kernel handles the request in the usua]
way. But consider execution of the system call

open(*/../sftig/fs1/mjb/sje/file”, O_RDONLY);

The C library routine for open parses the first two components of the path name
and recognizes that the file should be on the remote machine “sftig”. It maintains
a data structure to keep track of whether the process had previously established
communication to machine “sftig” and, if not, establishes a communications link to
a file server process on the remote machine. When a process makes its first remote
request, the remote server validates the request, mapping user and group ID filds
as necessary, and creates a stub process 1o act as the agent for the client process.

The stub, executing requests for the client process, should have the same access
rights to files that the client user would have on the remote machine. That is, user
“mjb” should access remote files according to the same permissions that govern
access to local files. Unfortunately, the client user ID for “mjb" may be that of &
different user on the remote machine. Either the system administrators of the
various machines must assign unique identifiers to all users across the network, or
they must assign a transformation of user IDs at the time of request for network
service. Failing the above, the stub process should execute with “other”
permissions on the remote machine.

Allowing superuser access permission on remote files is a more ticklish situation.
On the one hand, a client superuser should not have superuser rights on the remote
system, because a user could thereby circumvent security measures on the remote
system. On the other hand, various programs would not work without remote
superuser capabilities. For instance, recall from Chapter 7 that the program
mkdir, which creates a new dircctory, runs as a seid program with superuser
permissions. The remote system would not allow a client to create a new directory,
because it would not recognize remote superuser permissions. The problem of
creating a remote directory provides a strong rationale for implementing a mkdir
system call, which would automatically establish all necessary dircctory links
Nevertheless, exccution of setuid programs that access remote files as suporuser is
stll a general problem that must be dealt with. Perhaps this problem could best be
solved by providing files with a separate st of access permissions for remote
superuser access; unfortunately, this would require changes to the structure of the
disk inode o save the new permission fields and would thus cause too much turmoil
in existing systems.

When an open call returns successfully, the local library makes an appropriate
notation in a user-level library data structure, including a network address, stub
process ID, stub file descriptor, and other appropriate information. The library
routines for the read and write system calls examine the file descriptor to see if the
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Figure 7.11. User Stack and Kernel Save Area Before and After Receipt of Signal

ramifications: A race condition results because a second instance of the signal may
arrive before the process has a chance to invoke the system call. Since the process
is executing in user mode, the kernel could do a context switch, increasing the
chance that the process will receive the signal before resetting the signal catcher.
‘The program in Figure 7.12 illustrates the race condition. The process calls the
signal system call to arrange to catch interrupt signals and execute the function
sigeateher. It then creates a child process, invokes the nice system call to lower its
scheduling priority relative to the child process (see Chapter 8), and goes into an
infinite loop. The child process suspends execution for 5 seconds to give the parent
process time to exccute the nice system call and lower its priority. The child
process then goes into a loop, sending an interrupt signal (via kill) to the parent
process during cach iteration. If the kill returns because of an error, probably
because the parent process no longer exists, the child process exifs. The idea is
that the parent process should invoke the signal catcher every time it receives an
interrupt signal. The signal catcher prints a message and calls signal again to
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block device switch table

entry | open | close | strategy
0| gdopen | gdclose | gdstrategy
T [ gtopen | giclose | gstrategy

character device switch table
enry | open | close | read | write | ioctl
0| conopen | conclose | conread | conwrite | conioctl
Gzbopen | dzbelose | dzbread | dzbwrite | dzbioctl
syopen | nulldev | syread | _sywrite
oulldev_| nulldev_| mmread | mmwrite | nodev
gdopen | gclose | gdread | gdwrite | nodev
glopen | giclose | gtread | gowrite | nodev

Figure 10.2. Sample Block and Character Device Switch Tables

descriptor to the kernel file table and inode, where it examines the file type and
acoesses the block or character device switch table, as appropriate. It extracts the
major and minor numbers from the inode, uses the major number as an index into
the appropriate table, and calls the driver function according to the system call
being made, passing the minor number as a parameter. An important difference
between system calls for devices and regular files is that the inode of a special fle is
not locked while the kernel executes the driver. Drivers frequently slcep, waiting
for hardware connections or for the arrival of data, so the kernel cannot determine
how long  process will sleep. If the inode was locked, other processes that access
the inode (via the stat system call, for example) would slecp indefinitely because
another process is asleep in the driver.

‘The device driver interprets the parameters of the system call as appropriate for
the device. A driver maintains data structures that describe the state of cach unit
that it controls; driver functions and interrupt handlers exceute according to the
state of the driver and the action being done (for example, data being input or
output). Each interface will now be described in greater detail.

10121 Open

The kernel follows the same procedure for opening-a device as it does for opening
regular files (see Scction S.1), allocating an in-core inode, incrementing  its
reference count, and assigning a file table entry and user file descriptor. The kernel
eventually returns the user file descriptor to the calling process, so that opening &
device looks like opening a regular file. However, it invokes the device-specific
open procedure before returning to user mode, (Figure 10.3). For a block device, it
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original file reference was remote and, if it was, send a message 10 the stub. The
client process communicates with its stub for all system calls that need service on
that machine. If a process accesses two files on a remote machine, it uses one stub,
but if it accesses files on two remote machines, it uscs two stubs: onc on each
machine. Similarly, if two processes access a file on a remote machine, they use
wo stubs. When cxccuting a system call via a stub, the process formulates a
message including the system call number, path name, and other relevant
information, similar to the type of message described for satellite processors.

Manipulation of the current directory is more complicated. When a_ process
changes directory to a remote directory, the library sends a message to the stub,
which changes its current directory, and the library remembers that the current
directory is remote. For all path names not beginning with a slash character, the
library sends the path name to the remote machine, where the stub process resolves
the path name from the current directory. If the current directory is local, the
library simply passes the path name to the local kernel. Handling a chroof system
call to a remote directory is similar, but the local kernel does not find out that the
process had done  chroot; strictly speaking, a process can ignore a chroof to a
remote dircetory, because only the library has a record of it. Exercise 13.9
considers the case of “. over a mount point.

When a process forks, the fork library routine sends each stub a fork message.
The stub_processes fork and send their child process IDs to the client parent
process. The client process then invokes the (kernel) fork system call, and on its
return to the child process, the library routine stores the appropriate address
information about the child stub process; the local child process carries on its
dialogue with the remote child stub. This treatment of the fork system call makes
it easy for the stubs to keep track of open files and current directories. When a
process with remote files exirs, the library routine sends a message to the remote
stubs, which exit in response. The exercises explore the exec system call and the
exit system call in greater detail.

The advantage of the Newcastle design is that processes can access remote files
transparently, and no changes need be made to the kernel. However, there are
several disadvantages with this design. System performance may be degraded.
Because of the larger C library, each process takes up more memory even though it
makes no remote references; the library duplicates kernel functions and takes up
more space. Larger processes take longer 10 start up in exec and may cause greater
contention for memory, inducing a higher degree of paging and swapping on a
system. Local requests may execute more slowly because they take longer to get
into the kernel, and remote requests may also be slow because they have to do more
processing at user level to send requests across a network. The extra user-level
processing provides more opportunities for context switches, paging, and swapping.
Finally, programs must be recompiled with the new libraries to access remote file;
old programs and vender supplied object modules do not work for remote files
unless recompiled. The scheme described in the next section does not have these
disadvantages.
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algorithm sighandle 7¥ algorithm for handiing signals */
input: - none:
output: none
(
if (clone process)
if Gignoring signal)
rewrn;
if (in middle of system call)
set signal against clone process;
else
send signal message to satellite process;
)
elsc /* satellit process */
{
/* whether in middle of system call or not */
send signal t0 clone process;
)
]
algorithm satellte_end of syscall  /* satelite end of system call */
input:  none
output:  none.
{
if (system call interrupted)
send message to satellite telling about interrupt, signal;
elsc/* system call not interrupted */
send system call reply: include fiag indicating arrival
of signal;
)

Figure 13.7. Handling Signals on Satellite System

before the satellite process. There are three cascs.

1.+ If the stub does not sleep on an event where it would wake up on occurrence
of a signal, it completes the system call, sends the appropriate results in a
message 10 the satellte process, and indicates which signal it had received.

2. I the process was ignoring the signal, the stub continues the system call
algorithm without doing a longjmp out of an interruptible sleep — the usual
behavior for ignored signals. When the stub replies to the satellite process, it
does not indicate that it had received a signal.

3 I the stub process had done a longjmp out of the system call because of
receipt of a signal, it informs the satellite process that the system call was
interrupted and indicates the signal number.
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algorithm psig /* bandle signals after recognizing their cxistence */
input:  none.
output: none

{

if (user had called signal sys call to ignore this signal)
return /* done */

if (user specified function to handlc the signal)

(

get user virtual address of signal catcher stored in u area;
7 the next statement has undesirable side-effects */
clear u arca eniry that stored address of signal catcher;
modiy user level context
artificially create user stack frame to mimic
call 10 signal catcher functi
‘modify system level context:
address of signal catcher into program
‘counter field of user saved register context;

return;
1
if (signal is type that system should dump core image of process)
{
create file named “core" in current directo
write contents of user level context to file "core’

)

invoke exit algorithm immediately;

Figure 7.8. Algorithm for Handling Signals

to handle signals of one type has no effect on handling signals of other types.

When handling a signal (Figure 7.8) the kernel determines the signal type and
turns off the appropriate signal bit in the process table entry, set when the process
received the signal. If the signal handling function is set to its default value, the
kernel will dump a “core” image of the process (see exercise 7.7) for certain types
of signals before exiting. The dump is a convenience to programmers, allowing
them 1o ascertain its causes and, thereby, to debug their programs. The kernel
dumps corc for signals that imply something is wrong with a process, such as when
a process executes an illegal instruction or when it accesses an address outside its
virtual address space. But the kernel does not dump core for signals that do not
imply a program error. For instance, receipt of an interrupt signal, sent when a
user hits the “delete” or “break” key on  terminal, implies that the user wanis to
terminate a process prematurely, and receipt of a hangup signal implics that the
login terminal is no longer “connected.” These signals do not imply that anything
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table and reads profiling results
“This chapter examines the interfaces between processes and the 1/0 subsystem

and between the machine and the device drivers. It investigates the general
Structure and function of device drivers, then treats disk drivers and terminal
drivers as detailed examples of the general interface. It concludes with 2
description of a new method for implementing device drivers called streams.

10.1 DRIVER INTERFACES

The UNIX system contains two types of devices, block devices and raw or
character devices. As defined in Chapter 2, block devices, such as disks and tapes,
Took like random access storage devices to the rest of the system; character devices
include all other devices such as terminals and network media. Block deviees may
have a character device interface, 10o.

“The user interface 1o devices goes through the file system (recall Figure 2.1)
Every device has a name that looks like a file name and is accessed like a file. The
device special fle has an inode and occupies a node in the dircctory hierarchy of
the file system. The device file is distinguished from other files by the file type
stored in its inode, cither “block” or “character special,” corresponding to the
device it represents. If a device has both & block and character interface, it is
represented by two device files: its block device special file and its character device
special file. System calls for regular files, such as open, close, read, and write,
have an appropriate meaning for devices, as will be cxplained later. The ioctl
system call provides an interface that allows processes to control character devices,
but it is not applicable to regular files.! However, each device driver need not
support every system call interface. For example, the trace driver mentioned carlier
allows users to read records written by other drivers, but it does not allow users to
write it.

10,11 System Configuration

System configuration is the procedure by which administrators specify parameters
that are installation dependent. Some parameters specify the sizes of kernel tables,
such as the process table, inode table, and file table, and the number of buffers to
be allocated for the buffer pool. Other parameters specify device configuration,
telling the kernel which devices are included in the installation and their “address.”
For instance, a configuration may specify that a terminal board is plugged into a

1. Conversely, the fentl system call provides contrl of operations at the fle descriplor level, not the.
devie lovel, Other implementations interpret foct for all fl types.
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call takes care of killing the stub process. If it is catching interrupt signals, it calls
the user signal catcher function and later returns from the read call, giving the user
an error return. On the other hand, if the stub process was executing a stat system
call on behalf of the satellite process, it does not terminate the system call on
receipt of a signal (stat is guaranteed to wake up from all sleeps because it never
has to wait indefinitely for a resource). The stub completes the system call and
returns the signal number to the satellite process. The satellite process posts the
signal to itself and discovers the signal when it returns from the system call.

If the process had been in the middle of a system call and a signal originates on
the satellite processor, the satellte process has no idea whether the stub will return
soon or slecp indefinitely. The satellite process sends a special message to the stub,
informing it of the occurrence of the signal. The kernel on the central processor
reads the message and sends the signal (o the stub, which now reacts as described
in the previous paragraphs: Either it interrupts the system call or it completes it.
The satellite process cannot send the message to the stub directly, because the stub.
is in the middle of a system call and is not reading the communications line. The
central processor kernel recognizes the special message and posts the signal to the
appropriate stub.

Repeating the read example cxplained above, the satellte process has no idea
whether the stub process is waiting for input from a terminal or whether it is doing
other processing. It sends the stub process a signal message: If the stub was asleep
at an interruptible priority, it wakes up immediately and terminates the system call;
otherwise, it completes the system call normally

Finally, consider the cases where a signal arrives when a process is not in the
middle of a system call. If the signal originates on another processor, the stub
receives the signal first and sends a special signal message to the satellite process,
regardless of how the satellite process wishes to dispose of the signal. The satellite
kernel deciphers the message and sends the signal to the process, which reacts to it
in the usual manner. 1f the signal had originated on the satellite processor, the
satellite process does the usual processing and does not require special
communication o the stub process

When a satellite process sends a signal to other processes, it encodes a message
for the kill system call and sends it to the stub, which exccutes the kill system call
Tocally. If some processes that should receive the signal are on other satellite
processors, their stubs receive the signal and react as described above.

13.2 THE NEWCASTLE CONNECTION

The previous section explored a tightly coupled system configuration where all file
subsystem calls on a satellite processor are trapped and forwarded to a remote
(central) processor. This view extends to more loosely coupled systems, where cach
machine wants to access files on the other machines. In a network of personal
computers and work stations, for example, users may want to access files stored on
a mainframe. The next two sections consider system configurations where local
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The 1/0 subsystem allows a process to communicate with peripheral devices such
as disks, tape drives, terminals, printers, and networks, and the kernel modules that
control devices arc known as device drivers. Therc is usually a one-to-one
correspondence between device drivers and device types: Systems may contain one
disk driver to control all disk drives, one terminal driver to control all terminals,
and one tape driver to control all tape drives. Installations that have evices from
more than one manufacturer — for example, two brands of tape drives — may
treat the devices as two different device types and have two separate drivers,
because such devices may require different command sequences to operate properly.
A device driver controls many physical devices of 2 given type. For example, one
terminal driver may control all terminals connected to the system. The driver
distinguishes among the many devices it controls: Output intended for one terminal
must not be sent to another

The system supports “software devices,” which have no associated physical
device. For example, it treats physical memory as a device to allow a process
access to physical memory outside its address space, cven though memory is not @
peripheral device. The ps command, for instance, reads kernel data structures
from physical memory to report process statistics. Similarly, drivers may write
trace records useful for debugging, and a trace driver may allow users to read the
records.  Finally, the kernel profiler described in Chapter 8 is implemented as
driver: A process writes addresses of kernel routines found in the kernel symbol

m
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The satellte process checks the response o see if signals have occurred and, f they
have, handles them in the usual fashion before returning from the system call.
Thus, a process behaves exactly as it would on a uniprocessor: It exis without
returning from the kernel, or it calls a user signal handling function, or it ignores
the signal and returns from the system call.

Satellite Stub

Make read system call
Send read message 10 stub

Sleep until stub reply Receive read message
i read terminal

sleep waiting for input

signal (user hit break key)
wake up
long jump from system call

send reply to satellite:

interrupted system call
Wake up

Analyze reply
Take care of signal

Time

Figure 13.8. Interrupt in Middle of a System Call

For example, suppose a satellite process reads a terminal, which is connected to
the central processor, and sleeps while the stub process exccutes the system call
(Figure 13.8). If a user hits the break key, the stub kemel sends an interrupt

ignal 1o the stub process. If the stub was slecping, waiting for input, it
immediately wakes up and terminates the read call. In its response to the satcllitc
process, the stub sets an error code (interrupted from the system call) and the
signal number for interrupt. The satellite process cxamines the response and,
because the message shows that an interrupt signal was sent, posts the signal to
itself. Before returning from the read call, the satellite kernel checks for signals,
finds the interrupt signal returned by the stub process, and handles it in the usual
way. If the satellite process exits as a result of the interrupt signal, the exit system
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7.3 PROCESS TERMINATION

Processes on a UNIX system terminate by executing the exif system call. An
exiting process enters the zombie state (recall Figure 6.1), relinquishes its
resources, and dismantles its context except for its slot in the process table. The
syntax for the call is

exit(status);

where the value of starus is returned to the parent process for its cxamination.
Processes may call exit explicitly or implicitly at the end of a program: the startup
routine linked with all C programs calls exit when the program returns from the
main function, the entry point of all programs. Alternatively, the kernel may
invoke exit internally for a process on receipt of uncaught signals as discussed
above. If so, the value of status is the signal number.

The system imposes no time limit on the execution of a process, and processes
frequently exist for a long time. For instance, processes O (the swapper) and 1
(init) exist throughout the lifetime of a system. Other cxamples are getry
processes, which monitor a terminal line, waiting for a user to log in, and special-
purpose administrative processes.

algorithm exit
input:  return code for parent process
output: none
{
ignore all signals;
if (process group leader with associated control terminal)
(

send hangup signal (o all members of process group;
reset process group for all members 10 0;

close all open files (internal version of algorithm close);

release current dircctory (algorithm iput);

release current (changed) root,if exists (algorithm iput);

free regions, memory associated with process (algorithm frecreg);

write accounting record;

‘make process state zombic

assign parent process ID of all child processes to be init process (1);
if any children were zombie, send death of child signal to

send death of child signal to parent process;

context switch;

Figure 7.14. Algorithm for Exit
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more frequently. However, it is indeterminate when this result will occur.

According to Ritchie (private communication), signals were designed as events
that are fatal or ignored, not necessarily handled, and hence the race condition was
not fixed in carly releases. However, it poses a serious problem to programs that
want 1o catch signals. The problem would be solved if the signal field were not
cleared on receipt of the signal. But such a solution could result in a new problem:
If signals keep arriving and are caught, the user stack could grow out of bounds
because of the nested calls to the signal catcher. Alternatively, the kernel could
reset the value of the signal-handling function to ignore signals of that type until
the user again specifies what to do for such signals. Such a solution implies a loss
of information, because the process has no way of knowing how many signals it
receives. However, the loss of information is no more severe than it s for the case
where the process receives many signals of one type before it has a chance to
bandle them. Finally, the BSD system allows a process to block and unblock
receipt of signals with a new system call; when a process unblocks signals, the
kernel sends pending signals that had been blocked to the process. When a process
receives a signal, the kernel automatically blocks further receipt of the signal until
the signal handler completes. This is analogous to how the kernel reacts to
hardware interrupts: it blocks report of new interrupts while it handles previous
interrupts.

A second anomaly in the treatment of signals concerns catching signals that
occur while the process is in a system call, sleeping at an interruptible priority.
The signal causes the process to take a longjmp out of its sleep, return to user
mode, and call the signal handler. When the signal handler returns, the process
appears 1o return from the system call with an error indicating that the system call
was interrupted. The user can check for the error return and restart the system
call, but it would sometimes be more convenient if the kernel automatically
restarted the system call, as is done in the BSD system.

A third anomaly exists for the case where the process ignores a signal. If the
signal arrives while the process is asleep at an interruptible sleep priority level, the
process will wake up but will not do a longjmp. That is, the kernel realizes that
the process ignores the signal only after waking it up and running it. A more
consistent policy would be to leave the process asleep. However, the kernel stores
the signal function address in the u area, and the u area may not be accessible
when the signal is sent to the process. A solution to this problem would be to storc
the signal function address in the process table entry, where the kernel could check
whether it should awaken the process on receipt of the signal. Alternatively, the
process could immediately go back to sleep in the sleep algorithm, if it discovers
that it should not have awakened. Nevertheless, user processes never realize that
the process woke up, because the kernel encloses entry to the sleep algorithm in a
“while” loop (recall from Chapter 2), putting the process back to sleep if the sleep
event did not really occur.

Finally, the kernel does not treat “death of child” signals the same as other
signals.  In particular, when the process recognizes that it has received a “death of






index-330_1.png
8 THE 1/0 SUBSYSTEM

If a process must sleep for some external reason when opening a d is
possible that the event that should awaken the process from its slecp may never
occur. For example, if no user cver logs in t0 a particular terminal, the gerry
process that opened the terminal (Section 7.9) slecps until a user attempts to log
in, potentially a long time. The kernel must be able to awaken the process from its
sleep and cancel the open call on receipt of a signal: It must reset the inode, fle
table entry, and user file descriptor that it had allocated before entry into the
driver, because the open fails. Hence, the kernel saves the process context using
algorithm setjmp (Section 6.4.4) before entering the device-specific open routine; if
the process awakens from its sleep because of a signal, the kernel restores the
process context to s state before entering the driver using algorithm longjmp
(Section 6.4.4) and releases all data structures it had allocated for the open.
Similarly, the driver can catch the signal and clean up private data structures, if
necessary. The kernel also readjusts the file system data structures when the driver
encounters error conditions, such as when a user attempts to access a device that
was not configured. The open call fails in such cases.

Processes may specify various options to qualify the device open. The most
common option is “no delay,” meaning that the process will not sleep during the
open procedure if the device is not ready. The open system call returns
immediately, and the user process has no knowledge of whether a hardware
connection was made or not. Opening a device with the “no delay” option also
affects the semantics of the read system call, as will be seen (Section 10.3.4).

1f a device is opencd many times, the kernel manipulates the user fle
descriptors and the inode and file table entries as described in Chapter S, invoking
the device specific open procedure for each open system call. The device driver can
thus count how many times a device was opened and fail the open call if the count
is inappropriate. For example, it makes sense to allow multiple processes to open a
terminal for writing so that users can exchange messages. Bu it docs not make
sense o allow multiple processes to open a printer for writing simultancously, since
they could overwrite cach other's data. The differences are practical rather than
implementational: ~ allowing  simultancous  writing o terminals fosters
communication between users; preventing simultaneous writing to printers increases
the chance of getting readable printouts.

10122 Close

A process severs s connection to an open device by closing it. However, the
kernel invokes the device-specific close procedure only for the last close of the

2. In practce, printers are usually contrlled by special spooler processe, and permissions are sct up 50
that only the spooler can aceess the printer. But the analogy is sl applcable

|
|
|
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2.2.2.2 Process states
‘The lifetime of a process can be divided into a set of states, each with certain
characteristics that describe the process. Chapter 6 will describe all process states,
but it is essential to understand the following states now:

1. The process s currently executing in user mode.

2. The process is currently executing in kernel mode.

3. The process is not exccuting, but it is ready to run as soon as the scheduler
chooses it. Many processes may be in this state, and the sched
algorithm determines which one will exccute next.

4. The process is sleeping. A process puts itself to sleep when it can no longer
continue excuting, such as when it is waiting for 1/0 to complete.

Because & processor can execute only one process at a time, at most one process
may be in states 1 and 2. The two states correspond to the two modes of execution,

user and kernel.

2223 State transitions

The process states described above give a static view of a process, but processes
move continuously between the states according to well-defined rules. A sate
transition diagram is a directed graph whose nodes represent the states a process
can enter and whose edges represent the cvents that cause a process to move from
one state to another. State transitions are legal between two states if there xists
an edge from the first state to the second. Several transitions may emanate from a
state, but a process will follow one and only one transition depending on the system
event that occurs. Figure 2.6 shows the state transition diagram for the process
states defined above.

Several processes can execute simultaneously in a time-shared manner, as stated
carlier, and they may all run simultancously in kernel mode. If they were allowed
fo run in kernel mode without constraint, they could corrupt global kernel data
structures. By prohibiting arbitrary context switches and controlling the occurrence
of interrupts, the kernel protects its consistency.

The kernel allows a context switch only when a process moves from the state
“kernel running” to the state “aslecp in memory.” Processes running in kerne
mode cannot be preempted by other processes; therefore the kernel is somerimes
5aid to be non-preemprive, although the system does preempt processes that are iy
user mode. The kernel maintains consistency of its data structures becauss i i
non-preemptive, thercby solving the mutual exclusion problem — making sure that
critical sections of code are executed by at most one process at a time.

For instance, consider the sample code in Figure 2.7 10 put a data siructure,
whose address is in the pointer £/, onto a doubly linked fst after the structure
whose address is in bp. I the system allowed a context switch while the Kernel
executed the code fragment, the following situation could occur. Suppose the
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Finclude <signalh>
sigeatcher0

(

printf(“PID %d caught one\a”, getpi /# print proc id */
signal (SIGINT, sigeatcher);

1

main0

{
int ppid;

signal (SIGINT, sigcatche);

if (forkQ == 0)
{
7 give enough time for both procs to set up */
/% ib function to delay 5 secs */
0; /* get parent id */

if (cll ppid, SIGINT) == ~1)
exit0;

]

7 tower priority, greater chance of exhibiting race */
nice(10);
for )

)

Figure 7.12. Program Demonstrating Race Condition in Catching Signals

catch the next occurrence of an interrupt signal, and the parent continues to
exccute in the infinite loop.
Itis possible for the following sequence of events to occur, however.

1. The child process sends an interrupt signal to the parent process.

2. The parent process catches the signal and calls the signal catcher, but the
Kernel preempts the process and switches context before it executes the signal
system call again.

3. The child process executes again and sends another interrupt signal to the
parent process.

4. The parent process receives the second interrupt signal, but it has not made
arrangements o0 catch the signal. When it resumes execution, it exits.

The program was written to encourage such behavior, since invocation of the ice
system call by the parent process induces the kernel to schedule the child process

|
i
|
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The last chapter gave a high-level perspective of the UNIX system environment.
‘This chapter focuses on the kernel, providing an overview of its architecture and
outlining basic concepts and structures essential for understanding the rest of the
book.

2.1 ARCHITECTURE OF THE UNIX OPERATING SYSTEM

It has been noted (see page 239 of [Christian 83]) that the UNIX system supports
the illusions that the file system has “places” and that processes have “life.” The
two entities, files and processes, are the two central concepts in the UNIX system
model. Figure 2.1 gives a block diagram of the kernel, showing various modules
and their relationships to cach other. In particular, it shows the file subsystem on
the left and the process control subsystem on the right, the two major components
of the kernel. The diagram serves as a useful logical view of the kernel, although
in practice the kernel deviates from the model because some modules interact with
the internal operations of others.

Figure 2.1 shows three levels: user, kernel, and hardware. The system call and
library interface represent the border between user programs and the kernel
depicted in Figure 1. System calls look like ordinary function calls in C
programs, and libraries map these function calls to the primitives needed to enter

19
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13.3 TRANSPARENT DISTRIBUTED FILE SYSTEMS

The term transparent distribution means that users on one machine can access fies
on another machine without realizing that they cross a machine boundary, similsy
{o crossing a mount point from one fle system to another on one machine. Pat}
names that access files on the remote machine look like path names that accesy
local files: They contain no distinguishing symbols. Figure 13.10 shows 5
configuration where directory “/use/src” on machine B is mounted on the directory
“/ust/src” on machine A. This configuration s convenicnt for systems that wish ty
share one copy of system source code, conventionally found in “/usr/sre”. Users on
machine A can access files on machine B with the regular file name syntax, such as
“/usr/sre/cmd/login.c”, and the kernel decides internally whether a file is remote
or local. Users on machine B access local files without being aware that users on
machine A can access them, 100, but they cannot access files on machine A. Of
course, other scenarios are possible where all remote systems are mounted at root of
the local system, giving users access to all files on all systems.

Machine B

/
bin usr usr/bx’n\uc
login miil by s \‘sm bin

troff

Figure 13.10. File Systems after Remote Mount

Because of the analogy between mouning local file systems and providing
access to_remote file systems, the mount system call is adapted for remote fle
systems. The kernel contains an expanded mount table: When executing a remote
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effective user ID's). If the sending process has effective user ID of superuser,
the kernel sends the signal to all processes except processes 0 and 1.

o If pid is a negative integer but not —1, the kernel sends the signal to all
processes in the process group equal to the absolute value of pid.

In all cases, if the sending process does not have effective user ID of superuser, or
its real or cffcctive user ID do not match the real or effective user ID of the
ing process, ill fails.

Finclude <signalh>
main0)
{

register int ;

setpgrp0;
for Gi=0: i <10; i+4)
(
if (fork0 == 0)
{
1# child proc */
ifG & 1)
setpgrpO;
printf(“pid = %d pgrp = %d\n", getpid, getpgrp0);
pauseQ;  /* sys call o suspend execution */
1
)
killo, SIGINT);

Figure 7.13. Sample Use of Setpgrp

In the program in Figure 7.13, the process resets its process group number and
creates 10 child processes. When created, each child process has the same process
group number as the parent process, but processes created during 0dd iterations of
the loop reset their process group number. The system calls getpid and getpgrp
return the process 1D and the group ID of the exccuting process, and the pause
system call suspends execution of the process until it receives a signal. Finally, the
parent executes the Kill system call and sends an interrupt signal to all processes in
its process group. The kernel sends the signal to the S “even” processes that did
not reset their process group, but the 5 “odd" processes continue 10 loop.
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last close of a device, because several processes may access the device via o
different file table entry. It is also not sufficient to rely on the inode table
count, because several device files may specify the same device. For example,
the results of the following /s —/ command show two character device files
(the first “c” on the line) that refer to one device, because their major and
‘minor numbers (9 and 1) are equal. The link count of 1 for each file implies
that there are two inodes.

crw——w=—w= Troot vis 9,1 Aug6 1984 /dev/ityol

Crw——wW——w— lroot unix 9,1 May315:02 /dev/fty0l

If processes open the two files independently, they access different inodes but
the same device.

2. For a character device, the kernel invokes the device close procedure and
returns to user mode. For a block device, the kernel searches the mount table
to make sure that the device does not contain a mounted file system. If there
is a mounted file system from the block device, the kernel cannot invoke the
device close procedure, because it is not the last close of the device. Even if
the device does not contain a mounted file system, the buffer cache could still
contain blocks of data that were left over from a previously mounted fle
system and never written to the device, because they were marked “delayed
write.” The kernel therefore searches the buffer cache for such blocks and
writes them to the device before invoking the device close procedure. After
closing the device, the kernel again goes through the buffer cache and
invalidates all buffers that contain blocks for the now closed device, allowing
buffers with useful data to stay in the cache longer.

3. The kernel releases the inode of the device file.

To summarize, the device close procedure severs the device connection and
reinitializes driver data structures and device hardware, so that the kernel can
reopen the device later on.

10123 Read and Write

The kernel algorithms for read and write of a device are similar to those for a
regular file. If the process is reading or writing a character device, the kernel
invokes the device driver read or write procedure.  Although there are important
cases where the kernel transmits data directly between the user address space and
the device, device drivers may buffer data internally. For example, terminal drivers
use clists to buffer data (Section 10.3.1). n such cases, the device driver allocates
a “buffer,” copies data from user space during a write, and outputs the data from
the “buffer” to the device. The driver write procedure throttles the amount of data
being output (called flow control): If processes generate data faster than the device
can outpu it, the write procedure puts processes o sleep until the device can accept
more data. For a read, the device driver receives the data from the device in o
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child™ signal, it turns off the notification of the signal in the process table entry
signal field and in the default case, it acts as if no signal had been sent. The effect
of a “death of child” signal is to wake up a process slecping at interruptibic
priority. If the process catches “death of child” signals, it invokes the user handler
as it does for other signals. The operations that the kernel does if the process
ignores “death of child” signals will be discussed in Section 7.4. Finally, if g
process invokes the signal system call with “death of child” parameter, the Kernel
sends the calling process a “death of child” signal if it has child processes in the
zombie state. Section 7.4 discusses the rationale for calling signal with the “death
of child” parameter.

7.2.2 Process Groups

Although processes on a UNIX system arc identified by a unique ID number, the
system must sometimes identify processes by “group.” For instance, processes with
2 common ancestor process that is a login shell are generally related, and therefore
all such processes receive signals when a user hits the “delete” or “break” key or
when the terminal line hangs up. The kernel uses the process group ID to identify
groups of related processes that should receive a common signal for certain events.
It saves the group ID in the process table; processes in the same process group have
identical group ID’s,

The setpgrp system call initializes the process group number of a process and
sets it equal to the value of its process ID. The syntax for the system call

8rp = setpgrp(;
where grp is the new process group number. A child retains the process group

number of its parent during fork. Setpgrp also has important ramifications for
setting up the control terminal of & process (see Section 10.3.5)

723 Sending Signals from Processes
Processes use the kill system call 10 send signals. The syntax for the system call is
killpid, signum)

where pid identifies the set of processes to receive the signal, and signum is the
signal number being sent. The following list shows the correspondence between
values of pid and sets of processcs.

 If pid is a positive integer, the kernel sends the signal to the process with
process 1D pid.

« If pid is 0, the kernel sends the signal to all processes
group

o If pid is =1, the kernel sends the signal to all processes whose real user ID
equals the effective user ID of the sender (Section 7.6 will define real and

the sender's process
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device, that is, only if no other processes have the device open, because the device
close procedure terminates hardware connections; clearly this must wait until no
processes are accessing the device. Because the kernel invokes the device open
procedure during every open system call but invokes the device close procedure only
once, the device driver is never sure how many processes are still using the device.
Drivers can easily put themselves out of state if not coded carefully: If they sleep
in the close procedure and another process opens the device before the close
completes, the device can be rendered useless if the combination of open and close
resulls in an unrecognized state.

algorithm close 7% for devices */
input:  fle deseriptor
utpt: one
do regular close algorithm (chapter 5xx0);
if (fle table reference count not 0)
goto finish;
if (there is another open file and its major, minor numbers
are same as device being closed)
goto finish; 1% not Iast close after all */
if (character device)

{

‘use major number to index into character device switch table;
)l drer e routine: parameter minor number;
if (block device)
(
if (device mounted)
8oto finish;
write device blocks in buffer cache to d
‘use major number to index into block switch table;
call driver close routine: parameter minor number;
invalidate device blocks still in buffer cache;

)
finish:
release inode;

Figure 104, Algorithm for Closing a Device

The algorithm for closing a device is similar to the algorithm for closing a
regular file (Figure 10.4). However, before the kernel relcases the inode it does
operations specific to device files.

1. It searches the file table to make sure that no other processes still have the
device open. It is not sufficient to rely on the file table count to indicate the
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mount system call, the kernel establishes a network connection to the remote
‘machine and stores the connection information in the mount table.

An interesting problem arises for path names that include *.” (dot-dot): If a
process changes directory 10 a_remote file system, subsequent use of *." should
return the process to the local file system rather than allow it t0 access files above
the remotely mounted directory. Referring to Figure 13.10 again, if a process on
machine A, whose current directory is in the (remote) directory “/ust/src/cmd",
executes

./t

its new current directory should be root on machine A, not root on machine B.
Algorithm namei in the remote kernel therefore checks all ™" sequences to see if
the calling process is an agent for a client process, and if so, checks the current
working directory to sec if that client treats the directory as the root of a remotely
mounted file system.

Communication with a remote machine takes on one of two forms: remote
procedure call o remote system call. In a remote procedure call design, cach
kernel procedure that deals with inodes recognizes whether a particular inode refers
10 a remote file and, if it does, sends & message to the remote machine to perform
specific inode operation. This scheme fits in naturally to the abstract file system
types presented at the end of Chapter 5. Thus, a system call that accesses a remote
file may cause several messages across the network, depending on how many
internal inode operations are involved, with correspondingly higher response time
due 10 network latency. Carried to an extreme, the remote operations include
manipulation of the inode lock, reference count, and so on. Various optimizations
to the pure model have been implemented to combine several logical inode
operations into a single message and to cache important data (see [Sandberg 851).

Server Client Process/Processor
=
inode inode  fle  file
able tble  wble  d e
S . esc
uble  SProcess >

file

j/ T~ descriptor

Figure 13.11. Opening 2 Remote File
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igure 7.3. Fork Creating a New Process Context

existing file, creats the new file, and — assuming it encounters no errors — forks
and creates a child process. Internally, the kernel makes a copy of the parent
context for the child process, and the parent process exccutes in one address space
and the child process exccutes in another. Each process can access private copies of
the global variables /drd, fawt, and ¢ and private copies of the stack variables arge
and argy, but neither process can access the variables of the other process.
However, the kernel copied the u area of the original process to the child process
during the fork, and the child thus inherits access to the parent files (that is, the
files the parent originally opened and created) using the same fle descriptors.
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Page Table Entry - Proc A

Page 828 Valid, Copy on Write

Page Table Entry - Proc B

Page 828 Valid, Copy on Write

Page Table Entry - Proc C

Page 828 Valid, Copy on Write

Page Table Entry - Proc A

Page 828 Valid, Copy on Write

\

Page Table Entry - Proc B

308

Page Frame 828

Ref Count 3

(a) Before Proc B Incurs Protection Fault

Page Frame 828
Ref Count 2

Page 786 Valid

Page Table Entry - Proc C
Page 828 Valid, Copy on Write

Page Frame 786

Ref Count 1

(b) After Protection Fault Handler Runs for Proc B

Figure 9.26. Protection Fault with Copy on Write Set

When the protection fault handler finishes executing, it sets the modify and
protection bits, but clears the copy on write bit. It recalculates the process priority
and checks for signals, as is done at the end of the validity fault handler.
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component sequences that precede the file system root. This method can be |
implemented without making changes to the kernel and is therefore casier
implement than the other implementations described in this chapter, but
less flexible.

© Fully transparent distributed systems allow standard path names to refer to fles
on other machines; the kernel recognizes that they are remote. Path names
cross machine boundarics at mount points, much as they cross file system mount
points on disks.

‘This chapter examines the architecture of cach model; the descriptions here are
ot based on particular implementations but on information published in various
technical papers. They assume that low-level protocol modules and device drivers
take care of addressing, routing, flow control, and error detection and correction
and, thus, assume that cach model is independent of the underlying network. The
system call examples given in the next section for the satellite processor systems
work in similar fashion for the Newcastle and transparent models presented in later
sections; hence, they will be explained in detail once, and the scctions on the other
models will concentrate on particular features that most distinguish them.

13.1 SATELLITE PROCESSORS

Figure 13.2 shows the architecture for a satellite processor configuration. The
purpose of such a configuration is to improve system throughput by offfading
processes from the central processor and exccuting them on the satellite processors.
Each satellite processor has no local peripherals cxcept for those it needs to
communicate with the central processor: The file system and all devices are on the
central processor. Without loss of generality, assume that all user processes run on
a satellite processor and that processes do not migrate between satellite processors;
once a process is assigned 10 a processor, it stays there until it exits. The satellitc
processor contains a simplified operating system to handle local system. calls,
interrupts, memory management, network protocols, and a driver for the device it
uses to communicate with the central processor.

When the system is initialized, the kernel on the central processor downloads a
local operating system into each satellite processor, which continucs to run there
until the system is taken down. Each process on a satellite processor has an
associated stub process on the central processor (see [Birrell 841); when a process
on a satellite processor makes a system call that requires services provided only by
the central processor, the satellite process communicates with its stub on the eentral
processor 10 satisfy the request. The stub executes the system call and sends the
results back to the satellte processor. The satellte process and its stub enjoy a
client-server relationship similar 1o those described in Chapter 11: The sateli is
the client of the stub, which provides fle system services. The term stub
cemphasizes that the remote server process serves only one client process. Section
134 considers server processes that serve several client processcs. For convenience.
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Aigorithm alloc /7 il system block allocation */
input: il system number
output: buffer for new block
t
whilk (super block locked)
slecp (event super block not locked);
remove block from super block free I
if (removed last block from free list)
(

ock super block:
read block just taken from free lst Galgorithm bread);
‘capy block numbers in block into super block;
release block buffer (slgorithm brelse):
unlock super block;
‘wake up processes (event super block not locked);
)
get buffer for block removed from super block list (algorithm getbik);
2ero buffer contents;
decrement total count of free blocks;
mark super block modified;
return buffer;

Figure 4.19. Algorithm for Allocating Disk Block

the different treatment.

1. The kernel can determine whether an inode is free by inspection: If the file
type field is clear, the inode is free. The kernel needs no other mechanism to
describe free inodes. However, it cannot determine whether a block is frec
just by looking at it. It could not distinguish between a bit pattern that
indicates the block is free and data that happened o have that bit pattern.
Hence, the kernel requires an external method to identify free blocks, and
traditional implementations have used a linked list.

2. Disk blocks lend themselves t0 the use of linked lists: A disk block easily
holds large lists of frec block numbers. But inodes have no convenient place
for bulk storage of large lists of free inode numbers.

3. Users tend to consume disk block resources more quickly than they consume.
inodes, so the apparent lag in performance when scarching the disk for free
inodes is not as critical as it would be for searching for free disk blocks.






index-207_1.png
t
)

3

71 PROCESS CREATION 195

it copies the contents of regions that arc not shared inio a new arca of main
memory. Recall from Section 6.2.4 that the u area contains a pointer 10 its process
{able siot. Except for that field, the contents of the child  area are initially the
same as the contents of the parent process u area, but they can diverge after
completion of the fork. For instance, the parent process may open  new file after
the fork, but the child process does not have automatic access 10 it.

So far, the kernel has created the static portion of the child context; now it
creates the dynamic portion. The kernel copies the parent context layer 1,
containing the user saved register context and the kernel stack frame of the fork
system call. If the implementation is one where the kernel stack is part of the &
area, the kernel automatically creates the child kernel stack when it creates the
child u area. Otherwise, the parent process must copy its kernel stack to a private
area of memory associated with the child procss. In either case, the kernel stacks
for the parent and child processes are identical. The kernel then creates a dummy
context layer (2) for the child process, containing the saved register context fo
context layer (1), It sets the program counter and other registers in the savec
register context so that it can “restore” the child context, even though it had neve
exccuted before, and 5o that the child process can recognize itself as the child wher
it runs. For instance, if the kernel code tests the value of register 0 1o decide if th
process is the parcnt or the child, it writes the appropriate value in the child save
Tegister context in layer 1. The mechanism is similar to that discussed for
context switch in the previous chapter.

When the child context is ready, the parent completes its part of fork b
changing the child state to “ready to run (in memory)” and by returning the chil
process ID o the user. The kernel later schedules the child process for excoutio
via the normal scheduling algorithm, and the child process “completes” its part o
the fork. The context of the child process was sct up by the parent process; to th
Kernel, the child process appears to have awakened after awaiting a resource. Th
child process executes part of the code for the fork system call, according to th
program counter that the kernel restored from the saved register context in contex
layer 2, and returns a 0 from the system call

Figure 7.3 gives a logical view of the parent and child processes and thei
relationship to other kernel data structures immediately after completion of th
fork system call. To summarize, both processes share files that the parent ha
‘open at the time of the fork, and the file table reference count for those files is on
greater than it had been. Similarly, the child process has the same curren
directory and changed root (if applicable) as the parent, and the inode referenc
count of those directories is one greater than it had been. The processes hav
identical copics of the text, data, and (user) stack regions; the region type and th
system implementation determine whether the processes can share a physical cop
of the text region.

Consider the program in Figure 7.4, an example of sharing file access across
Jfork system call. A user should invoke the program with two parameters, the nam
of an existing filc and the name of a new file to be created. The process opens th
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algorithm pfault 7% protection fault handler */
input:  address where process faulted
output:  none

find region, page table entry, disk block descriptor,
page frame for address, lock region;
if (page not valid in memory)

goto out;
if (copy on write bit not sel)
goto out; /% real program error — signal */

if (page frame reference count > 1)

allocate a new physical page:
copy contents of old page to new page;

decrement old page frame reference count;

update page table entry to point to new physical page:

clse  /* “steal® page, since nobody elsc i using it */

if (copy of page cxists on swap device)
free space on swap devic, break page association;
if (page is on page hash queuc)
remove from hash queue;
)
set mify bit, clear copy on write bit in page table entry;
recalculate process priority;
check for signal
out: unlock region;

}

Figure 9.25. Algorithm for Protection Fault Handler

decrements the swap-use count for the page and, if the count drops to 0, frees the
swap space (see exercise 9.11),

If a page table entry is invalid and its copy on write bit is set to cause a
protection fault, let us assume that the system handles the validity fault first when
a process accesses the page (exercise 9.17 covers the reverse case). Nevertheless,
the protection fault handler must check that a page is still valid, because it could
sleep when locking a region, and the page stealer could meanwhile swap the page
from memory. If the page is invalid (the valid bit is clear), the fault handler
returns immediately, and the process will incur a validity fault. The kernel handles
the validity fault, but the process will incur the protection fault again. More than
likely, it will handle the final protection fault without any more interference,
because it will take a long time until the page will age sufficiently to be swapped
out.Figure 9.27 illustrates this sequence of events.
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Figure 13.1. Model of Distributed Architectures

are independent, subject to the external constraints of running in a distributed
environment.

Many implementations of distributed systems have been described in the
literature, falling into the following categories.

o Satellite systems are tightly clustered groups of machines that center on one
(usually larger) machine. The satellite processors share the process load with
the central processor and refer all system calls to it. The purpose of a satellite
System is 0 increase system throughput and, possibly, to allow dedicated use of
a processor for one process in a UNIX system environment. The system runs as
a unit; unlike other models of distributed systems, satellites do not have real
autonomy except, sometimes, in process scheduling and in local memory
allocation.

o “Newcastle” distributed systems allow access to remote systems by recognizing
names of remote files in the C library. (The name comes from a paper entitled
“The Newcastle Connection” — see [Brownbridge 821) The remote files are
designated by special characters embedded in the path name or by special path
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Figure 4.18. Linked List of Free Disk Block Numbers

attempt to sort block numbers on the free list.

‘The algorithm free for freeing a block is the reverse of the one for allocating a
block. If the super block list is not full, the block number of the newly freed block
is placed on the super block list. If, however, the super block list is full, the newly
freed block becomes a link block; the kernel writes the super block list into the
block and writes the block to disk. It then places the block number of the newly
freed block in the super block list: That block number is the only member of the
list.

Figure 4.20 shows a sequence of alloc and free operations, starting with one
entry on the super block free list. The kernel frees block 949 and places the block
number on the free list. It then allocates a block and removes block number 949
from the free list. Finally, it allocates a block and removes block number 109 from
the free list. Because the super block free list is now empty, the kernel replenishes
the list by copying in the contents of block 109, the next link on the linked lst.
Figure 4.20(d) shows the full super block list and the next link block, block 211.

‘The algorithms for assigning and frecing inodes and disk blocks are similar in
that the kernel uses the super block as a cache containing indices of free resources,
block numbers, and inode numbers. It maintains a linked list of block numbers
such that every free block number in the file system appears in some element of the
linked list, but it maintains no such list of free inodes. There are three reasons for






index-20_1.png
SR T—

1.3 USER PERSPECTIVE )
//\
o bm/ Jc\m Tor
mipmaury sh’ date Who  passwd  sic bin  1y00 wyol
emd

datec  whoc

Figure 1.2. Sample File System Tree

designates a file name that is uniquely contained in the previous (directory)
component. A full path name starts with a slash character and specifies a file that
can be found by starting at the file system root and traversing the file tree,
following the branches that lead to successive component names of the path name.
Thus, the path names “/etc/passwd”, “/bin/who", and “/ust/src/cmd/who.c"
designate files in the tree shown in Figure 12, but “/bin/passwd” and
“/ust/src/date.c” do not. A path name does not have to start from root but can be
designated relative to the current directory of an exccuting process, by omitting the
initial slash in the path name. Thus, starting from directory “/dev”, the path name
“1ty01” designates the file whose full path name is */dev/tty01".

Programs in the UNIX system have no knowledge of the internal format in
which the kernel stores file data, treating the data as an unformatted stream of
bytes. Programs may interpret the byte stream as they wish, but the interpretation
has no bearing on how the operating system stores the data. Thus, the syntax of
accessing the data in a file is defined by the system and is identical for all
programs, but the scmantics of the data are imposed by the program. For example,
the text formatting program froff expects to find “new-line” characters at the end
of cach line of text, and the system accounting program acctcom cxpects to find
fixed length records. Both programs use the same system scrvices o access the
data in the file as a byte stream, and internally, they parse the stream into a
suitable format. If cither program discovers that the format is incorrect, it is
responsible for taking the appropriate action.

Directories are like regular files in this respect; the system treats the data in a
directory as a byte stream, but the data contains the names of the files in the
directory in a predictable format so that the operating system and programs such as
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Figure 9.28. Mimicking Hardware Modify Bit in Software

processes to fault when referencing the page, repeating the cycle. Figure 9.28
depicts this case.

93 A HYBRID SYSTEM WITH SWAPPING AND DEMAND PAGING

Although demand paging systems treat memory morc flexibly than swapping
systems, situations can arise where the page stealer and validity fault handler
thrash because of a shortage of memory. If the sum of the working sets of all
processes is greater than the physical memory on a machine, the fault handler will
usually sleep, because it cannot allocate pages for a process. The page stealer will
not be able to steal pages fast enough, becausc all pages are in a working set.
System throughput suffers because the kernel spends too much time in overhead,
rearranging memory at a frantic pace.

The System V kernel runs swapping and demand paging algorithms to avoid
thrashing problems. When the kernel cannot allocate pages for a process, it wakes
up the swapper and puts the calling process into a state that is the equivalent of
“teady 10 run but swapped.” Several processes may be in this state simultancously.
The swapper swaps out entire processes until available memory exceeds the high-
water mark. For each process swapped out, it makes one “ready-to-run but
swapped” process ready to run. It does not swap those processes in via the normal
swapping algorithm but lets them fault in pages as needed. Later iterations of the
swapper will allow other processes to be faulted in if there is sufficient memory in
the system. This method slows down the system fault rate and reduces thrashing; it
is ix)mlhr in philosophy to methods used in the VAX/VMS operating system ([Levy
82).

9.4 SUMMARY

This chapter has explored the UNIX System V algorithms for process swapping
and demand paging. The swapping algorithm swaps entire processes between main
memory and a swap device. The kernel swaps processes from memory if their size
grows such that there is no more room in main memory (as a result of a fork,
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Figure 133, Message Formats

calling process as the result of the system call, an crror code to report errors in the
stub, a signal number, and a variable length data array to contain data read from a
file, for example. The satellite process sleeps in the system call until it receives the
response, decodes it, and returns the results to the user. This is the general scheme
for handling system calls; the remainder of this section examines particular system
calls in greater detail.

To explain how the satellite system works, consider the following system calls:
setppid, open. write, fork, exit and signal. The getppid system call is simple,
because it requires a simple request and response between the satellite and eenira]
processors. The kernel on the satellite processor forms a message with a token that
indicates that the system call was getppid, and sends. the request to the central
processor. The stub on the central processor reads the message from the satellite
processor, decodes the system call type, executes the getppid system call, and finds
s paent process ID. It then forms a response and wries it t the satellte process,
which had been waiting, reading the communication link. When the  tateline
receives the answer from the stub, it returns the result o the process that had
criginally invoked the geippid system call. Aliernatively, if the satllte process
retains data such s the parent process ID locally, it need not communicate with e
stub at

For the open system cal, the satellite process sends an open message to the stub
process, including the fle name and other parameters. Assuming the stub dogs the
open call successfully, it allocates an inode and file table entry on the contral
Processor, assigns an entry in the user fle escriptor table in its  area, and returns
the file descriptor to the satelie process. Meanwhile, the satelite process had buon
feading the communications link, waiting for the response from the stub proces
The satellte process has no kernel data structures that record information yoent
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Figure 9.27. Interaction of Protection Fault and Validity Fault

9.2.4 Demand Paging on Less-Sophisticated Hardware

The algorithms for demand paging are most eficient if the hardware sets the
reference and modify bits and causes a protection fault when a process writes &
page whose copy on wrile bit is set. However, it is possible to implement the
paging algorithms described here if the hardware recognizes only the valid and
protection bits. If the valid bit is duplicated by a software-valid bit that indicates
whether the page is really valid or not, then the kernel could turn off the hardware
valid bit and simulate the setting of the other bits in software. For example, the
VAX-11 hardware does not have a reference bit (see [Levy 821). The kernel can
turn off the hardware valid bit for the page and follow this scenario: If a process
references the page, it incurs a page fault because the hardware valid bit s off, and
the page fault interrupt handler examines the page. Because the software-valid bit
is set, the kernel knows that the page is really valid and in memory; it sets the
software reference bit and turns the hardware valid bit on, but it will have acquired
the knowledge that the page had been referenced. Subsequent references to the
page will not incur a fault because the hardware valid bit is on. When the page
stealer examines the page, it turns off the hardware valid bit again, causing

- Bubi





index-427_1.png
131 SATELLITE PROCESSORS as
Central Processor Satellite
Processors Processors
Memor)i Peripherals Memory
Processors
Satellite \ | Memory

Figure 13.2. Satellite Processor Configuration

the term sarellite process will refer 10 a process running on a satellte processor.

When a satellte process makes a system call that can be handled locally, the
kernel does not have 10 send a request to the stub process. For example, it can
exccute the sbrk system call locally to obtain more memory for a process. But if it
needs 1o obtain service from the central processor, such as when opening a file, it
encodes the parameters of the system call and the process environment into a
message that it sends to the stub process (Figure 13.3). The message consists of a
token that specifies the system call the stub should make on behalf of the client,
parameters to the system call, and environmental data such as user ID and group
ID, which may vary per system call. The remainder of the message contains
variable length data, such as a file path name or data for a write system call.

‘The stub waits for requests from the satellite process; when it receives a request,
it decodes the message, determines what system call it should invoke, cxecutes the
system call, and encodes the results of the system call into a response for the
satellite process. The response contains the return values to be returned to the
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Figure 4.16. Race Condition in Assigning Inodes

The preceding paragraph described the simple cases of the algorithms. Now

consider the case where the kernel assigns a new inode and then allocates an in-core
copy for the inode. The algorithm implies that the kernel could find that the inode
had alrcady been assigned. Although rare, the following scenario shows such a case
(refer to Figures 4.16 and 4.17). Consider three processes, A, B, and C, and
suppose that the kernel, acting on behalf of process A, assigns inode I but goes to
sleep before it copies the disk inode into the in-core copy.  Algorithms iger (invoked

3. Asin the last chapter,the term “process” here will mean “the kernel, acting on behalf of a process”
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address 1K in Figure 9.2 shows that the page contents are in logical block 3 in the
exccutable file.

If a process incurs a page fault for a page marked “demand fll" or “demand
zero” (cases 4 and 5), the kernel allocates a free page in memory and updates the
appropriate page table entry. For “demand zero," it also clears the page to zero.
Finally, it clears the “demand fil” or “demand zero” flags: The page is now valid
in memory and its contents are not duplicated on a swap device or in  file system,
This would happen when accessing virtual addresses 3K and 65K in Figure 9.22:
No process had aceessed those pages since the file was execed.

The validity fault handler concludes by setting the valid bit of the page and
clearing the modify bit. It recalculates the process priority, because the process
may have slept in the fault handler at a kernel-level priority, giving it an unfair
scheduling advantage when returning to user mode. Finally, if returning to user
mode, it checks for receipt of any signals that occurred while handling the page
fault

9.2.3.2 Protection Fault Handler

The second kind of memory fault that a process can incur is a protection fault,
meaning that the process accessed a valid page but the permission bits associated
with the page did not permit access. (Recall the example of a process attempting
to write s text space, in Figure 7.22) A process also incurs a protection fault
when it attempts to write a page whose copy on write bit was set during the fork
system call. The kernel must determine whether permission was denied because the
page requires a copy on write or whether something truly illegal happened.

The hardware supplies the protection fault handler with the virtual address
where the fault occurred, and the fault handler finds the appropriate region and
page table entry (Figure 9.25). It locks the region so that the page stealer cannot
steal the page while the protection fault handler operates on it. If the fault handler
determines that the fault was caused because the copy on write bit was set, and if
the page is shared with other processes, the kernel allocates a new page and copies
the contents of the old page to it; the other processes retain their references to the
old page. After copying the page and updating the page table entry with the new
page number, the kernel decrements the reference count of the old pfdata table
entry. Figure 9.26 illustrates the scenario: Three processes share physical page
828. Process B writes the page but incurs a protection fault, because the copy on
write bit is set. The protection fault handler allocates page 786, copies the contents
of page 828 to the new page, decrements the reference count of page 828, and
updates the page table entry accessed by process B to point to page 786.

If the copy on write bit is set but no other processes share the page, the kernel
allows the process 10 reuse the physical page. It turns off the copy on write bit and
disassociates the page from its disk copy, if one exists, because other processes may
share the disk copy. It then removes the pfdata table entry from the page queuc,
because the new copy of the virtual page is not on the swap device. Then, it
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The previous chapter examined tightly coupled multiprocessor systems that share
common memory and kernel data structures and schedule processes from a comman
pool. However, it is frequently desirable to pool computers to allow resource
sharing such that each computer retains autonomy over its environment. For
example, a user of a personal computer wants to access files that are stored on &
larger machine but wants to retain control of the personal computer. Although
several programs such as uucp allow file transfer and other applications across &
network, their use is not transparent because the user is aware of the network.
Furthermore, programs such as text editors do not work on remote files as they do
for local files. Users would like 10 do the normal set of UNIX system calls and,
except for a possible degradation in performance, not be aware that they cross &
machine boundary. Specifically, system calls such as open and read should work
for files on remote machines just as they do for files on local systems.

Figure 13.1 shows the architecture of a distributed system. Each computer,
shown in a circle, is an autonomous unit, consisting of a CPU, memory and
peripherals. A computer can fit the model even though it does not have local file
storage: It must have peripherals to communicate with other machines, but all its
regular files can be on another machine. Most critically, the physical memory
available to cach machine is independent of activity on other machines. This
feature distinguishes distributed systems from the tightly coupled multiprocessor
systems described in the last chapter. Consequently, the kernels on each machine

an
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Locking the super block list of inodes while reading in a new set from disk
prevents other race conditions. If the super block list were not locked, a process
could find it empty and try to populate it from disk, occasionally slecping while
waiting for 1/0 completion. Supposc a sccond process also tried to assign a new
inode and found the list empty. It, t00, would try to populate the list from disk.
At best, the two processes are duplicating their efforts and wasting CPU power. At
worst, race conditions of the type described in the previous paragraph would be
more frequent. Similarly, if a process freeing an inode did not check that the list is
locked, it could overwrite inode numbers already in the free list while another
process was populating it from disk. Again, the race conditions described above
would be more frequent. Although the kernel handles them satisfactorily, system
performance would suffer. Use of the lock on the super block free list prevents
such race conditions.

4.7 ALLOCATION OF DISK BLOCKS

When a process writes data o a file, the kernel must allocate disk blocks from the
file system for direct data blocks and, sometimes, for indirect blocks. The file
system super block contains an array that is used to cache the numbers of free disk
blocks in the file system. The utlity program mkfs (make file system) organizes
the data blocks of a file system in a linked list, such that each link of the list is a
disk block that contains an array of free disk block numbers, and one array entry is
the number of the next block of the linked list. Figure 4.18 shows an example of
the linked list, where the first block is the super block free list and later blocks on
the linked list contain more free block numbers.

When the kernel wants to allocate a block from a file system (algorithm alloc,
Figure 4.19), it allocates the next available block in the super block list. Once
allocated, the block cannot be reallocated until it becomes free. If the allocated
block is the last available block in the super block cache, the kernel treats it as a
pointer to a block that contains a list of free blocks. It reads the block, populates
the super block array with the new list of block numbers, and then proceeds to use
the original block number. It allocates a buffer for the block and clears the buffer’s
data (zeros ). The disk block has now been assigned, and the kernel has a buffer
to work with. If the file system contains no free blocks, the calling process receives
an error.

17 a process writes a lot of data t0 a file, it repeatedly asks the system for blocks
to store the data, but the kernel assigns only one block at a time. The program
mkfs tries to organize the original linked list of free block numbers so that block
numbers dispensed to a file arc near each other. This helps performance, because it
reduces disk seek time and latency when a process reads a file sequentially. Figure
4.18 depicts block numbers in a regular pattern, presumably based on the disk
rotation speed. Unfortunately, the order of block numbers on the free block linked
lists breaks down with heavy use as processes write files and remove them, because
block numbers enter and leave the free list at random. The kernel makes no
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a time. This differs from the first solution discussed in the text, where one processor is
designated the master to handle all kernel services. How could such a system make
sure that only one processor is in the kernel? What is a reasonable strategy for
handling interrupts and still make sure that only one processor is in the kernel?

2 Use the shared memory system calls to test the C code for implementation of
semaphores, shown in Figure 12.6. Several independent processes should exceute P-V
sequences on a semaphore. How would you demonstrate a bug in the code?

3. Design an algorithm for CP (conditional ) along the lines of the algorithm for P.

4. Explain why the algorithms for P and ¥ in Figure 12.8 and 12.9 must block interrupts.
At what points should they be blocked?

5.1 a semaphore is used in a spin-lock, as in

while (! CP(semaphore));

why can the kernel never use an unconditional P operation on it? (Hint: If a process.
sleeps on the P operation, what happens in the spin-lock?)

6. Refer to the algorithm gerblk in Chapter 3 and describe a multiprocessor
implementation for the case that the block is not in the buffer cache,

* 7. In the buffer allocation algorithm, suppose there is too much contention for the buffer
free list semaphore. Implement  scheme 10 cut down the contention by partitioning
the free list into two free lists.

*8. Supposc a terminal driver has a semaphore, initialized (0 0, where processes sleep if
they flood the terminal with output. When the terminal can accept more data, it
wakes up every process slceping on the semaphore. Design a scheme to wake up all
processes using P and V. Define other flags and driver locking semaphores, as
necessary. I the wakeup resuls from an interrupt and a processor cannot block
interrupis on other processors, how safe can the scheme be?

*9. When protecting driver cntry points with semaphores, provision must be made to
release the semaphor when @ process sleeps in the driver. Describe an
implementation. Similarly, how should the driver handle interrupts that occur when
the driver semaphore is locked?

10. Recall the system calls in Chapter 8 for sctting and accessing system time. A system
cannot assume identical clock rates for different multiprocessors. How should the time
system calls work?
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Figure 4.17. Race Condition in Assigning Inodes (continued)

by ialloc) and bread (invoked by iger) give process A ample opportunity to go to
sleep. While process A is asleep, suppose process B attempts to assign a new inode
but discovers that the super block list of free inodes is empty. Process B scarches
the disk for free inodes, and suppose it starts its search for free inodes at an inode
number lower than that of the inode that A is assigning. It is possible for process
B to find inode I free on the disk since process A is stll asleep, and the kernel does
not know that the inode is about to be assigned. Process B, not realizing the
danger, completes its search of the disk, flls up the super block with (supposedly)
free inodes, assigns an inode, and departs from the scene. However, inode I is in
the super block free list of inode numbers. When process A wakes up, it completes
the assignment of inode 1. Now suppose process C later requests an inode and
happens to pick inode 1 from the super block free list. When it gets the in-core
copy of the inode, it will find its file type set, implying that the inode was alrcady
assigned. The kernel checks for this condition and, finding that the inode has been
assigned, trics to assign a new one. Writing the updated inode to disk immediately
after its assignment in ialloc makes the chance of the race smaller, because the file
type feld will mark the inode in use.
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algorithm issig 7% test Tor receipt of signals */

input: none.

output: true, if process received signals that it does not ignore
false otherwise

{

while (received signal fied in process table entry not 0)
{
find a signal number sent to the process:
if (signal is death of child)
{
if (ignoring death of child signals)
free process table entries of zombie children;
el if (catching death of child signals)
retrn(irue);
]
e if (not ignoring signal)
return(tru
turn off signal

received signal feld in process table;
i

rewrn (false);

Figure 7.7. Algorithm for Recognizing Signals

7.2.1 Handling Signals

The kernel handles signals in the context of the process that receives them 5o a
process must run to handle signals. There are three cases for handling signals: the
process exifs on receipt of the signal, it ignores the signal, or it executes &
particular (user) function on receipt of the signal. The default action is to call exit
kernel mode, but a process can specify speci n t0 take on receipt of certain
ignals with the signal system call.
The syntax for the signal system call is

oldfunction = signal signum, function)

where signum is the signal number the process is specifying the action for, function
is the address of the (user) function the process wants to invoke on reccipt of the
signal, and the return value oldfunction was the value of function in the most
recently specified call to signal for signum. The process can pass the values 1 or 0
instead of a function address: The process will ignore future occurrences of the
signal if the parameter value is 1 (Section 7.4 deals with the special case for
ignoring the “death of child” signal) and exit in the kernel on receipt of the signal
if its value is O (the default value). The u area contains an array of signal-handler
fields, one for each signal defined in the system. The kernel stores the address of
the user function in the field that corresponds to the signal number. Specification
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Figure 7.6. Checking and Handling Signals in the Process State Diagram





index-323_1.png
95

EXERCISES

Struct fourmeg.

(
intpagelsi2l  /* assume int s 4 bytes ¥/
) fourme(20481;

main0
{
for G)
{
z-vmmerkor
case —1:  /* parent can't fork——=—t00 many children */
case 0: /* child */

func0;
default:
continue;
1
i
)
funcO
(
inti;
for ()
{
printf("proc %d loops again\n’, getpid0);
for (i=0; i <2048; i++)
) fourmeglil.pagel0] = i

Figure 9.30. A Misbehaving Program

£





index-211_1.png
e R MRk f .

27

PROCESS CREATION

Finclude <stringh>
char stringl] = “hello world";
‘mainQ

it count, i
int to_parl), to_chill2l  /* for pipes to parent, child */
char bul256;

pipe(to_pan);

pipe(to_chil);

if (fork() == 0)

(
/* child process exceutes here */
close(0); /1 close old standard input */
duplto_chilloD;  /* dup pipe read to standard input */
close(1); /* close old standard output */

duplto_par(1]);  /* dup pipe write to standard out *
close(to_par{1]); /* close unnecessary pipe descriptors. .
close(to_chillo];

clos(to_parl0D;

close(to_chill1D;

for ()

if ((count = read (0, buf, sizeof (bun)) == 0)
exitO;
, write(1, buf, count);

1
7% parent process executes here */
close(); /* rearrange standard in, out */
dup(to_chill1D;
close(0);
dup(to_parloD;
close(to_chill1]);
close (to_parlOD);
close(to_chilloD;
closeto_parl11);
{m(i-ﬂ: i<

write(l, string, strlen(string));
read(0, buf, sizeof(bu);

Figure 7.5. Use of Pipe, Dup, and Fork
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exec, or sbrk system call or as a result of normal stack growth), or if it has 1
‘make room for a process being swapped in. The kernel swaps processes in via the
special swapper process, process 0, invoking it whenever there exists a “ready-to.
run” process on the swap device. The swapper swaps in all such processes uni|
there are no more processes on the swap device or until there is no more room iy
memory. In the latter case, it attempts to swap processes from main memory, bu
it reduces the amount of thrashing by prohibiting swapping of processes that do not
satisfy residency requirements; hence, the swapper is not always successful in
swapping all processes into memory during each pass. The clock handler wakes up
the swapper every second if it has work to do.

The implementation of demand paging allows processes to cxecute even though
their entire virtual address space is not loaded in memory; therefore the virtual size
of a process can exceed the amount of physical memory available in a system
When the kernel runs low on free pages, the page stealer goes through the active
pages of cvery region, marks pages eligible for stealing if they have aged
suffciently, and eventually copies them to a swap device. When a process addresses
a virtual page that is currently swapped out, it incurs a validity fault. The kernel
invokes the validity fault handler to assign a new physical page to the region and
copies the contents of the virtual page to main memory.

With the implementation of the demand paging algorithm, several features
improve system performance. First, the kernel uses the copy on write bit for
Jforking processes, removing the need to make physical copies of pages in most
cases. Second, the kernel can demand page contents of an executable file from the
file system, eliminating the need for exec to read the file into memory immediately.
This helps performance because such pages may never be needed during the
lifetime of a process, and it eliminates extra thrashing caused if the page stealer
were to swap such pages from memory before they are used.

9.5 EXERCISES

1. Sketch the design of an algorithm myree, which frees space and returns it o 8 miap

2. Section 9.1.2 states that the system locks a process being swapped so that o other
process can swap it while the first operation s underway. What would happen if the
system did not lock the process?

3. Suppose the u area contains the segment tables and page tables for a process. How
can the kernel swap the  area out?

4. If the kernel stack i inside the u area, why can't a process swap itself out? How
would you encode a kernel proces (0 swap out other processes and how should it be
invoked?

*5. Suppose the kernel attcmpis 0 swap out a process to make room for processes on &
swap device, If there is not enough space on any swap devices, the swapper sleeps
uniil more space becomes avalable. Is it possible for all processs in memory to be
aslecp and for all ready-to-run processes to be on the swap device? Describe such &
scenario. What should the kernel do o rectfy the situation?

i
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a pointer to the process table slot of the currently executing process,
parameters of the current system call, return values and error codes,
file descriptors for all open files,

internal 1/0 parameters,

current directory and current root (see Chapter 5),

process and file size limits.

The kernel can directly access fields of the u area of the executing process but not
of the u area of other processes. Internally, the kernel references the structure
variable u 10 access the u area of the currently running process, and when another
process exceutes, the kernel rearranges its virtual address space so that the
structure u refers 10 the u area of the new process. The implementation gives the
kernel an casy way 0 identify the current process by following the pointer from the
u area 10 its process table entry.

22.2.1 Context of a process

The context of a process is its state, as defined by its text, the values of its global
user variables and data structures, the values of machine registers it uses, the
values stored in its process table slot and  area, and the contents of its user and
kernel stacks. The text of the operating system and its global data structures are
shared by all processes but do not constitute part of the context of a process.

When executing a process, the system is said to be executing in the context of
the process. When the kernel decides that it should execute another process, it docs
a context switch, so that the system executes in the context of the other process.
The kernel allows a context switch only under specific conditions, as will be seen.
When doing a context switch, the kernel saves enough information so that it can
later switch back to the first process and resume its exccution. Similarly, when
moving from user to kernel mode, the kernel saves enough information so that it
can later return to user mode and continue exccution from where it left off.
Moving between user and kernel mode is a change in mode, not a context switch.
Recalling Figure 1.5, the kernel does a context switch when it changes context from
process A to process B; it changes execution mode from user to kernel or from
kernel to user, sill executing in the context of one process, such as process A.

The kernel services interrupts in the context of the interrupted process even
though it may not have caused the interrupt. The interrupted process may have
been executing in user mode or in kernel mode. The kernel saves enough
information so that it can later resume execution of the interrupted process and
services the interrupt in kernel mode. The kernel does not spawn or schedule a
special process to handle interrupts.
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that they alternate execution of their system calls, or even if they alternate the
execution of pairs of read-write system calls, the contents of the target file would
be identical t0 the contents of the source file. But consider the following scenario
where the processes are about 1o read the two character sequence “ab” in the
source file. Suppose the parent process reads the character "a’, and the kernel does
a context switch to execute the child process before the parent does the write. If
the child process reads the character b’ and wries it to the target file before the
parent is rescheduled, the target file will not contain the string “ab” in the proper
place, but “ba”. The kernel does not guarantee the relative rates of process
execution.

‘Now consider the program in Figure 7.5, which inherits file descriptors 0 and 1
(standard input and standard output) from its parent. The execution of each pipe
system call allocates two more file descriptors in the arrays fo_par and to_chil,
respectively. The process forks and makes a copy of its context: each process can
access its own data, as in the previous example. The parent process closes its
standard output file (fle descriptor 1), and dups the write descriptor returned for
the pipe fo_chil. Because the first free slot in the parent file escriptor table is the
slot just cleared by the close, the kernel copies the pipe write descriptor to slot 1 in
the file descriptor table, and the standard output file descriptor becomes the pipe
write descriptor for fo_chil. The parent process does a similar operation to make
its standard input descriptor the pipe read descriptor for fo_par. Similarly, the
child process closes its standard input file (descriptor 0) and dups the pipe read
descriptor for fo_chil. Since the first frec slot in the file descriptor table is the
previous standard input slot, the child standard input becomes the pipe read
descriptor for fo_chil. The child does a similar set of operations to make its
standard output the pipe write descriptor for f0_par. Both processes close the file
descriptors returned from pipe— good programming practice, as will be explained.
As a result, when the parent writes its standard output, it is writing the pipe
to_chil and sending data to the child process, which reads the pipe on its standard
input. When the child writes its standard output, it is writing the pipe 10_par and
sending data o the parent process, which reads the pipe on its standard input. The
processes thus exchange messages over the two pipes

The results of this cxample are invariant, regardiess of the order that the
processes execute their respective system calls. That is, it makes no difference
whether the parent returns from the fork call before the child or afterwards
Similarly, it makes no difference in what relative order the processes execute the
system calls until they enter their loops: The kernel structures are identical, If the
child process executes its read system call before the parent does its write, the child
process will sleep until the parent writes the pipe and awakens it. If the parent
process wriles the pipe before the child reads the pipe, the parent will not complete
its read of standard input until the child reads its standard input and writes its
standard output. From then on, the order of execution is fixed: Each process
completes a read and write system call and cannot complete its next read system
call until the other process completes a read and write system call. The parent
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and data structures or the addresses of instructions such as functions. The comp
generates the addresses for a virtual machine as if no other program will exce
simultancously on the physical machine.

‘When the program is to run on the machine, the kernel allocates space in m:
memory for it, but the virtual addresses gencrated by the compiler need not
identical to the physical addresses that they occupy in the machine. The ker
coordinates with the machine hardware to set up a virtual to physical addr
translation that maps the compiler-generated addresses to the physical mach
addresses. The mapping depends on the capabilities of the machine hardware, 2
the parts of UNIX systems that deal with them are therefore machine depende
For cxample, some machincs have special hardware to support demand pagi
Chapters 6 and 9 will discuss issues of memory management and how they relate
hardware in more detail

1.6 SUMMARY

This_chapter has described the overall structure of the UNIX system,
relationship between processes running in user mode versus kernel mode, and
assumptions the kernel makes about the hardware. Processes exccute in user me
or kernel mode, where they avail themselves of system services using a well-defin
set of system calls. The system design encourages programmers to write sm
programs that do only a few operations but do them well, and then to combine t
programs using pipes and 1/0 redirection to do more sophisticated processing.

The system calls allow processes to do operations that are otherwise forbidden
them. - In addition to servicing system calls, the kernel does general bookkeeping !
the user community, controlling process scheduling, managing the storage a
protection of processes in main memory, fielding interrupts, managing fles
devices, and taking care of system error conditions. The UNIX system kerr
purposcly omits many functions that are part of other operating systems, provi
2 small set of system calls that allow processes to do necessary functions at us
level. The next chapter gives a more detailed introduction to the kernel, describi
its architecture and some basic concepts used in its implementation
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Figure 13.4. Open Call from a Satellite Process

the open file; the file descriptor returned by the open is the index into the user file
descriptor table of the stub process. Figure 13.4 depicts the results of an open
system call.

For the write system call, the satellite processor formulates a message,
containing a write token, file descriptor and data count. Afterwards, it copies the
data from the satellite process user space and writes it to the communications link.
The stub process decodes the write message, reads the data from the
communications link, and writes it to the appropriate file, following the file
descriptor to the file table entry and inode, all on the central processor. When
done, the stub writes an acknowledgment message to the satellite process, including
the number of bytes successfully written. The read call is similar: The stub
informs the satellte process if it does not return the requested number of bytes,
such as when reading a terminal or a pipe. Both read and write may require the
transmission of multiple data messages across the network, depending on the
amount of data and network packet sizes.

The only system call that needs internal modification on the central processor s
the fork system call. When a process on the central processor exccutes the fork
system call, the kernel selects a satellte to execute the process and sends a message
10 a special server process on the satellite, informing it that it is about to download
a process. Assuming the server accepts the fork request, it does a fork to create a
new satellite process, initializing a process table entry and a u area. The central
processor downloads a copy of the forking process to the satellite processor,
overwriting the address space of the process just created there, forks a local stub
process to communicate with the new satellte process, and sends a message to the
satellite processor to initialize the program counter of the new process. The stub
process (on the central processor) is the child of the forking process; the satellite
process is technically a child of the server process, but it is logically a child of the
process that forked. The server has no logical relationship with the child process
after the fork completes; the only purpose of the server process is 10 assist in
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« Signals originating from a process in wser mode, such as when a process wishes
{0 receive an alarm signal after a period of time, or when processes send
arbiteary signals to cach other with the kill system call;

« Signals related to terminal interaction such as when a user hangs up a terminal
(or the “carrier” signal drops on such a line for any reason), or when a user
presses the “break” or “delete” keys on a terminal keyboard;

o Signals for tracing execution of  process.

The discussion in this and in following chapters explains the circumstances under
which signals of the various classes are used.

The treatment of signals has several facets, namely how the kernel sends a
signal to a process, how the process handles a signal, and how a process controls its
reaction to signals. To send a signal 10 a process, the kernel sets a bit in the signal
feld of the process table entry, corresponding to the type of signal received. If the
process is asleep at an interruptible priority, the kernel awakens it. The job of the
sender (process or kernel) is complete. A process can remember different types of
signals, but it has no memory of how many signals it receives of a particular type.
For example, if a process receives a hangup signal and a kil signal, it sets the
appropriate bits in the process table signal field, but it cannot tell how many
instances of the signals it receives.

The kernel checks for reccipt of a signal when a process is about o return from
kernel mode to user mode and when it enters or leaves the slecp state at a suitably
low scheduling priority (see Figure 7.6). The kernel handles signals only when a
process returns from kernel mode 10 user mode. Thus, a signal docs not have an
instant effcet on a process running in kernel mode. If a process is running in user
mode, and the kernel handles an interrupt that causes a signal to be sent to the
process, the kernel will recognize and handle the signal when it returns from the
interrupt. Thus, a process never executes in user mode before handling outstanding
signals

Figure 7.7 shows the algorithm the kernel exccutes to determine if a process
reccived a signal. The case for “death of child” signals will be treated later in the
chapter. As will be seen, a process can choose to ignore signals with the signal
system call. In the algorithm issig, the kernel simply turns off the signal indication
for signals the process wants to ignore but notes the existence of signals it does not
ignore.

i some circumstances uncovers errors in programs that do not check for failure of
system calls (private commanication from . Ritchie).
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Devise an algorithm that tracks the allocation of space on a swap device by means oy
bit map instead of the maps described in the chapter. Compare the efficiency of sy
two methods.

Suppose & machine has no hardware valid bit but has protection bits 1o allow
write, and exccte from a page. Simulate manipulation of a software valid bit.

The VAX-11 bardware checks for protection faults before validity faults. Why
ramifications does this have for the algorithms for the fault handlers?

The plock system call allows superusers 10 lock and unlock the text and data regions
of the calling process into memory. The swapper and page stealer processes cannay
remove locked pages from memory. Processes that use this call never have to wai to
be swapped in, assuring them faster response than other processcs. How should the
system call be implemented? Should there be an option to lock the stack region into
memory t00? What should happen if the total memory space of plocked regions is
greater than the available memory on the machine?

What is the program in Figure 9.30 doing? Consider an alternative paging policy,
Where cach process has a maximum allowed number of pages in its working sct.
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Figure 13.6. Fork on a Satellite Processor

A process must react to signals in the same way that it would react on a
uniprocessor: Either it finishes the system call before it checks for the signal or it
awakens immediately from its sleep and abruptly terminates the system call,
depending on the priority at which it slecps. Because a stub process handles system
calls for a satellite, it must react to signals in concert with the satellte process. I
a signal causes 2 process on a uniprocessor o finish a system call abnormally, the
stub process should behave the same way. Similarly, if a signal causes a process to
exit, the satcllite exirs and sends an exit message to the stub process, which exits
naturally.

When a satellite process exccutes the signal system call, it stores the usual
formation in local tables and sends a message to the stub process, informing it
whether it should ignore the particular signal or not. As will be scen, it makes no
difference to the stub whether a process catches a signal or does the default
operation. A process reacts to signals based on the combination of three factors
(see Figure 13.7); whether the signal occurs when the process i in the middle of 3
system call, whether the process had called the signal system call to ignore the
signal, or whether the signal originates on the satellite processor or on another
processor. Let us consider the various possibilities.

Suppose a satellite process is aslecp as the stub process exceutes a system call
on its behalf. 1f a signal originates on another processor, the stub sces the signal
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exits after 15 iterations through the loop; the child then reads “end-of-file” because
the pipe has no writer processes and exits. If the child were to write the pipe afier
the parent had exited, it would receive a signal for writing a pipe with no reader
processes.

‘We mentioned above that it is good programming practice to close superfluous
file descriptors. This is true for three reasons. First, it conserves file descriptors in
view of the system-imposed limit. Second, if a child process execs, the file
descriptors remain assigned in the new context, as will be seen. Closing extrancous
files before an exec allows programs o execute in a clean, surprisc-frec
environment, with only standard input, standard output, and standard error fle
descriptors open. Finally, a read of a pipe returns end-of-fle only if no processes
have the pipe open for writing. If a reader process keeps the pipe write descriptor
‘open, it will never know when the writer processes close their end of the pipe. The
example above would not work properly unless the child closes its write pipe
descriptors before entering its loop.

7.2 SIGNALS

Signals inform processes of the occurrence of asynchronous events. Processes may
send cach other signals with the kill system call, or the kernel may send signals
internally. There are 19 signals in the System V (Release 2) UNIX system that
can be classified as follows (see the description of the signal system call in [SVID
85D):

* Signals having to do with the termination of a process, scnt when a process
exits or when a process invokes the signal system call with the death of child
parameter;

* Signals having to do with process induced exceptions such as when a process
accesses an address outside its virtual address space, when it attempts to write
memory that is read-only (such as program text), or when it executes a
privileged instruction or for various hardware errors;

© Signals having to do with the unrecoverable conditions during a system call,
such as running out of system resources during exec after the original address
space has been released (sec Section 7.5);

© Signals caused by an unexpected error condition during a system call, such as
making a nonexistent system call (the process passed a system call number that
docs not correspond to a legal system call), writing a pipe that has no reader
processes, or using an illegal “reference” value for the Iseek system call, It
would be more consistent to return an error on such system calls instead of
generating a signal, but the use of signals to abort misbehaving processes i
more pragmatic;'
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Reconsider the swapping example in Figure 9.10 if there is room for only 1 proeess in

memory.
Reconsider the swapping example in Figure 9.11. Construct an cxample where a
process s permanently starved from use of the CPU. s there any way to prevent

this?

int blastl 100
for (i = 0;
blastli] = i;

Figure 9.29. Vfork and More Corruption

What happens when cxccuting the program in Figure 9.29 on a 4.2 BSD system?
What happens to the parent’s stack?

Why is it advantageous to schedule the child process before the parent after a fork
callif copy on write bits are sct on shared pages? How can the kernel force the child
o run first?

The validity fault algorithm presented in the text swaps in one page at a time. Its
efficiency can be improved by prepaging other pages around the page that caused the
fault. Enhance the page fault algorithm to allow prepaging.

“The algorithms for the page stealer and for the valdity fault handler assume that the
size of a page equals the size of a disk block. How should the algorithms be enhanced
to handlc the cases where the respective sizes are not equal?

When a process forks, the page use count in the pfdata table s incremented for all
shared pages. Suppose the page stealer swaps a (shared) page 10 a swap device, and
one process (say, the parent) later faults it in. The virtual page now resides in @
physical page. Explain why the child process will always be able o find a legal copy
of the page, even after the parent wites the page. If the parent writes the page, why
mst it disassociate itslf from the disk copy immediately?

‘What should a fault handier do if the system runs out of pages?

Design an algorithm that pages out infrequently used parts of the kernel. What parts
of the kernel cannot be paged and how should they be identified?
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Figure 13.5. Fork on the Central Processor

downloading the child. Because of the tight coupling of the system (the satellite
processors have no autonomy), the satellite and stub processes have the same
process ID. Figure 13.5 illustrates the relationship between the processes:  the solid
line shows parent-child relationships and dotied lines depict _peer-to-peer
communication lines, either parent process to satellite server or child process to its
stub.

When a process on a satellite processor forks, it sends a message to its stub on
the central processor, which then goes through a similar sequence of operations.
The stub finds a new satellte processor and arranges to download the old process
image: It sends a message to the parent satellte process requesting to read the
process image, and the satellite responds by wriring its process image to the
communications link. The stub reads the process image and writes it to the child
satellte. When the satelite is completely downloaded, the stub forks, creating a
child stub on the central processor, and writes the program counter 1o the child
satellite so that it knows where to start execution. Obvious optimizations can occur
if the child process is assigned to the same satellite as its parent, but this design
allows processes to run on other satellte processors besides the one.on which they
were forked. Figure 13.6 depicts the process relationships after the fork. When a
satellite process exis, it sends an exit message to the stub, and the stub exits. The
stub cannot initiate an exir sequence.
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marked its sleep address. If a process that woke up was not loaded in memory, th
Kernel awakens the swapper process to swap the process into memory (assuming th
system is one that does not support demand paging); otherwise, if the awakene
process is more cligible to run than the currently executing process, the kernel set
a scheduler flag so that it will go through the process scheduling algorithm whe
the process returns to user mode (Chapter 8). Finally, the kernel restores th
processor exceution level. It cannot be stressed enough: wakeup does nof cause
process to be scheduled immediately; it only makes the process eligible fo
scheduling.

The discussion above is the simple case of the sleep and wakeup algorithm:
because it assumes that the process sleeps until the proper event occurs. Processe
frequently slcep on events that are “sure” to happen, such as when awaiting
locked resource (inodes or buffers) or when awaiting completion of disk 1/0. Th
process is sure to wake up because the usc of such resources is designed to b
temporary. However, a process may sometimes slecp on an event that is not sure t
happen, and if so, it must have a way to regain control and continuc execution. Fo
such cases, the kernel “interrupts” the sleping process immediately by sending it
signal. The next chapter explains signals in great detail; for now, assume that th
kernel can (sclectively) wake up a sleeping process as a result of the signal, an
that the process can recognize that it has been sent a signal.

For instance, if a process issues a read system call t0 a terminal, the kernel doc
not satisfy the call until a user types data on the terminal keyboard (Chapter 10)
However, the user that started the process may leave the terminal for an all-da
meeting, leaving the process asleep and waiting for input, and another user ma
want to use the terminal. If the second user resorts to drastic measures (such a
turning the terminal off), the kernel needs a way to recover the disconnecte
process: As a first step, it must awaken the process from its sleep as the result of :
signal. Parenthetically, there is nothing wrong with processes sleeping for a lon
time. Sleeping process occupy a slot in the process table and could thus lengthes
the search times for certain algorithms, but they do not use CPU time, so thei
overhead is small,

‘To distinguish the types of sleep states, the kernel sets the scheduling priority o
the slecping_process when it enters the sleep state, based on the sleep priorit
parameter. That is, it invokes the sleep algorithm with a priority value, based or
its knowledge that the sleep event is sure to occur or not. If the priority is above
threshold value, the process will not wake up prematurely on receipt of a signal bu
will sleep until the event it is waiting for happens. But if the priority value is below
the threshold value, the process will awaken immediately on receipt of the signal.*

& The terms “abore” and “below” efr 10 the normal usage f the terms
However, the kernel e
impying Ngher prirty.

I priority and low pririty
plementation use integers (o measure the priorty value, with lower values






index-307_1.png
9z DEMAND PAGING 295

Page Referenced

L

Age Page-~-Not Referenced

Page
out of

out

In Memory

Figure 9.18. State Diagram for Page Aging

references. A process referenced the page after the second examination, dropping
its age to 0. Similarly, a process referenced the page again after onc more
examination. Finally, the page stealer examined the page three times without an
intervening reference and swapped the page out.

If two or more processes share a region, they update the reference bits of the
same set of page table entrics. Pages can thus be part of the working set of more
than one process, but that does not matter (0 the page stealer. If a page is part of
the working sct of any process, it remains in memory; if it is not part of the
working set of any process, it is eligible for swapping. It does not matter if one
region has more pages in memory than others:  the page stealer does not attempt to
swap out equal numbers of pages from all active regions.

The kernel wakes up the page stealer when the available free memory in the
system is below a low-water mark, and the page stealer swaps out pages until the
available frec memory in the system exceeds a high-water mark. The use of high-
and low-water marks reduces thrashing: If the kernel were only to use one
threshold, it would swap out enough pages to get above the threshold (of free
pages), but as a result of faulting pages back into memory, the number would soon
drop below the threshold. The page stealer would effectively thrash about the
threshold. By swapping out pages until the number of free pages exceeds a high-
water mark, it takes longer until the number of free pages drops below the low-
water mark, so the page stealer does not run as often. Administrators can
configure the values of the high- and low-water marks for best performance.

‘When the page stealer decides to swap out a page, it considers whether a copy
of the page is on a swap device. There are three possibilities.
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Figure 12.11. Deadlock because of Reversed Order of Locking

cxample, the value of the semaphore is at most 0 when the interrupt occurs, so the
CP in the interrupt handler will always be false. The situation is avoided by
blocking out interrupts while the process has the semaphore locked.

1233 Some Algorithms

This section reviews four kernel algorithms as implemented with semaphores. The
buffer allocation algorithm illustrates a complicated locking scenario, the wait
algorithm illustrates process synchronization, a driver-locking scheme illusirates an
clegant approach for locking device drivers, and finally, the method for processor
idling shows how an algorithm was changed to avoid contention.

12331 Buffer Allocation

Recall the algorithm gerblk for buffer allocation in Chapter 3. The three major
data structures for buffer allocation are the buffer header, the hash queue of
buffers, and the free list of buffers. The kernel associates a semaphore with each
instance of cvery data structure. In other words, if the kernel contains 200 buffers,
cach buffer header contains a semaphore for locking the buffer; when a process
does a P on the buffer header semaphore, other processes that do a P slecp until the
first process docs a V. Each hash queue of buffers also has a semaphore that locks
access to the hash queue. The uniprocessor system did not require a lock for the
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the next block. The kernel repeats the procedure until it matches the path name
component with a directory entry name, or until it reaches the end of the directory.

For example, suppose a process wants 10 open the file “/etc/passwd”. When the
kernel starts parsing the file name, it encounters “/" and gets the system root
inode. Making root its current working inode, the kernel gathers in the string
“etc”. After checking that the current inode is that of a directory (*/") and that
the process has the necessary permissions 10 search it, the kernel searches root for a
fle whose name is “etc”: It accesses the data in the root directory block by block
and searches cach block one entry at a time until it locates an entry for “etc”. On
finding the entry, the kernel releases the inode for oot (algorithm ipur) and
allocates the inode for “etc” (algorithm iger) according to the inode number of the
entry just found. After ascertaining that “etc” is a directory and that it has the
requisite search permissions, the kernel searches “etc” biock by block for a
dircctory structure entry for the file “passwd”. Referring to Figure 4.10, it would
find the entry for “passwd” as the ninth entry of the directory. On finding it, the
kernel releases the inode for “etc”, allocates the inode for “passwd”, and — since
the path name is exhausted — returns that inode.

It is natural to question the efficiency of a linear search of a directory for a path
name component. Ritchie points out (see page 1968 of [Ritchie 78b]) that a lincar
search is efficient because it is bounded by the size of the directory. Furthermore,
early UNIX system implementations did not run on machines with large memory
space, so there was heavy emphasis on simple algorithms such as linear search
schemes. More complicated search schemes could require a different, more
complex, dircctory structure, and would probably run more slowly on small
directories than the linear search scheme.

4.5 SUPER BLOCK

So far, this chapter has described the structure of a file, assuming that the inode
was previously bound 0 a file and that the disk blocks containing the data were
already assigned. The next sections cover how the kernel assigns inodes and disk
blocks. To understand those algorithms, let us examine the structure of the super
block.

‘The super block consists of the following fields:

the size of the file system,

the number of free blocks in the file system,

a list of fre blocks available on the file system,

the index of the next free block in the free block list,
the size of the inode list,

the number of frec inodes in the file system,

a list of frec inodes in the file system,

the index of the next free inode in the free inode list,
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Figure 9.17. Mapping 2 File into a Region

9.2.2 The Page-Stealer Process

The page stealer is a kernel process that swaps out memory pages that are no
longer part of the working set of a process. The kernel creates the page stealer
during system initialization and invokes it throughout the lifetime of the system
when low on free pages. It examines every active, unlocked region, skipping locked
regions in the expectation of examining them during its next pass through the
region list, and increments the age field of all valid pages. The Kernel locks &
region when a process faults on a page in the region, so that the page stealer cannot
steal the page being faulted in.

“There are two paging states for a page in memory: The page is aging and is not
yet eligible for swapping, or the page is cligible for swapping and is available for
reassignment to other virtual pages. The first state indicates that a process recently
accessed the page, and the page is therefore in its working set. Some machines set
a reference bit when they reference a page, but software methods can be substituted
if the hardware does not have this feature (Section 9.2.4). The page stealer turns
off the reference bit for such pages but remembers how many examinations have
passed since the page was last referenced. The first state thus consists of several
substates, corresponding to the number of passes the page stealer makes before the
page s cligible for swapping (sce Figure 9.18). When the number exceeds &
threshold value, the kernel puts the page into the second state, ready to be
swapped. The maximum period that a page can age before it is cligible to be
swapped is implementation dependent, constrained by the number of bits available
in the page table entry.

Figure 9.19 depicts the interaction between processes accessing a page and
cxaminations by the page stealer. The page starts out in main memory, and the
figure shows the number of examinations by the page stealer between memory
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Figure 12.10. Failed Simulation of Wakeup with V.

reversed order, the CP operation prevents the deadlock, as shown in Figure 12.12:
If the CP fails, process B releases its resources to avoid the deadlock and reenters
the algorithm at a later time, presumably when process A completes use of the
resource.

An interrupt handler may have to lock a semaphore to prevent processes from
using a resource simultancously, but it cannot go to sleep, as explained in Chapter
6, and therefore cannot use a P operation. Instead, it can exccute a spin lock to
avoid going t0 sleep as in the following:

(! CP(semaphore)) ;

The operation loops as long as the semaphore value is less than or equal to 0; the
handler does not sleep, and the loop terminates only when the semaphore value
becomes positive, at which time CP decrements the semaphore value.

To avoid a deadlock, the kernel must block out interrupts that execute a spin
lock. Otherwise, a process could lock a semaphore and be interrupted before it
unlocks the semaphore; if the interrupt handier attempts to lock the same
semaphore using a spin lock, the kernel deadlocks itself. In Figure 12.13, for
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algorithm namei /* convert path name (o inode */
input: path name
output: locked inode
{
i (path name starts from root)
‘working inode = root inode (algorithm igel);
else
working inode = current directory inode (algorithm iget);

while (here is more path name)
(
read next path name component from input;
verify that working inode is of directory, access permissions OK:
if (working inode is of root and component is *.)
continue;  /* loop back (o while */
read directory (working inode) by repeated use of algorithms
‘bmap, bread and brelse;
if (component matches an entry in directory (working inode))
{

get inode number for matched component;
release working inode (algorithm iput);
working inode = inode of matched component (algorithm iget);

else  /* component not in directory */
return (no inode);
)

return (working inode);

Figure 4.11. Algorithm for Conversion of a Path Name to an Inode

permission must be granted, or the file must allow scarch to all users. Otherwise
the search fails.

The kernel does a linear search of the directory file associated with the working
inode, trying to match the path name component to a directory entry name.
Starting at byte offset 0, it converts the byte offset in the dircctory to the
appropriate disk block according to algorithm bmap and reads the block using
algorithm bread. It searches the block for the path name component, treating the
contents of the block as a sequence of directory entries. If it finds a match, it
records the inode number of the matched directory entry, releases the block
Galgorithm brelse) and the old working inode (algorithm iput), and allocates the
inode of the matched component (algorithm iger). The new inode becomes the
working inode. If the kernel does not match the path name with any names in the
block, it releases the block, adjusts the byte offsct by the number of bytes in &
block, converts the new offset to a disk block number (algorithm bmap), and reads
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page since it was swapped in, the memory copy is identical to the disk copy and
there is no need to write the page o the swap device. 1f a process has written the
page, however, the memory copy differs from the disk copy, so the kernel must
write the page to the swap device, after freeing the space on the swap device
previously occupied by the page. It does not reuse the space on the swap device
immediately, so that it can keep swap space contiguous for beter performance.

The page stealer fills a list of pages to be swapped, possibly from different
regions, and swaps them to a swap device when the list is full. Every page of a
process need not be swapped: Some pages may not have aged sufficiently, for
example. This differs from the policy of the swapping process, which swaps every
page of a process from memory, but the method for writing data to the swap device
is identical to that described in Section 9.1.2 for a swapping system. If no swap
device contains enough contiguous space, the kerncl swaps out one page at a time,
which is clearly more costly. There is more fragmentation of a swap device in the
paging scheme than in a swapping scheme, because the kernel swaps out blocks of
pages but swaps in only one page at a time.

‘When the kernel writes a page to a swap device, it turns off the valid bit in its
page table entry and decrements the use count of its pfdata table entry. If the
count drops to 0, it places the pfdata table entry at the end of the free list, caching
it until reassignment.  1f the count is not 0, several processes are sharing the page
as a result of a previous fork call, but the kernel stil swaps the page out. Finally,
the kernel allocates swap space, saves the swap address in the disk block descriptor,
and increments the swap-use table count for the page. If a procss incurs a page
fault while the page is on the free list, however, the kernel can rescue the page
from memory instead of having to retrieve it from the swap device. However, the
page is still swapped if it is on the swap list.

For example, suppose the page stealer swaps out 30, 40, 50 and 20 pages from
processes A, B, C, and D, respectively, and that it writcs 64 pages to the swap
device in one disk write operation. Figure 9.20 shows the sequence of page-
swapping operations that would occur if the page stealer examines pages of the
processes in the order A, B, C, and D. The page stealer allocates space for 64
pages on the swap device and swaps out the 30 pages of process A and 34 pages of
process B. It then allocates more space on the swap device for another 64 pages
and swaps out the remaining 6 pages of process B, the SO pages of process C, and 8
pages of process D. The two areas of the swap device for the two write operations
need not be contiguous. The page stealer keeps the remaining 12 pages of process
D on the list of pages to be swapped but does not swap them until the list is full.
As processes fault in pages from the swap device or when the pages are no longer
in use (processes exit), free space develops on the swap device.

To summarize, there are two phases to swapping a page from memory. First,
the page stealer finds the page cligible for swapping and places the page number on
a list of pages to be swapped. Second, the kernel copies the page to a swap device
when convenient, turns off the valid bit in the page table entry, decrements the
pidata table entry reference count, and places the pfdata table entry at the end of
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P(semaphore);
(Semaphore value now 0)

Interrupt
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semaphore locked.
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‘Cannot return from interrupt, without servi

Deadlocked
Time

Figure 12.13. Deadlock in Interrupt Handler

Suppose the CP operation on the buffer fails because another process had locked
the buffer semaphore. Process A releases the hash queue semaphore and then
sleeps on the buffer scmaphore with a P operation. The P operates on the
semaphore that just caused the CP to faill It does not matter whether process A
sleeps on the semaphore: After completion of the  operation, process A contrals
the buffer. Because the rest of the algorithm assumes that the buffer and the hash
queue are locked, process A now attempts to lock the hash queue.' Because the
locking order here (buffer semaphore, then hash queue semaphore) is the opposite
of the locking order explained above (hash queuc semaphore, then buffer
semaphore), the CP semaphore operation is used. The obvious processing happens
if the lock fails. But if the lock succeeds, the kernel cannot be sure that it has the
correct buffer, because another process may have found the buffer on the free list
and changed the contents to those of another block before relinguishing control of
the buffer semaphore. Process A, waiting for the semaphore to become free, had no
idea that the buffer it was waiting for was no longer the one in which it was
interested and must therefore check that the buffer is still valid; if not, it restarts
the algorithm. If the buffer contains valid data, process A completes the algorithm.

1+ The algorithi could avoid locking the hash queue here by sciing a flag and testing it before the ¥
tater on, but this method illustrate the technique for locking semaphorcs in éversed order
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@ lock fields for the free block and free inode lists,
© a flag indicating that the super block has been modified,

The remainder of this chapter will explain the use of the arrays, indices and locks,
ihe kernel periodically write the super block to disk if it had been modifed sq gy
it s consistent with the data in the file system.

4.6 INODE ASSIGNMENT TO A NEW FILE

The kernel uses algorithm iget 10 allocate a known inode, one whose (fle system
and) inode number was previously determined. Tn algorithm ramer for instance,
the kernel detcrmines the inode number by matching a path name component 1
e i, irectory.. Another algorithm, alloc, assigns . disk inode 1o 3 newly
created fle.

gure fle system contains a lincar s of inodes, as mentioned in Chapter 2. An
inode i fre if s type field s zer0. When a process needs a new inode. the keree)
could theoretcally search the inode lis for a fres inode. However, such o acr .
ould be expensive, requiring at least one read operation (possibly from disk) o
gvery inode. To improve performance, the fil system super block contains o array
to cache the numbers of free inodes in the file system.

Figure 4.12 shows the algorithm ialloc for assigning new inodes. For reasons
Ghed latr, the kernel frst verifies that no other processes hav looked acousy o vr
Super Dlock free inode lst. If the list of inode numbers in the super block s .
thebey, the kernel assigns the next inode number, allocates a free in-core iody por
the newly assigned disk inode using algorithn iger (reading the inade o disk if

inode is now in use: A non-zero file type field indicates thay the disk inode is
assigned. In the simplest case, the kernel has a good inode, but race conditions
exist that necessitate more checking, as will be explained shortly. Loosely defined,

executed, even though all Pprocesses obeyed the locking protocol. For example, it is
implied here that a Pprocess could get a used inode. A race condition is related to
the mutual exclusion problem defined in Chapter 2, except that locking schemes
solve the mutual exclusion problem there but may not, by themselvey. cote o race
conditions.

If the super block list of free inodes is empty, the kernel searches the disk and
places as many frec inode numbers as possible into the super block. The kernel
reads the inode st on disk, block by block, and Sl the super block. i <f inode
Thanbers to capaciy, remembering the highest-numbered inode that 1t hudy. o
that inode the “remembered” inode; it is the lat one saved in the super block. The
next time the kernel searches the disk for free inodes, it uses the remembered inode
# s starting point, thereby assuring that it wastes no time reading disk blocky
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ovo-pass compiler, assembler, and loader (ink-editon), all scparate lower-|
Prebrams.  Although the figure. depicts o tworevel hierarchy of apphies
programs, users can cxiend the hierarchy to whatever lovels are appropri
Indeed. the style of programming favored by the UNIX system encourages
combination of existing programs to accomplish a task,

Many application subsystems and programs that provide a high-evel view of
o such as the shell, editors, SCCS (Source Code Control System). |
ocument preparation packages, have gradually become ayronymous win ro na
“UNIX system.” However, they all use lower-level servigcs ultimately provided
the kernel, and they avail themselves of these scrvices vi the ses of system ca

tiem presented in this book reduces 10 a detailed study and analyss of (he syste
calls and their interaction with one another. In shor, the kesps) provides ¢
Sonvices upon which all application programs in'the UNIX system rely, and
defines those services. This book will frequently use the term: “UNIX system
okernel,” or “system.” but the intent is 10 refer (0 the Kepnel ot the UNI
operating system and should be clear in context,

1.3 USER PERSPECTIVE

This section briefly revicws high-level features of the UNIX system such as the fi
2wt the processing environment, and building block priseitives (for example
Pipes). Later chapters will explore kernel support of these features in detail,

131 The File System
The UNIX fle system is characterized by

* a hierarchical structure,

* consistent treatment of file data,
 the ability to create and delete files,
* dynamic growth of files,

* the protection of file data,

oy every non-leaf node of the file system structope directory of files, and files
u the leaf nodes of the tree are cither directorics regular files, or special device
fes. The name of a file is given by a parh ome (1" describes how to locate the
fle in the fle system hicrarchy. A path name 1 o sequence of component names
separaied by slash characters; a component is 3 sequence of characters that
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Figure 9.19. Example of Aging a Page

1. If no copy of the page is on a swap device, the kernel “schedules” the page
for swapping: The page stealer places the page on a list of pages to be
swapped out and continues; the swap is logically complete. When the list of
pages to be swapped reaches a limit (dependent on the capabilities of the disk
controller), the kernel writes the pages to the swap device.

2. 1'a copy of the page is already on a swap device and no process had modified
its in-core contents (the page table entry modify bit is clear), the kernel
clears the page table entry valid bit, decrements the reference count in the
pfdata table entry, and puts the entry on the free lst for future allocation

3. 1f a copy of the page is on a swap device but a process had modified its
contents in memory, the kernel schedules the page for swapping, as above,
and frees the space it currently occupics on the swap device.

The page stealer copies the page to a swap device if case 1 or case 3 is true.

To illustrate the differences between the last two cases, supposc a page is on a
swap device and is swapped into main memory afier a process incurs a validity
fault. Assume the kernel does not automatically remove the disk copy. Eventually,
the page stealer decides to swap the page out again. If no process has written the
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Process A/Processor A Process B/Processor B

P(semaphore SA);

\ H P(semaphore SB);

if (1 CP(semaphore SA))
{

V(semaphore SB);
reenter algorithm

H i
P(semaphore SB);

sleeps.

im

Time

Figure 12.12. Use of Conditional P to Avoid Deadlock

hash queue, because a process would never go to sleep and leave the hash queuc in
an inconsistent state. In a multiprocessor system, however, two processes could
manipulate the linked list of the hash queue; the semaphore for the hash queue
permits only one process at a time to manipulate the linked list. Similarly, the free
list requires a semaphore because several processes could otherwise corrupt it.

Figure 12.14 depicts the first part of the gerblk algorithm as implemented with
semaphores on a multiprocessor system (recall Figure 3.4). To search the buffer
cache for a given block, the kernel locks the hash queuc semaphore with a P
operation. If another process had already done a P operation on the semaphore, the
executing process sleeps until the original process does a V. When it gains
exclusive control of the hash queue, it searches for the appropriate buffer. Assume
that the buffer is on the hash queue. The kernel (process A) attempts to lock the
buffer, but if it were to use a P operation and if the buffer was already locked, it
would sleep with the hash queue locked, preventing other processes from accessing
the hash queue, even though they were scarching for other buffers. Instead, process
A atiempts to lock the buffer using the CP operation; if the CP succeeds, it can use
the buffer. Process A locks the free list semaphore using CP in a spin loop, because
the expected time the lock is held is short, and hence, it does not pay to sieep with
a P operation. The kernel then removes the buffer from the free list, unlocks the
free list, unlocks the hash queue, and returns the locked buffer.
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algorithm V. 7%V semaphore operation */
input: - address of semaphore
output: none

{
Pprim(semaphorelock);
increment (semaphore.value);
if (semaphore.value <= 0)
1
remove first process from semaphore sleep list;
make it ready to run (wake it up);

Vorim(semaphore lock);

Figure 129, Algorithm for Implementation of V

Consider _another phenomenon in the use of semaphores on a uniprocessor
system. Suppase two processes, A and B, contend for a semaphore: Process A
finds the semaphore free and process B sleeps; the value of the semaphore is —1
When process A releases the semaphore with a ¥, it wakes up process B and
increments the semaphore value to 0. Now suppose process A, still executing in
kernel mode, tries to lock the semaphore again: It will slecp in the P function.
because the value of the semaphore is 0, even though the resource is still free! The
system will incur the expense of an extra context switch. On the other hand, if the
lock were implemented by a sleep-lock, process A would gain immediate rouse of
the resource, because no other process could lock it in the meantime. In this case,
the sleep-lock would be more efficient than a semaphore.

When locking several semaphores, the locking order must be consistent to avoid
deadlock. For instance, consider two semaphores, A and B, and consider two kernel
algorithms that must have both scmaphores simultancously locked. If the two
algorithms were to lock the semaphores in reverse order, a deadlock could arise, as
shown in Figure 12.11; process A on processor A locks semaphore SA while process
B on processor B locks semaphore SB. Process A attempts to lock semaphore SB,
but the P operation causes process A to g0 to sleep, since the value of SB is at most
0. Similarly, process B attempts to lock semaphore SA, but its 2 puts process B o
sleep. Neither process can proceed.

Deadlocks can be avoided by implementing deadlock detection algorithms that
determine if a deadlock exists and, if so, break the deadlock condition. However,
implementation of deadlock detection algorithms would complicate the kernel code.
Since there are only a finite number of places in the kernel where a process must
simultancously lock several semaphores, it is casier to implement the kernel
algorithms to avoid deadlock conditions before they occur. For instance, if
particular sets of semaphores were always locked in the same order, the deadlock
condition could never arise. But if it is impossible to avoid locking semaphores in
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The kernel stores data for a directory just as it stores data for an ordinary file,
using the inode structure and levels of direct and indircet blocks. Processes may
read dircctorics in the same way they read regular files, but the kernel reserves
exclusive right to write a directory, thus insuring its correct structure. The access
permissions of a directory have the following meaning: read permission on a
directory allows a process to read a directory; write permission allows a process to
create new directory entries or remove old ones (via the creat, mknod, link, and
unlink system calls), thereby altering the contents of the dircctory; execute
permission allows a process to scarch the directory for a file name (it is meaningless
to execute a directory). Exercise 4.6 explores the differcnce between reading and
searching a directory.

4.4 CONVERSION OF A PATH NAME TO AN INODE

The initial access 1o a file is by its path name, as in the open, chdir (change
directory), or link system calls. Because the kernel works internally with inodes
rather than with path names, it converts the path names to inodes to access files.
The algorithm namei parses the path name one component at a time, converting
cach component into an inode based on its name and the directory being scarched,
and eventually returns the inode of the input path name (Figure 4.11),

Recall from Chapter 2 that every process is associated with (resides in) a
current directory; the u area contains a pointer to the current directory inode. The
current directory of the first process in the system, process 0, is the root directory.
‘The current directory of every other process starts out as the current directory of its
parent process at the time it was created (see Section 5.10). Processes change their
current directory by exccuting the chdir (change directory) system call. All path
name searches start from the current directory of the process unless the path name
starts with the slash character, signifying that the search should start from the root
irectory. In cither case, the kernel can easily find the inode where the path name
search starts: The current directory is stored in the process u area, and the system
root inode s stored in a global variable.?

Namei uses intermediate inodes as it parses a path name; call them working
inodes. The inode where the search starts is the first working inode. During cach
iteration of the namei loop, the kernel makes sure that the working inode is indeed
that of a directory. Otherwise, the system would violate the assertion that non-
directory files can only be leaf nodes of the file system tree. The process must also
have permission 10 scarch the directory (read permission is insufficient). The user
ID of the process must match the owner or group ID of the file, and execute

2. A process can excut the chroot system call 1 change s noton f th ik system root, The
changed root is stored in the u area. .
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Recall from Chapter 1 that directories are the files that give the file system its
hicrarchical structure; they play an important role in conversion of a file name to
an inode number. A dircctory is a file whose data is a scquence of entries, each
consisting of an inode number and the name of a file contained in the dircctory. A
path name is a nul terminated character string divided into separate components
by the slash (/") character. Each component except the last must be the name of
a dircctory, but the last component may be a non-directory file. UNIX System V
restricts component names to a maximum of 14 characters; with a 2 byte entry for
the inode number, the size of a directory entry is 16 bytes.

Byte Offset _Inode Number  File Names,
in Directory (2 bytes)
0 83
16 2
32 1798 init
48 1276 fick
64 85 clri
80 1268 motd
9 1799 mount
12 88 mknod
128 2114 passwd
144 7 umount
160 1851 checklist
176 92 fsdblb
192 84 config
208 1432 getty
24 0 crash
240 95 mkfs
256 188 inittab

Figure 4.10. Directory Layout for /etc

Figure 4.10 depicts the layout of the directory “etc”. Every directory contains
the file names dot and dot-dot (.” and **.”) whose inode numbers are those of the
directory and its parent directory, respectively. The inode number of “.” in “/etc”
is located at offset 0 in the file, and its value is 83. The inode number of *." is
located at offset 16, and its value is 2. Directory entries may be empty, indicated
by an inode number of 0. For instance, the entry at address 224 in “/etc” is
it onee contained an entry for a file named “crash”. The program
mkfs initializes a file system so that *” and “..” of the root dircctory have the root
inode number of the file system.
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based on traditional swapping systems but will point out the places that change for
demand paging systems. 1t also assumes that the system has cnough main memory
available to store the child process. Chapter 9 considers the case where not enough
memory is available for the child process, and it also describes the implementation
of fork on a paging system.

algorithm fork
input: none.
output: to parent process, child PID number

check for available kernel resources;
get free proc table slot, unique PID number;
| check that user not running 100 many processes;
mark child state "being created:”
copy data from parent proc table lot 10 new child slot;
increment counts on current directory inode and changed root G applicable);
increment open il counts n file tables
make copy of parent context (u ares, text, data, stack) in memory;
‘push dummy system level context layer onto child system level context;
‘dummy context contains data allowing child process
1o recognize itsel, and start running from here
when scheduled;
i Ccxscutingproces s acen pocs)

change child state 10 “ready to run;*
rewrn(child D), /* from system to user */

else  /* executing process is the child process */

initialize u area timing fields;
rewm(©@);  /* touser */

Figure 7.2. Algorithm for Fork

Figure 7.2 shows the algorithm for fork. The kernel first ascertains that it has
available resources to complete the fork successfully. On a swapping system, it
needs space either in memory or on disk 1o hold the child process; on a paging
system, it has to allocate memory for auxiliary tables such as page tables. If the
resources are unavailable, the fork call fails. The kernel finds a slot in the process
table to start constructing the context of the child process and makes sure that the
user doing the fork does not have 100 many processes already running. It also picks
a unique 1D number for the new process, one greater than the most recently
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Disk

Page Table Block Page Frames
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Addr Phys PageState__State Block Page Disk Block Count
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Figure 9.23. After Swapping Page into Memory

Process A Process B

Incurs Page Fault
Legal Page
Sleep until Page Read

Incurs Page Fault
Legal Page
Page Being Read In
Sleep until Page in Memory

Wake up - Page in Memory
Mark Page Valid
Wake up other Sleeping Processes

Resume Execution Wakes up

Resume Exccution

Time

Figure 9.24. Double Fault on a Page

If a copy of the page does not cxist on a swap device but is in the ori
executable file (case 3), the kernel reads the page from the original file. The fault
handler examines the disk block descriptor, finds the logical block number in the
fle that contains the page, and finds the inode associated with the region table
entry. It uses the logical block number as an offset into the array of disk block
numbers attached o the inode during exec. Knowing the disk block number, it
reads the page into memory. For example, the disk block descriptor for virtual
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‘System Calls Dealing System Calls Dealing |
with Memory Management | with Synchronization | "1/ *ccl1ancous
fork | exec | brk | exit | wait |signall kill petprp| setuid

dupreg {detachreg | growreg |detachreg|
attachreg | allocreg
attachreg
growreg
Toadreg.
mapreg

Figure 7.1, Process System Calls and Relation to Other Algorithms

7.1 PROCESS CREATION
The only way for a user to create a new process in the UNIX operating system is
to invoke the fork system call. The process that invokes fork is called the parent
process, and the newly created process is called the child process. The syntax for
the fork system call is

pid = fork(;

On return from the fork system call, the two processes have identical copies of their
user-level context except for the return value pid. In the parent process, pid is the
child process ID; in the child process, pid is 0. Process 0, created internally by the
kernel when the system s booted, is the only process not created via fork

The kernel does the following sequence of operations for fork.

1. It allocates a slot in the process table for the new process.
It assigns a unique ID number to the child process
3. It makes a logical copy of the context of the parent process. Since certain
portions of a process, such as the text region, may be shared between
processes, the kernel can sometimes increment a region reference count
instead of copying the region to a new physical location in memory.
4. It increments file and inode table counters for files associated with the
process.
5. Tt returns the ID number of the <hild to the parent process, and a 0 value to
the child process.
‘The implementation of the fork system call is not trivial, because the child process
appears 10 start its exccution sequence out of thin air. The algorithm for fork
varies slightly for demand paging and swapping systems; the ensuing discussion is
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Figure 9.22. Occurrence of a Validity Fault

a process faults when accessing virtual address 64K in Figure 9.22. Searching the
page cache, the kernel finds that page frame 1861 is associated with disk block
1206, as is the disk block descriptor. It resets the page table entry for virtual
address 64K to point to page 1861, sets the valid bit, and returns. The disk block
number thus associates a page table entry with a pfdata table entry. explaining why
both tables save it.

Similarly, the fault handler docs not have to read the page into memory if
another process had faulted on the same page but had not completely read it in yet.
The fault handler finds the region containing the page table entry locked by
another instance of the fault handler. It sleeps until the other instance of the fault

handler completes, finds the page now valid, and returns. Figure 9.24 depicts such
2 scenario.
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12.4 THE TUNIS SYSTEM

The Tunis system has a user interface that is compatible (o that of the Uniy
system, but its nucleus, written in the language Concurrent Euclid, consists of
Kernel processes that control cach part of the system. The Tunis system solves g
mutual exclusion problem because only one instance of a kernel process can run 3
a time, and because kernel processes do not manipulate the data structures of other
processes. Kernel processes are activated by queuing messages for input, ang
Concurrent Euclid implements monitors to prevent corruption of the queucs. 3
monitor is a procedure that enforces mutual exclusion by allowing only one process
at a time to exccute the body of the procedure. They differ from semaphores
because they force modularity (the P and ¥ are at the entry and exit points of the
monitor routine) and because the compiler generates the synchronization primitives
Holt notes that such systems are casier to construct using 2 language that suppori
the notion of concurrency and monitors (see page 190 of (Holt 83). However, the
internal structure of the Tunis system differs radically from traditionsl
implementations of the UNIX system.

12.5 PERFORMANCE LIMITATIONS

This chapter has presented two methods that have been used to implement
multiprocessor UNIX systems: ~the master-slave configuration, where only one
processor can execute in kernel mode, and a semaphore method that allows all
processors to execute in kernel mode simultancously. The implementations of
multiprocessor UNIX systems described in this chapter generalize to any number
of processors, but system throughput will not increase at a linear rate with the
number of processors. First, there is degradation because of increased memory
contention in the hardware, meaning that memory accesses takes longer. Second,
in the semaphore scheme, there is increased contention for semaphores; processes
find semaphores locked more frequently, more processes queu waiting for
semaphores to become free, and therefore processes have to wait a longer period of
time 1o gain access to the semaphore. Similarly, in the master-slave scheme, the
master processor becomes a system bottleneck as the number of processors in the
system grows, because it is the only processor that can execute kernel code.
Although careful hardware design can reduce contention and provide nearly lincar
increase in system throughput with additional processors for some loads (see [Beck
851, for example), all multiprocessor systems built with current technology reach o
limit beyond which the addition of more processors does not increase system
throughput.

12.6 EXERCISES

1. Implement a solution to the multiprocessor problem such that any processor in 4
multiprocessor configuration can execute the kernel but only one processor can do o 4t
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assigned ID number. If another process already has the proposed ID number, the
kernel attempts to assign the next higher ID number. When the 1D numbers reach
a maximum value, assignment starts from 0 again. Since most processes execute
for a short time, most ID numbers are not in use when ID assignment wraps
around.

The system imposes a (configurable) limit on the number of processes a user
can simultancously execute So that no user can steal many process table slots,
thereby preventing other users from creating new processes. Similarly, ordinary
users cannot create a process that would occupy the last remaining slot in the
process table, or else the system could effectively deadlock. That is, the kernel
cannot guarantee that existing processes will exit naturally and, therefore, no new
processes could be created, because all the process table slots are in use. On the
other hand, a superuser can execute as many processes as it likes, bounded by the
size of the process table, and a superuser process can occupy the last available slot
in the process table. Presumably,  superuser could take drastic action and spawn
a process that forces other processes to exit if necessary (see Section 7.2.3 for the
Kill system call).

The kernel next initializes the child's process table slot, copying various fields
from the parent slot. For instance, the child “inherits” the parent process real and
effective user 1D numbers, the parent process group, and the parent nice value, used
for calculation of scheduling priority.  Later sections discuss the meaning of these
fields. The kernel assigns the parent process ID field in the child slot, putting the
child in the process tree structure, and initializes various scheduling parameters,
such as the initial priority value, initial CPU usage, and other timing fields. The
initial state of the process is "being created” (recall Figure 6.1).

The kernel now adjusts reference counts for files with which the child process is
automatically associated. First, the child process resides in the current directory of
the parent process. The number of processes that currently access the directory
increases by 1 and, accordingly, the kernel increments its inode reference count.
Second, if the parent process or one of its ancestors had ever executed the chrool
system call to change its root, the child process inherits the changed root and
increments its inode reference count.  Finally, the kernel searches the parents user
file descriptor table for open files known to the process and increments the global
file table reference count associated with each open file. Not only does the child
process inherit access rights to open fles, but it also shares access o the files with
the parent process because both processes manipulate the same file table entrics.
The effect of fork is similar 0 that of dup vis-a-vis open files: A new entry in the
user file descriptor table points 1o the entry in the global file table for the open file.
For dup, however, the entrics in the user file descriptor table are in one process; for
Jfork, they are in different processes.

‘The kernel is now ready to create the user-level context of the child process. It
allocates memory for the child process u area, regions, and auxiliary page tables,
duplicates every region in the parent process using algorithm dupreg, and attaches
every region 10 the child process using algorithm attachreg. In a swapping system,
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The memory management model used to describe the virtual address layout of ¢
process assumes the use of a page table for each process region. The kerne
contains various algorithms that manipulate regions. Finally, the chapter describer
the algorithms for sleep and wakeup. The following chapters use the low-leve
structures and algorithms described here, in the explanation of the system calls fo
process management, process scheduling, and the implementation of memor
management polici

68 EXERCISES

1. Design an algorithm that translates virtual addresses 1o physical addresses, given th
virtual address and the address of the pregion entry.

2. The AT&T 3B2 computer and the NSC Series 32000 use a two-ticred (segmented
translation scheme 10 translate virtual addresses o physical addresses. That is, th
system contains a pointer to  table of page table pointers, and each entry in the tabl
can address a fixed portion of the process address space, according to its offst in th
table. Compare the algorithm for virtual address translation on these machines to th
algorithm discussed for the memory model in the text.  Consider issucs of performane
and the space needed for ausiliary tables

3. The VAX-ll architecture contains two seis of base and limit registers that th
machine uses for user address translation. The scheme is the same as that describes
in the previous problem, except that the number of page table pointers is two. Givei
that processes have three regions, text, data, and stack, what is a good way of mappin
the regions into page tables and using the two sets of registers? The stack in th
VAX-11 architecture grows towards lower virtual addresses. What should the stac
region look like? Chapter 11 will describe another region for shared memory: Ho
should it fit into the VAX-11 architecture?

4. Design an algorithm for allocating and frecing memory pages and page tables. Whs
data structurcs would allow best performance or simplest implementation?

5. The MC68451 memory management unit for the Motorola 63000 Family o
Microprocessors allows allocation of memory segments with sizes ranging from 25
bytes to 16 megabytes in powers of 2. Each (physical) memory management uni
contains 32 segment descriptors. Describe an efiient method for memory allocatior
‘What should the implementation of regions look like?

6. Consider the virtual address map in Figure 6.5. Suppose the kernel swaps the proces
out (in a swapping system) or swaps out many pages in the stack region (in a pagin
system). If the process later reads (virtual) address 68,432, must it read the identica
Tocation in physical memory that it would have read before the swap or pagin
operation? 1 the lower levels of memory management were implemented with pag
tables, must the page tables be located in the same locations of physical memory?

*7. Ius possible to implement the system such that the kernel stack grows on top of th
user stack. Discuss the advantages and disadvantages of such an implementation.

8. When attaching a region to a process, how can the kernel check that the region doc
not overlap virtual addresses in regions already attached to the process?

9. Consider the algorithm for doing a context switch. Suppose the system contains ol
one process that i ready to run. In other words, the kernel picks the process that jus
saved its context to run. Describe what happens.
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Groups of 64 Pages to Swap

Proc A 30 pgs Proc B 6 pgs Proc D 12 pgs
Proc B 34 pgs Proc C 50 pgs
Proc D 8 pgs

A30 B34 B6 C50 D8

Swap Device

Figure 9.20. Allocation of Swap Space in Paging Scheme

the free list if its reference count is 0. The contents of the physical page in
memory are valid until the page is reassigned.

9.2.3 Page Faults

The system can incur two types of page faults: validity faults and protection faults.
Because the fault handlers may have 1o read a page from disk to memory and sleep
during the 1/0 operation, fauit handlers are an exception to the general rule that
interrupt handlers cannot sleep. However, because the fault handler sleeps in the
context of the process that caused the memory fault, the fault relates to the running
process; hence, no arbitrary processes are put o slecp.

.

1 Validity Fault Handler

If a process attempts 1o access a page whose valid bit is not set, it incurs a validity
fault and the kernel invokes the validity fault handler (Figure 9.21). The valid bit
s not set for pages outside the virtual address space of a process, nor is it set for
pages that are part of the virtual address space but do not currently have a physical
page assigned to them. The hardware supplies the kernel with the virtual address
that was accessed 0 cause the memory fault, and the kernel finds the page table
entry and disk block descriptor for the page. The kernel locks the region containing
the page table entry to prevent race conditions that would occur if the page stealer
attempted to swap the page out. If the disk block descriptor has no record of the
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where no free inodes should exist. After gathering a fresh set of frec inode
numbers, it starts the inode assignment algorithm from the beginning. Whenever
the kernel assigns a disk inode, it decrements the free inode count recorded in the
super block.

Super Block Free Inode List

frecinodes . | 83 | 48

I I 1 array 1

Super Block Free Inode List

frecinades | g3

LI U array 2
Bices

() Assigning Free Inode from Middle of List

Super Block Free Inode List
I“w ]
 — armay 1

1index ‘“(remembered inode)
Super Block Free Inode List

army 3
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: L

535
<o f

8 & 50

index |
(®) Assigning Free Inode - Super Block List Empty

Figure 4.13. Two Arrays of Free Inode Numbers
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If a signal is already sct against a process when it enters the sleep algorithm,
the conditions just stated determine whether the process ever gets (0 sleep. For
instance, f the sleep priority is above the threshold value, the process goes 1o sleey
and waits for an explicit wakeup call. If the slecp priority is below the thresholg
value, however, the process does not go to sleep but responds to the signal as if the
signal had arrived while it was asleep. If the kernel did not check for signals before
going to sleep, the signal may not arrive again and the process would never wake
up.

" When a process is awakencd as a reslt of a sgnal (o i i never gets 0 sep
because of existence of a signal), the kernel may do a longjmp, depending on the
reason the process originally went to sleep. The kernel does a longimp o restore s
previously saved context if it has no way to complete the system call it is executing.
For instance, if a terminal read call is interrupted because a user turns the terminal
off, the read should not complete but should return with an error indication. This
holds for all system calls that can be interrupted while they are asleep. The process
should not continue normally after waking up from its slecp, because the sleep
event was not satisfied. The kernel saves the process context at the beginning of
most system calls using setjmp in anticipation of the need for a later longjmp.

There are occasions when the kernel wants the process to wake up on receipt of
a signal but not do a longjmp. The kernel invokes the sleep algorithm with a
special priority parameter that suppresses exccution of the longjmp and causes the
sleep algorithm to return the value 1. This is more efficient than doing a setjmp
immediately before the sleep call and then a /ongjmp to restore the context of the
process as it was before entering the sleep state. The purpose is to allow the kernel
10 clean up local data structures. For example, a device driver may allocate private
data structures and then go to sleep at an interruptible priority; if it wakes up
because of a signal, it should free the allocated data structures, then longjmp if
necessary. The user has no control over whether 2 process does a longjmp; that
depends on the reason the process was slecping and whether kernel data structures
need modification before the process rcturns from the system call,

6.7 SUMMARY

This chapter has defincd the context of a process. Processes in the UNIX system
move between various logical states according to well-defined transition rules, and
state information is saved in the process table and the u area. The context of a
process consists of its user-level context and its system-level context. The user-level
context consists of the process text, data, (user) stack, and shared memory regions,
and the system-level context consists of a static part (process table entry, u area,
and memory mapping information) and a dynamic part (kernel stack and saved
registers of previous system context layer) that is pushed and popped as the process
exceutes system calls, handles interrupts, and does context switches. The user-level
context of a process is divided into separate regions, comprising contiguous ranges
of virtual addresses that are treated as distinct objects for protection and sharing.
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external to a process. Exceptions happen “in the middle” of the execution of an
instruction, and the system attempts to restart the instruction after handling the
exception; interrupts arc considered to happen between the execution of two
instructions, and the system continues with the next instruction after servicing the
interrupt. The UNIX system uses one mechanism to handle interrupts and
exception conditions,

152 Processor Execution Levels

The kernel must sometimes prevent the occurrence of interrupts during critical
activity, which could result in corrupt data if interrupts were allowed. For instance,
the kernel may not want to receive a disk interrupt while manipulating linked lists,
because handling the interrupt could corrupt the pointers, as will be seen in the
next chapter. Computers typically have a set of privilcged instructions that set the
processor exceution level in the processor status word, Setting the processor
exceution level to certain values masks off interrupts from that level and lower
levels, allowing only higher-level interrupts. Figurc 1.6 shows a sample set of
exccution levels. If the kernel masks out disk interrupts, all interrupts except for
clock interrupts and machine error interrupts are prevented. If it masks out
software interrupts, all other interrupts may oceur.

Machine Errors

Clock Higher Priority

Disk

Network Devices

Terminals Lower Priority

Software Interrupts i

Figure 1.6. Typical Interrupt Levels

153 Memory Management

The kernel permanently resides in main memory as does the currently executi
process (or parts of it, at least). When compiling a program, the compiler
generates a sct of addresses in the program that represent addresses of variables
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SOLUTION WITH SEMAPHORES

algorithm gelblk /* multiprocessor version +/
input:  fle system number
block number
output: locked buffer that can now be used for block
{
while (buffer not found)
1
Plhash queue semaphore);
if (block in hash queue)
{
if (CP(buffer semaphore) fails)  /* buffer busy */
{

V(hash queue semaphore):
Plouffer semaphor):  /* slecp until free */
if (CP(hash queue semaphore) fails)

V(buffer semaphore):
) o7 e bnp
clse if (dev or block num changed)
(
V(bufler semaphore);
V(hash queve semaphore);
)
)
while (CP(free list semaphore) fails)
i /*spinoop ¥/
mark buffer busy:
remove buffer from free list:
V(free lst semaphore);
Vihash queue semaphore);
return buffer;
)
else /* buffer not in hash queuc */
/% temainder of algorithm continues here */

Figure 12.14. Buffer Allocation with Semaphores
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algorithm ialloc 7+ allocate inode 7
input:  file system

output; locked inode

{

while (not done)
i’ (super block locked)

sleep (event super block becomes free);
continue; /* while loop */

1

if Ginode lst in super block is empty)

{

lock super block;
et remembered inode for free inode search;
search disk for free inodes until super block full,

or 0 more free inodes (algorithms bread and brelse);
ualock super block;
wake up (event super block becomes free);
if (no free inodes found on disk)

retwrn (00 inode);
set remembered inode for net free inode search;

)

/* there are inodes in super block inode list */
get inode number from super block inode list;
£et inode (algorithm iget);

i Gnode st fre aftral) /1107

write inode to disk;
release inode (algorithm iput);
continue; /* while loop */

7% inode is free */
initialize inode;
write inode to disk;
decrement fil system free inode count;
return (inode);

Figure 4.12. Algorithm for Assigning New Inodes
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The last chapter defined the context of a process and explained the algorithms that
‘manipulate it; this chapter will describe the use and implementation of the system
calls that control the process context. The fork system call creates a new process
the exit call terminates process execution, and the wait call allows a parent proces;
to synchronize its execution with the exit of a child process. Signals inform
processes of asynchronous events. Because the kernel synchronizes execution of
exit and wait via signals, the chapter presents signals before exif and wait. The
exec system call allows a process to invoke a “new” program, overlaying its address
space with the exccutable image of a file. The brk system call allows a process to
allocate more memory dynamically; similarly, the system allows the user stack to
grow dynamically by allocating more space when necessary, using the same
mechanisms as for brk. Finally, the chapter sketches the construction of the major
Toops of the shell and of init.

Figure 7.1 shows the relationship between the system calls described in this
chapter and the memory management algorithms described in the last chapter.
Almost all calls use sleep and wakeup, not shown in the figure. Furthermore, exec
interacts with the file system algorithms described in Chapters 4 and 5.

191
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faulted page, the attempted memory reference is invalid and the kernel sends o
“segmentation violation” signal to the offending process (recall Figure 7.25). This
i the same procedure a swapping system follows when a process accesses an invalid
address, except that it recognizes the error immediately because all legal pages are
memory resident. If the memory reference was legal, the kernel allocates a page of
‘memory to read in the page contents from the swap device or from the executable
fle.
‘The page that caused the fault is in one of five states:

On a swap device and not in memory,
On the free page list in memory,

In an executable file,
Marked “demand zero,
5. Marked “demand fill."

Let us consider each case in detail.

If a page is on a swap device and not in memory (case 1), it once resided in
main memory but the page stealer had swapped it out. From the disk block
descriptor, the kernel finds the swap device and block number where the page is
stored and verifies that the page is not in the page cache. The kernel updates the
page table entry so that it points to the page about to be read in, places the pfdate
table entry on a hash list to speed later operation of the fault handler, and reads
the page from the swap device. The faulting process sleeps until the 1/0 completes,
when the kernel awakens other processes who were waiting for the contents of the
page to be read in.

For example, consider the page table entry for virtual address 66K in Figure
9.22. 1f a process incurs a validity fault when accessing the page, the fault handler
examines the disk block descriptor and sees that the page is contained in block 847
of the swap device (assume there is only one swap device): Hence, the virtual
address is legal. The fault handler then searches the page cache but fails to find an
entry for disk block 847. Therefore, there is no copy of the virtual page in
memory, and the fault handler must read it from the swap device. The kernel
assigns page 1776 (Figure 9.23), reads the contents of the virtual page from the
swap device into the new page, and updates the page table entry to refer to page
1776. Finally, it updates the disk block descriptor to indicate that the page is still
swapped and the pfdata table entry for page 1776 to indicate that block 847 of the
swap device contains a duplicate copy of the virtual page.

The kernel does not always have to do an 1/O operation when it incurs &
validity fault, even though the disk block descriptor indicates that the page is
swapped (case 2). It is possible that the kernel had never reassigned the physical
page after swapping it out, or that another process had faulted the virtual page into
another physical page. In cither case, the fault handler finds the page in the page
cache, keying off the block number in the disk block descriptor. It reassigns the
page table entry to point to the page just found, increments its page reference
count, and removes the page from the free list, if necessary. For cxample, suppose
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By using the same semaphore for all entry points to a driver and using different
semaphores for cach driver, at most one process can exceutc critical code in the
driver at a time. The semaphores can be configured per device unit or for classes of
devices. For example, a semaphore may be associated with cach physical terminal,
or one semaphore may be associated with all terminals. The former case is
potentially faster, because processes accessing one terminal do not lock the
semaphore for other terminals, as in the latter case. However, some device drivers
interact internally with other device drivers; in such cases, specifying one
semaphore for a class of devices is easier to understand.  Alternatively, the 3B20A
implementation allows particular devices to be configured such that the driver code
runs on specified processors.

Problems could occur when a device interrupts the system when its semaphore is
locked:  the interrupt handler cannot be invoked, because otherwise there would be
danger of corruption. On the other hand, the kernel must make sure that it does
not lose an interrupt. The 3B20A queues interrupts until the semaphore is
unlocked and it is safe to execute the interrupt handler, and it calls the interrupt
handler from the code that unlocks drivers, if necessary.

12334 Dummy Processes

When the kernel does a context switch on a uniprocessor, it executes in the context
of the process relinquishing control, as explained in Chapter 6. If no processes arc
ready to run, the kernel idles in the context of the process that last ran. When
interrupted by the clock or by other peripherals, it handles the interrupt in the
context of the process it had been idling in.

In a multiprocessor system, the kernel cannot idle in the context of the process
executed most recently on the processor. For if a process goes t0 sleep on processor
A, consider what happens when the process wakes up: It is ready to run, but it
does not execute immediately even though its context is already available on
processor A. If processor B now chooses the process for execution, it would do a
context switch and resume execution. When processor A emerges from its idle loop
as the result of another interrupt, it executes in the context of process A again until
it switches context. Thus, for a short period of time, the two processors could be
writing the identical address space, particularly, the kernel stack.

‘The solution to this problem s to create a dummy process per processor; when a
processor has o work 10 do, the kernel does a context switch to the dummy process
and the processor idles in the context of its dummy process. The dummy process
consists of a kernel stack only; it cannot be scheduled. Since only one processor
can idle in its dummy process, processors cannot corrupt each other.
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Figure 4.15. Placing Free Inode Numbers into the Super Block

exceptions are possible.

Consider two examples of freeing inodes. If the super block list of free inodes
has room for more free inode numbers as in Figure 4.13(a), the kernel places the
inode number on the list, increments the index to the next free inode, and proceeds.
But if the list of free inodes is full as in igure 4.15, the kernel compares the inode
number it has freed to the remembered inode number that will start the next disk
search. Starting with the free inode list in Figure 4.15(a), if the kernel frees inode
499, it makes 499 the remembered inode and evicts number 535 from the free list.
If the kernel then frees inode number 601, it does not change the contents of the
free list. When it later uses up the inodes in the super block free list, it will search
the disk for free inodes starting from inode number 499, and find inodes 535 and
601 again.
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‘THE STRUCTURE OF PROCESSES

Suppose a process goes to sieep and the system contains no processes ready o run
What happens when the (about to be) sleeping process does its context swilch?
‘Suppose that a process executing in user mode uses up its time slice and, as a result of
a clock interrupt, the kermel schedules & new process to run. Show that the context
switch takes place at kernel context layer 2.
In a paging system, a process exccuting in user mode may incur a page fault because
it s atiempting to access a page that is not loaded in memory. In the course of
servicing the interrupt, the kernel reads the page from a swap device and gocs 10 secp,
Show that the context switch (during the slecp) takes place at kernel context layer 2.
‘A process exccutes the system call

read(fd, buf, 1024);
on a paging system. Suppose the kenel exccutes algorithm read (o the point where it
has read the data into a system buffer, but it incurs a page fault when trying 10 copy
the data into the user address space because the page containing buf was paged out
The kernel handles the interrupt by reading the offending page into memory. What
happens in cach kernel context layer? What happens if the page fault handler gocs to
sleep while waiting for the page t0 be writien into main memory?
When copying data from user address space 10 the kernel in Figure 6.17, what would
happen i the user supplicd address was illegal?
In algorithms sleep and wakeup, the kernel raises the processor exccution level o
prevent interrupts. What bad things could happen if it did not raise the processor
exccution level? (Hint: The kemel frequently awakens slecping processes from
interrupt handlers.)
Suppose 2 process attemps o g0 to slecp on event A but has not yet excuted the
code in the sleep algorithm to block interrupts; suppose an interrupt occurs before the
process raiscs the processor cxccution level in sleep, and the interrupt handler attemps
to awaken all processes aslecp on event A. What will happen (o the process
attempting 10 g0 (0 sleep? s this @ dangerous situation? If so, how can the kernel
avoid it?
‘What happens if the kernel issues  wakeup call for all processes asleep on address A,
but no processes are aslecp on that address at the time?
Many processes can slecp on an address, but the kernel may want to wake up sclected
processes that receive @ signal. Assume the signal mechanism can identify the
particular processes. Describe how the wakeup algorithm should be changed to wake
up one process on a slecp address instead of all the processes.
The Multics system contains algorithms for sleep and wakeup with the following
syntax:

sleeplevent);
wakeup(event, pr

That is, the wakeup algorithm assigns a priority to the process it is awakening.
Compare these calls to the sleep and wakeup calls in the UNIX system.
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algorithm viault  /* handler for validity faults */
input:  address where process faulted

output: none

out:

)

find region, page table entry, disk block descriptor
corresponding 10 faulted address, lock region;

if (address outside virtual address space)

(
send signal (SIGSEGV: segmentation violation) (o process;
got0 out;

)

if (address now
got0 0

i oge i cach)

/* process may have slept above */

remove page from cache;

adjust page table entry;

while (page contents not valid) /* another proc faulted first */
sleep (event contents become valid);

else  /* page not in cache */
assign new page 1o region;

put new page in cache, update pfdata entry;
if (page not previously loaded and page “demand zero")
clear assigned page t0 0;
clse
{
read virtual page from swap dev or exce fil;
, (event 1/0 done);
| sk proosses Cevent page conens vl
set page valid bit
clear page modify bit, page age;
recalculate process priority;
unlock region:

Figure 9.21. Algorithm for Validity Fault Handler

209
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‘multiprocessor algorithm wait
(

1% 1oop */

search all child processes:

if (tatus of child is zombie)
return;
Plzombie_semaphore);  /* initialized t0 0 */

1

Figure 12.15. Multiprocessor Algorithm for Wait/Exit

‘The remainder of the algorithm is left as an exercise.

12332 Wait

Recall from Chapter 7 that a process sleeps in the waif system call until a child
exits. The problem on a multiprocessor system is to make sure that a parent does
not miss a zombie child as it executes the wait algorithm; for example, if  child
exits on one processor as the parent executes wai on another processor, the parent
must not sleep waiting for a second child t0 exir. Each process table entry contains
2 semaphore zombie_semaphore, initialized t0 0, where a process slecps in wair
until a child exirs (Figure 12.15). When a process exits, it does a ¥ on the parent
semaphore, awakening the parent if it was slecping in wait. If the child process
exits before the parent exccutes wait, the parent finds the child in the zombie state
and returns. If the two processes execute exit and wait simultaneously but the
child exis after the parent already checked its status, the child ¥ will prevent the
parent from slecping. At worst, the parent will make an extra iteration through the
loop.

12333 Drivers

The multiprocessor implementation for the AT&T 3B20A computer avoided
inserting semaphores into driver code by doing P and ¥ operations at the driver
eniry points (sce [Bach 84]). Recall from Chapter 10 that the interface to device
drivers is well defined with only a few entry points (about 20, in practice). Drivers
are protected by bracketing the entry points, as in:

Pdriver_semaphore);

open(driver);

V(driver_semaphore);
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Consider the two pairs of arrays of free inode numbers in Figure 4.13. If the
st of free inodes in the super block looks like the first array in Figure 4.13(a)
‘Wwhen the kernel assigns an inode, it decrements the index for the next valid inode
number to 18 and takes inode number 48. If the list of frec inodes in the super
block looks like the first array in Figure 4.13(b), it will notice that the array is
empty and search the disk for free inodes, starting from inode number 470, the
remembered inode. When the kernel fills the super block free list to capacity, it
remembers the last inode as the start point for the next search of the disk. The
kernel assigns an inode it just took from the disk (number 471 in the figure) and
continues whatever it was doing.

algorithm ifree 7+ inode free 7
input: file system inode number
output: none

increment file system free inode cou
if (super block locked)
return;
if Gnode st full)
{

if (inode number less than remembered inode for search)
set remembered inode for search = input inode number;
)
else.
store inode number in inode list;
return;

Figure 4.14. Algorithm for Freeing Inode

The algorithm for frecing an inode is much simpler. After incrementing the
total number of available inodes in the file system, the kernel checks the lock on the
super block. If locked, it avoids race conditions by returning immediately: The
inode number is not put into the super block, but it can be found on disk and is
available for reassignment. If the list is not locked, the kernel checks if it has oom
for more inode numbers and, if it does, places the inode number in the list and
returns. If the lis is full, the kernel may not save the newly freed inode there: 1t
compares the number of the frecd inode with that of the remembered inode, If the
freed inode number i less than the remembered inode number, it “remembers” the
newly freed inode number, discarding the old remembered inode number from the
super block. The inode is not lost, because the kernel can find it by searching the
inode list on disk. The kernel maintains the super block list such that the last jaode
it dispenses from the list is the remembered inode. Ideally, there should never be
free inodes whose inode number is less than the remembered inode number. bug
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permissible to a process.

Processes tend to execute instructions in small portions of their text space, such
as program loops and frequently called subroutines, and their data references tend
to cluster in small subsets of the total data space of the process. This is known as
the principle of “locality.” Denning [Denning 68] formalized the notion of the
working set of a process, which is the set of pages that the process has referenced
in its last n memory references; the number  is called the window of the working
set. Because the working set is a fraction of the entire process, more processes may
fit_simultaneously into main memory than in a swapping system, potentially
increasing system throughput because of reduced swapping traffic. When a process
addresses @ page that is not in its working set, it incurs a page fault; in handling
the fault, the kernel updates the working set, reading in pages from a secondary
device if necessary.

Figure 9.12 shows a sequence of page references a process could make,
depicting the working sets for various window sizes and following a least recently
used replacement policy. As a process exccutes, its working set changes, depending
on the pattern of memory references the process makes; a larger window size yiclds
a larger working set, implying that a process will not fault as often. It is
impractical to implement a pure working set model, because it is expensive to
remember the order of page references. Instead, systems approximate 2 working
set model by setting a reference bit whenever a process accesses 2 page and by
sampling memory references periodically: If a page was recently referenced, it is
part of a working set; otherwise, it “ages” in memory until it is eligible for
swapping.

When a process accesses a page that is not part of its working set, it incurs a
validity page fault. The kernel suspends execution of the process untl it reads the
page into memory and makes it accessible to the process. When the page is loaded
in memory, the process restarts the instruction it was exccuting when it incurred
the fault. Thus, the implementation of a paging subsystem has two parts:
swapping rarely used pages to a swapping device and handling page faults. This
general description of paging schemes extends to non-UNIX systems, too. The rest
of this chapter examines the paging scheme for UNIX System V in deta

9.2.1 Data Structures for Demand Paging

The kemnel contains 4 major data structures to support low-level memory
management functions and demand paging: page table entries, disk block
descriptors, the page frame data table (called pfdata for short), and the swap-use
table. The kernel allocates space for the pfdata table once for the lifetime of the
system but allocates memory pages for the other structures dynamically.

Recall from Chapter 6 that a region contains page tables to access physical
memory. Each entry of a page table (Figure 9.13) contains the physical address of
the page, protection bits indicating whether processes can read, write or execute
from the page, and the following bit fields to support demand paging:
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algorithm schedule_process (modificd)
input:  none
output: none

while (no process picked to execute)

if (running on master processor)
for (every process on run queue)
pick highest priority process
that s loaded in memory;
else/* running on a slave processor */
for (every process on run queue that need not run on master)
pick highest priority process that is loaded in memory;
if (no process eligible to exccute)
idle the machine;
/% interrupt takes machine out of idle state */

1

remove chosen process from run queue;
switch context 10 that of chosen process, resume ts execution;

igure 12.3. Scheduler Algorithm

algorithm syscall /% revised algorithm for invocation of system call */
input: system call number
output: result of system call

if (exccuting on slave processor)

set processor ID field in process table entry;

) o comentswiy

do regular algorithm for system call herc;

reset processor ID field 1o “any” (slave);

if (other processes must run on master processor)
do context switch;

Figure 124, Algorithm for System Call Handler
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The preceding paragraphs cover the case where the kernel allocated an inode
that was not in the inode cache. If the inode is in the cache, the process (A) would
find it on its hash queue and check if the inode was currently locked by another
process (B). If the inode is locked, process A sleeps, setting a flag in the in-core
inode o indicate that it is waiting for the inode to become free. When process B
later unlocks the inode, it awakens all processes (including process A) waiting for
the inode to become free. When process A is finally able to use the inode, it locks
the inode so that other processes cannot allocate it. If the reference count was
previously 0, the inode also appears on the free lit, so the kernel removes it from
there:the inode is no longer free. The kernel increments the inode reference count
and returns a locked inode.

‘To summarize, the iget algorithm is used toward the beginning of system calls
when a process first accesses a file. The algorithm returns a locked inode structure
with reference count 1 greater than it had previously been. The in-core inode
contains up-to-date information on the state of the file. The kernel unlocks the
inode before returning from the system call so that other system calls can access
the inode if they wish. Chapter S treats these cases in greater detail.

algorithm iput 7 release (pub) access 10 in—core inode */
input: _pointer to in—core inode.
output: none

lock inode if not already locked;
decrement inode reference count;
if (reference count == 0)

if Gode ink coun == 0)

free disk blocks for file (algorithm free, section 4.7);
set fle type 1o 0;
free inode (algorithm ifree, section 4.6);

if (e accessed or inode changed o file changed)
update disk inode;
) pudnode o foe s
release inode lock;

Figure 4.4. Releasing an Inode
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For cxample, handling an interrupt can delay execution of a code sequence on
processor A. Corruption could occur as was illustrated in Chapter 2, even though
interrupts were blocked.

The kernel must make sure that such corruption can never occur. If it were to
leave a window open in which a corrupt situation could arise, no matter how rare,
the kernel would be unsafe and its behavior unpredictable. There are three
methods for preventing such corruption (see [Holley 79)):

1. Execute all critical activity on one processor, relying on standard uniprocessor
methods for preventing corruption;

2. Serialize access to critical regions of code with locking primitives;

3. Redesign algorithms to avoid contention for data structures,

This chapter describes the first two methods t0 protect the kernel from corruption,
and an exercise explores the third.

12.2 SOLUTION WITH MASTER AND SLAVE PROCESSORS

Goble implemented a system on a pair of modified VAX 11/780 machines where
one processor, called the master, can execute in kernel mode and the other
processor, called the slave, executes only in user mode (sce [Goble 81)). Although
Goble's implementation contained two machines, the technique extends to systems
with one master and several slaves. The master processor is responsible for
handling all system calls and interrupts. . Slave processors execute processes in user
mode and inform the master processor when a process makes a system call.

The scheduler algorithm decides wl processor should execute a process
(Figure 12.3). A new field in the process table designates the processor ID that a
process must run on; for simplicity, assume it indicates either master or slave.
When a process on a slave processor executes a system call, the slave kernel sets the
processor D field in the process table, indicating that the process should run only
on the master processor, and does 2 context switch to schedule other processes
(Figure 12.4). The master kernel schedules the process of highest priority that
must run on the master processor and executes it. When it finishes the system call,
it sets the processor ID field of the process to slave, allowing the process to run on
slave processors again.

If processes must run on the master processor, it is preferable that the master
processor run them right away and not keep them waiting. This is similar to the
rationale for allowing process preemption on a uniprocessor system when returning
from a system call, so that more urgent processing gets done sooner. If the master
processor were exccuting a process in user mode when a slave processor requested
service for a system call, the master process would continue executing until the next
context switch according to this scheme. The master processor could respond more
quickly if the slave processor set a global flag that the master processor checked in
the clock interrupt handler; the master processor would do a context switch in at
‘most one clock tick. Alternatively, the slave processor could interrupt the master
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block num = ((inode number — 1) / number of inodes per block) +
start block of inode list

where the division operation returns the integer part of the quotient. For example,
assuming that block 2 is the beginning of the inode st and that there are 8 inodes
per block, then inode number 8 is in disk block 2, and inode number 9 is in disk
block 3. If there arc 16 inodes in a disk block, then inode numbers 8 and 9 are in
disk block 2, and inode number 17 is the first inode in disk block 3.

When the kernel knows the device and disk block number, it reads the block
using the algorithm bread (Chapter 2), then uses the following formula to compute
the byte offset of the inode in the block:

((inode number — 1) modulo (number of inodes per block)) * size of disk inode

For example, if each disk inode occupies 64 bytes and there are 8 inodes per disk
block, then inode number 8 starts at byte offset 448 in the disk block. The kernel
removes the in-core inode from the free list, places it on the correct hash queue,
and sets its in-core reference count to 1. It copies the file type, owner fields,
permission settings, link count, file size, and the table of contents from the disk
inode to the in-core inode, and returns a locked inode.

‘The kernel manipulates the inode lock and reference count independently. The
lock is sct during exccution of a system call to prevent other processes from
accessing the inode while it is in use (and possibly inconsistent). The kernel
releases the lock at the conclusion of the system call: an inode is never locked
across system calls. The kernel increments the reference count for every active
reference to a file. For example, Section 5.1 will show that it increments the inode
reference count when a process opens a file. It decrements the reference count only
when the reference becomes inactive, for example, when a process closes a file.
The reference count thus remains set across multiple system calls. The lock is frec
between system calls to allow processes to share simultancous access to a file; the
reference count remains st between system calls to prevent the kernel from
reallocating an active in-core inode. Thus, the kernel can lock and unlock an
allocated inode independent of the value of the reference count. System calls other
than open allocate and release inodes, as will be seen in Chapter 5.

Returning to algorithm iget, if the kernel attempts to take an inode from the
free list but finds the free list empty, it reports an error. This is different from the
philosophy the kernel follows for disk buffers, where a process slecps until a buffer
becomes free: Processes have control over the allocation of inodes at user level via
exccution of open and close system calls, and consequently the kernel cannot
guarantee when an inode will become available. Therefore, a process that gocs to
sleep waiting for a fre inode to become available may never wake up. Rather than
leave such a process “hanging,” the kernel fails the system call. However,
processes do not have such control over buffers: Because a process cannot keep a
buffer locked across system calls, the kernel can guarantee that a buffer will
become fre soon, and a process therefore sleeps until one is available.
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‘algorithm loadreg /* load a portion of a file into a region */.
input: (1) pointer to per process region table entry

(2) virtual address to load region

(3) inode pointer of file for loading region

(4) byte offset in file for start of region

(5) byte count for amount of data 10 load
output: none

{

increase region size according to eventual size of region
(algorithm growreg);
mark region state: being loaded into memory;
unlock region;
set up u area parameters for reading file:
target virtual address where data is read to,
start offset value for reading file,
‘count of bytes to read from file;
read file into region (internal variant of read algorithm);
Tock region;
mark region state: completely loaded into memory;
‘awaken all processes waiting for region 10 be loaded;

Figure 6.23. Algorithm for Loadreg

fle. The details of how this could happen and why locks cannot be used are left for
the discussion of exec in the next chapter and in Chapter 9. To avoid a problem,
the kernel checks a region state flag to see if the region is completely loaded and,
the region is not loaded, the process sleeps. At the end of loadreg, the kernel
awakens processes that were waiting for the region to be loaded and changes the
region state to valid and in memory.

For example, suppose the kernel wants t0 load text of size 7K into a region that
is attached at virtual address 0 of a process but wants to leave a gap of 1K bytes at
the beginning of the region (Figure 6.24). By this time, the kernel will have
allocated a region table entry and will have attached the region at address 0 using
algorithms allocreg and attachreg. Now it invokes loadreg, which invokes growreg
twice — first, to account for the 1K byte gap at the beginning of the region, and
second, 1o allocate storage for the contents of the region — and growreg allocates a
page table for the region. The kernel then sets up fields in the u area to read the
fle: It reads 7K bytes from a specificd byte offset in the file (supplicd as &
parameter by the kernel) into virtual address 1K of the process

I
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Processes

A B C D

Kernel Mode | K K
User Mode ulu

Figure 1.5 Multiple Processes and Modes of Exccution

should not have this capabiliy.

Put simply, the hardware views the world in terms of kernel mode and user mod
and does not distinguish among the many users exccuting programs in those modes
The operating system keeps internal records to distinguish the many processe
exceuting on the system. Figure 1.5 shows the distinction: the kernel distinguishe
between processes A, B, C, and D on the horizontal axis, and the hardwar
distinguishes the mode of execution on the vertical axis.

‘Although the system executes in one of two modes, the kernel runs on behalf ¢
a user process. The kernel is not a separate set of processes that run in parallel ¢
user processes, but it is part of each user process. The ensuing text will frequentl
refer to “the kernel” allocating resources or “the kernel” doing various operation:
but what is meant is that a process executing in kernel mode allocates the resource
or does the various operations. For example, the shell reads user terminal input vi
a system call: The kernel, executing on behalf of the shell process, controls th
operation of the terminal and returns the typed characters to the shell. The she
then exceutes in user mode, interprets the character stream typed by the user, an
does the specified set of actions, which may require invocation of other system calls

151 Interrupts and Exceptions

The UNIX system allows devices such as 1/O peripherals or the system clock t
interrupt the CPU asynchronously. On receipt of the interrupt, the kernel saves it
current context (a frozen image of what the process was doing), determines th
cause of the interrupt, and services the interrupt. After the kernel services th
interrupt, it restores its interrupted context and procecds as if nothing ha
happened. The hardware usually prioritizes devices according (o the order ths
interrupts should be handled: When the kernel services an interrupt, it blocks ou
lower priority interrupts but services higher priority interrupts

An exception condition refers to unexpected events caused by a process, such a
addressing illegal memory, exccuting privileged instructions, dividing by zero, an
50 on. They are distinct from interrupts, which are caused by cvents that ar
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Process A/Processor A Process B/Processor B

Lock NOT Set

Check if lock set Check if lock set

(o) _ (no) N
Set lock Set lock.
Use resource Use resource

Time

Danger of Corruption!

Figure 12.5. Race Conditions in Sleep-Locks on Multiprocessors

two processors simultancously attempt to test and set it. They find that the lock is
free at time 1, set it, enter the critical region, and may corrupt kernel data

ity:  the sleep-lock fails
if neither process executes the lock operation before the other process exccutes the
ion.  For example, if processor A handles an interrupt after finding that
free and, while handling the interrupt, processor B checks the lock and
sets it, processor A will return from the interrupt and set the lock. To prevent this
situation, the locking primitive must be atomic: The actions of testing the status of
the lock and setting the lock must be done as a single, indivisible operation, such
that only one process can manipulate the lock at a time.

12.3.1 Definition of Semaphores

A semaphore is an integer valued object manipulated by the kernel that has the
following atomic operations defined for it:

« Initialization of the semaphore to a nonnegative valuc;

* A P operation that decrements the value of the semaphore. If the value of the
semaphore is less than 0 after decrementing its value, the process that did the P
£0¢s 1o sleep;

* A Voperation that increments the value of the semaphore. If the value of the
semaphorc becomes greater than or equal 10 0 as a result, one process that had
been slecping as the result of a P operation wakes up;
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41,3 Releasing Inodes

When the kernel releases an inode (algorithm iput, Figure 4.4), it decrements its
in-core refercnce count. If the count drops to 0, the kernel writes the inode to disk
if the in-core copy differs from the disk copy. They differ if the file data has
changed, if the file access time has changed, or if the file owner or access
permissions have changed. The kernel places the inode on the free list of inodes,
effectively caching the inode in case it is needed again soon. The kernel may also
release all data blocks associated with the file and frec the inode if the number of
links to the file is 0.

42 STRUCTURE OF A REGULAR FILE

As mentioned above, the inode contains the table of contents to locate a file’s data
on disk. Since cach block on a disk is addressable by number, the table of contents
consists of a set of disk block numbers. If the data in a file were stored in a
contiguous scetion of the disk (that is, the file occupied a linear sequence of disk
blocks), then storing the start block address and the file size in the inode would
suffice to access all the data in the file. However, such an allocation strategy would
not allow for simple cxpansion and contraction of files in the file system without
running the risk of fragmenting free storage area on the disk. Furthermore, the
kernel would have to allocate and reserve contiguous space in the file system before
allowing operations that would increase the file size.

File A File B File C

s

Block Addresses

File A Free File C File B

Block Addresses

Figure 4.5. Allocation of Contiguous Files and Fragmentation of Free Space

For example, suppose a user creates three files, A, B and C, each consisting of
10 disk blocks of storage, and suppose the system allocated storage for the three
files contiguously. If the user then wishes to add  blocks of data to the middle file,
B, the kernel would have to copy file B to a place in the fle system that had room
for 15 blocks of storage. Aside from the expense of such an operation, the disk
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Other application programs

Figure 1.1, Architecture of UNIX Systems

isolation from user programs. Because programs are independent of the underlying
hardware, it is casy to move them between UNIX systems running on different
hardware if the programs do not make assumptions about the underlying hardware.
For instance, programs that assume the size of a machine word are more difficult to
move 10 other machines than programs that o not make this assumption.

Programs such s the shell and editors (ed and i) shown in the outer layers
interact with the kernel by invoking a well defined set of system calls. The system
calls instruct the kernel to do various operations for the calling program and
exchange data between the kernel and the program. Several programs shown in the
figure are in standard system configurations and are known as commands, but
private user programs may also exist in this layer as indicated by the program
whose name is a.out, the standard name for executable files produced by the C
compiler. Other application programs can build on top of lower-level programs,
hence the existence of the outermost layer in the figure. For exampl, the standard
C compiler, cc, is in the outermast layer of the figure: it invokes a C preprocessor,
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Sequence of Working Sets  Window Sizes
Page References __ 2 3 4 s
2 24 | 2 2 2
15 1524 | 1524 1524 1524
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2 2a18| i
18 1824
17 1718
17 1
15 1517 (151718 | 15171824
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17 1724
2 17| i
18 1824 182417

Figure 9.12. Working Set of a Process

o Valid

« Reference

* Modify

« Copy on write

o Age

The kernel turns on the valid bit to indicate that the contents of a page are legal,
but the page reference is not necessarily illegal if the valid bit is off, as will be
seen. The reference bit indicates whether a process recently referenced a page, and
the modify bit indicates whether a process recently modified the contents of a page.
The copy on write bit, used in the fork system call, indicates that the kernel must
create a new copy of the page when a process modifics its contents. Finally, the
kernel manipulates the age bits to indicate how long a page has been a member of
the working set of a process. Assume the kernel manipulates the valid, copy on
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processor and force it to do a context switch immediately, but this assumes special
hardware capability.

The clock interrupt handler on a slave processor makes sure that processes are
periodically rescheduled so that no one process monopalizes the processor. Aside
from that, the clock handler “wakes up” 2 slave processor from an idle state once a
second. “The slave processor schedules the highest priority process that need not run
on the master processor.

‘The only chance for corruption of kernel data structures comes in the scheduler
algorithm, because it does not protect against having a process selected for
exceution on two processors. For instance, if a configuration consists of a master
processor and two slaves, it is possible that the two slave processors find one process
in user mode ready for exccution. If both processors were to schedule the process
simultancously, they would read, write and corrupt its address space.

‘The system can avoid this problem in two ways. First, the master can specify
the slave processor on which the process should execute, permitting more than onc
process 10 be assigned 10 @ processor. Issues of load balancing then arise: One
processor may have lots of processes assigned to it, whereas others are idle. The
master kernel would have to distribute the process load between the processors.
Second, the kernel can allow only one processor to execute the scheduling loop at a
time, using mechanisms such as semaphores, described in the next section.

12.3 SOLUTION WITH SEMAPHORES

Another method for supporting UNIX systems on multiprocessor configurations is
1o partition the kernel into critical regions such that at most one processor can
execute code in a critical region at a time. Such multiprocessor systems were
designed for use on the AT&T 3B20A computer and IBM 370, using semaphores
o partition the kernel into critical regions (see [Bach 84]). The description here
will follow those implementations. There are two issues: How to implement
semaphores and where to define critical regions

As pointed out in Chapter 2, various algorithms in uniprocessor UNIX systems
use a sleep-lock to keep other processes out of a critical region in case the first
process later goes 10 sleep inside the critical region. The mechanism for setting the
lock is

while (lock is set)  /* test operation */
sleep(condition until lock is free);
set lock;

and the mechanism for unlocking the lock is

free lock;
wake up all processes sleeping on condition lock set;

Sleep-locks delineate some critical regions, but they do not work on multiprocessor
systems, as illustrated in Figure 12.5. Suppose a lock is frce and two processes on
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algorithm iget

input:  file system inode number

output: locked inode

(
while (not done)
{

if (inode in inode cache)
{

if (inode locked)

(

sleep (event inode becomes unlocked);
continue;  /* loop back to while */

)

7° special processing for mount points (Chapter 5) */

f Cinode on inode free list)
remove from free list;

increment inode reference count;

return (inode):

)

7# inode not n inode cache */

if (o inodes on free lis)
return(error);

remove new inode from free I

reset inode number and il system;

remove inode from old hash queue, place on new one;

read inode from disk (algorithm bread);

initalize inode (e.g. reference count to 1;

return(inode);

Figure 4.3, Algorithm for Allocation of In-Core Inodes

412 Accessing Inodes

The kernel identifies particular inodes by their file system and inode number and
allocates in-core inodes at the request of higher-level algorithms. The algorithm
iget allocates an in-core copy of an inode (Figure 4.3); it is almost identical to the
algorithm getblk for finding a disk block in the buffer cache. The kernel maps the
device number and inode number into a hash queue and scarches the queue for the
inode. If it cannot find the inode, it allocates one from the free list and locks it
The kernel then prepares to read the disk copy of the newly accessed inode into the
in-core copy. It already knows the inode number and logical device and computes
the logical disk block that contains the inode according to how many disk inodes fit
into a disk block. The computation follows the formula
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proca awaiting 1/0 completio

b
pree addr A
procc

waiting for buffer

proc d
proce

" ‘waiting for inode ——————addr B
proc.
proc g
proc h ‘waiting for terminal input addr C

Figure 6.30. Processes Sleeping on Events and Events Mapping into Addresses

expects an event to map into a particular address. The abstraction of the event
does not distinguish how many processes are awaiting the event, nor does the
implementation. As a result, two anomalies arise. First, when an event occurs and
a wakeup call is issued for processes that are sleeping on the event, they all wake
up and move from a sleep state 10 a ready-to-run state. The kernel does not wake
up one process at a time, even though they may contend for a single locked
structure, and_many may go back to sleep after a brief visit to the kernel running
state (recall the discussion in Chapters 2 and 3). Figure 630 shows several
processes slecping on events.

The second anomaly in the implementation is that several events may map into
onc address. In Figure 6.30, for example, the events “waiting for the buffer” to
become free and “awaiting 1/O completion” map into the address of the buffer
(“addr A”). When 1/0 for the buffer completes, the kernel wakes up all processes
sleeping on both events. Since a process waiting for 1/O keeps the buffer focked,
other processes waiting for the buffr to become frec will go back to slecp if the
buffer is still locked when they execute. It would be more efficient if there would
be a onc-to-one mapping of events to addresses. In practice, however, performance
is not hurt, because the mapping of multiple events into one address is rare and
because the running process usually frees the locked resource before the other
processes arc scheduled 1o run. Stylistically, however, it would make the kernel &
little casier to understand if the mapping were one-to-one.
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physical address space as the parent process (until an exec or exit) and can thyy
overwrite the parent’s data and stack. A dangerous situation could arise if 5
programmer uses vfork incorrectly, 5o the onus for calling vfork lies with the
programmer. The difference between the System V. approach and the BSp
approach is philosophical: - Should the kernel hide idiosyncrasies of jtg
implementation from users, or should it allow sophisticated users the opportunity to
take advantage of the implementation to do a logical function more efficiently?

int global;
TmnO
int local;

Tocal = 1;
if (vfork() == 0)
(
7# chitd */
global =2, /* write parent data space */
Tocal = 19 write parent stack */
_exit0;

1
printf("global %d local %d\a", global, local);

)

Figure 9.16. Vfork and Corruption of Process Memory

For cxample, consider the program in Figure 9.16. After the vfork call, the
child process does not exec, but resets the variables global and local and exits.*
The system guarantees that the parent process is suspended until the child process
execs or exits. When the parent process finally resumes execution, it finds that the
values of the two variables are not the same as they were before the vfork! More
spectacular effects can occur if the child process returns from the function that had
called vfork (see exercise 9.8)

4. The call to_exit s uscd, because exir “cleans up'” the standard /0 (user-leve) data siructures for
the parent and child processes, preventing the parent’s prini statement from working correctly —
another unfortunate side effect of york.

{
|
|
i
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algorithm P 7+ semaphore operation */
input: (1) semaphore
(2) priority

output: 0 for normal return
=1 for abnormal wakeup due to signals catching in kernel
long jumps for signals not catching in kernel

Pprim(semaphorelock);
decrement (semaphore.value):
if (semaphore.value >= 0)
(
Vprim(semaphore.Jock);
return(0);
)
7% must go to skeep */
if (checking signals)
t
if (there is a signal that interrupts slecp)
(
increment (semaphore valuc);
if (catching signal in kerne)

‘Vprim(semaphore Jock);
rewrn(-1);

Vprim(semaphore lock);
longimp;

)
)
enqueue process at end of sleep list of semaphore;
Vprim(semaphore.lock);
do context switch;
check signals, as above;
return(0);

Figure 12.8. Algorithm for Implementation of P

10 test the semaphore and find its value equal t0 0 and for process B on processor B
10 do a P, decrementing the value of the semaphore to =1 (Figure 12.10) just after
the test on A.  Process A would continue executing, assuming that it had awakened
every sleeping process on the semaphore. Hence, the loop does not insure that
every sleeping process wakes up, because it is not atomic.
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66 SLEEP 183

Kernel Context Layer 2

Execute Code for
Context Switch

Save Register Context
of Sys Call

Invoke Sleep Algorithm----

Kernel Context Layer 1
Execute Sys Call

Save Register Context
User Level

Make System Call -

Exccuting User Mode

Figure 6.29. Typical Context Layers of a Sleeping Process

When a process goes o sleep, it typically does so during execution of a system
call: The process enters the kernel (context layer 1) when it executes an operating
system trap and goes 10 sleep awaiing a resource. When the process goes Lo slecp,
it does a context switch, pushing its current context layer and executing in kernel
context layer 2 (Figure 6.29). Processes also go to sleep when they incur page
faults as a result of accessing virtual addresses that are not physically loaded; they
sleep while the kernel reads in the contents of the pages.

6.6.1 Sleep Events and Addresses

Recall from Chapter 2 that processes are said to sleep on an event, meaning that
they are in the slecp state until the event occurs, at which time they wake up and
enter a “ready-to-run” state (in memory or swapped out). Although the system
uses the abstraction of sleeping on an cvent, the implementation maps the set of
events into a set of (kernel) virtual addresses. The addresses that represent the
events are coded into the Kernel, and their only significance is that the kernel
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Process P Process C
Per Process Per Process
Region Table Region Table

y L.
Region T Region CT
Ref Cnt 2 Ref Cnt 1 Ref Cnt 1
Page Table Entries Page Table Entries Page Table Entries
Vit A Page | H
24K 967 _ :
K Virt Addr Page Virt Addr  Page
97K 613 9K 613

I3 9

Page Frame 967 Page Frame 613
Ref Cnt 1 Ref Cnt 2

Figure 9.15. A Page in a Process that Forks

kernel allocates a new child data region, CI, a copy of region PI in the parent
process. The page table entries of the two regions are identical, as illustrated by
the entry for virtual address 97K. The page table entrics point to pfdata table
eniry 613, whose reference count is 2, indicating that two regions reference the
page.

“The implementation of the fork system call in the BSD system makes a physical
copy of the pages of the parent process. Recognizing the performance improvement
gained by not having to do the copy, however, the BSD system also contains the
vork system call, which assumes that a child process will immediately invoke exec
on return from the vfork call. Vfork does not copy page tables so it is faster than
the System V fork implementation. But the child process executes in the same
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struct semaphore [
int lock;

Init (semaphore)
struct semaphore semaphore;
(

semaphorelock

Pprim (semaphore)
struct semaphore semaphore;

while (read_and_clear semaphore.lock))

)
Vprim(semaphore)

struct semaphore semaphore;

semaphore lock = 1;

igure 12.7. Semaphore Operations Using Read and Clear Instruction

aslecp on the cvent. As a second example, if multiple processes write data to 3
terminal, the terminal driver may put them to sleep because it cannot handle the
high volume of data. Later, when the driver decides it can accept more data for
output, it wakes up all processes that were asleep, waiting to output data. Use of
the P and ¥ operations is more applicable for locking operations where processes
8ain access to a resource one by one and other processes are granted access in the
order they requested the resource. This is usually more cficient than the
uniprocessor slep-lock, because if all processes wake up on occurrence of an event,
most may find the lock stll set and return 10 slecp immediately. On the other
hand, it is more difficult to use P and ¥ for cases where all processes should be
awakened at once.

Given a primitive that returns the value of a semaphore, would the following
operation be the equivalent of the wakeup function?

while (value(semaphore) < 0)
V(semaphore

ssuming no interference from other processors, the kernel executes the loop unti
the value of the semaphore is greatcr than or equal to 0, meaning that no processes
are aslecp on the semaphore. However, it is possible for process A on processor A
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the blocks in the buffer cache, the operation is still expensive, because the kernel
must make multiple requests of the buffer cache and may have to sleep awaiting
locked buffers. How effective is the algorithm in practice? That depends on how
the system is used and whether the user community and job mix are such that the
kernel accesses large files or small files more frequently. It has been observed
[Mullender 841, however, that most files on UNIX systems contain less than 10K
bytes, and many contain less than 1K bytes!! Since 10K bytes of a fil are stored in
direct blocks, most file data can be accessed with one disk access. So in spite of the
fact that accessing large files is an expensive operation, accessing common-sized
files is fast.

Two extensions to the inode structure just described attempt to take advantage
of file size characteristics. A major principle in the 42 BSD fle system
implementation [McKusick 84] is that the more data the kernel can access on the
disk in a single operation, the faster file access becomes. That argues for having
larger logical disk blocks, and the Berkeley implementation allows logical disk
blocks of 4K or 8K bytes. But having larger block sizes on disk increases block
fragmentation, leaving large portions of disk space unused. For instance, if the
logical block size is 8K bytes, then a file of size 12K bytes uses 1 complete block
and half of a sccond block. The other half of the second block (4K bytes) is
wasted; no other fle can use the space for data storage. If the sizes of files are
such that the number of bytes in the last block of a file is uniformly distributed,
then the average wasted space is half a block per file; the amount of wasted disk
space can be as high as 45% for a file system with logical blocks of size 4K bytes
[McKausick 84]. The Berkeley implementation remedics the situation by allocating
a block fragment to contain the last data in a file. One disk block can contain
fragments belonging to several files. An exercise in Chapter $ explores some details
of the implementation.

The second extension to the classic inode structure described here is to store file
data in the inode (see [Mullender 84]). By expanding the inode to occupy an
entire disk block, a small portion of the block can be used for the inode structures
and the remainder of the block can store the entire file, in many cases, or the end
of a file otherwise. The main advantage is that only one disk access is necessary to
get the inode and its data if the file fits in the inode block.

1 For a sample of 19.978 fles, Mullender and Tannenbeum say that approximately 85% of the files
ere smaller than 8K bytes and that 48% were smaller than 1K bytes. Although thes persentages
will vary from one intalltion o the next, they are represcntative of many UNIX Systons,
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6.6.2 Algorithms for Sleep and Wakeup

Figure 6.31 shows the algorithm for sleep. The kernel first raises the processor
execution level to block out all interrupts so that there can be no race conditions
when it manipulates the sleep queues, and it saves the old processor execution level
5o that it can be restored when the process later wakes up. It marks the process
state “asleep,” saves the slecp address and priority in the process table, and puts it
onto a hashed queue of slecping processes. In the simple case (sleep cannot be
interrupted), the process does @ context switch and is safely aslep. When &
sleeping process wakes up, the kernel later schedules it to run: The process returns
from its context switch in the sleep algorithm, restores the processor execution level
to the value it had when the process entered the algorithm, and returns.

algorithm wakeup 7+ wake up a slceping process */
input:  slecp address
output: none
(
raise processor execution level 10 block all interrupts:
find sleep hash queue for slecp address;
for (every process asleep on slecp address)
(

remove process from hash queus;
mark process state "ready to run’;
put process on scheduler list of processes ready to run;
clear field in process table entry for sleep address:
if (process not loaded in memory)
wake up swapper process (0);
elsc if (awakened prosess is more eligile to run than
currently running process)
) set scheduler flag;

restore processor execution level 10 original level;

Figure 6.32. Algorithm for Wakeup

To wake up sleeping processes, the kernel exccutes the wakeup algorithm
(Figure 6.32), either during the usual system call algorithms or when handling an
interrupt. For instance, the algorithm ipu relcases a locked inode and awakens all
processes waiting for the lock to become frec. Similarly, the disk interrupt handier
awakens a process waiting for 1/0 completion. The kernel raises the processor
exccution level in wakeup t0 block out interrupts. Then for every process sleeping
on the input slecp address, it marks the process state field “ready to run," removes
the process from the linked list of sleeping processes, places it on a linked list of
processes cligible for scheduling, and clears the field in the process table that
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SLEEP

algorithm siecp
input: (1) sleep address
(@) priority
output: 1 f process awakened as a result of a signal that process catches,
Jongjump algorithm if process awakened as a result of a signal
that it docs not catch,

0 otherwise;

rise processor cxecution level (0 block al interrupts;
set process state 0 sleep;

put process on slecp hash quene, based on sleep address;
Save sleep address in proces table sot;

Set process priority level o input prioity:
if (process slecp is NOT interruptible)

do context switch;

7* process resumes execution here when it wakes up */

Feset processor priority level to allow interrupts s when
process went (o slecp;

rewrn(0);

}

/% bere, process sleep is interruptible by signals */

if (no signal pending against process)

(
do context switch;
/% process resumes execution here when it wakes up */
if (no signal pending against process)

reset processor priority level to what it was when
process went 10 slecp;
return(0);
)
)
remove process from sleep hash queue, f still there;

reset processor priorty level to What it was when process went (o slecp;
i (process slecp priority set o catch signals)

return(1)
do longjmp algorithm:

Figure 6.31. Sleep Algorithm

185
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9.2.1.2 Exec in a Paging System

When a process invokes the exec system call, the kernel reads the executable file
into memory from the file system, as described in Chapter 7. On a demand paged
system, however, the cxecutable file may be 00 large to fit in the available main
memory. The kernel, therefore, does not preassign memory to the executable file
but “faults” it in, assigning memory as needed. It frst assigns the page tables and
disk block descriptors for the executable file, marking the page table entries
“demand fil" (for non-bss data) or “demand zero” (for bss data). Following a
variant of the read algorithm for reading the file into memory, the process incurs a
validity fault as it reads cach page. The fault handler notes whether the page is
“demand fll," meaning its contents will immediately be overwritten with the
contents of the executable file so it need not be cleared, or that it is “demand zero,”
meaning that its contents should be cleared. The description of the validity fault
handler in Section 9.2.3 will show how this is done. If the process cannot fit into
memory, the page-stealer process periodically swaps pages from memory, making
room for the incoming file.

There are obvious incffciencies in this scheme. First, a process incurs a page
fault when reading cach page of the executable file, even though it may never
access the page. Sccond, the page stealer may swap pages from memory before the
exec is done, resulting in two extra swap operations per page if the process needs
the page early. To make exec more efficient, the kernel can demand page directly
from the cxecutable file if the data is properly aligned, as indicated by a special
magic number. However, use of standard algorithms (such as bmap, in Chapter 4)
t0 access a file would make it expensive to demand page from indircet blocks
because of the multiple buffer cache accesses necessary to read a block.
Furthermore, consistency problems could arise because bmap is not reentrant. The
kernel sets various 1/O parameters in the  area during the read system call. If a
process incurs a page fault during a read system call when attempting t0 copy data
to user space, it would overwrite these fields in the u area to read the page from the
file system. Therefore, the kernel cannot use the regular algorithms to fault in
pages from the file system. The algorithms are, of course, reentrant in regular
cases, because each process has a separate u area and a process cannot
simultaneously execute multiple system calls.

To page directly from an exccutable file, the kernel finds all the disk block
numbers of the executable file when it does the exec and attaches the list to the file
inode. When setting up the page tables for such an executable file, the kernel
marks the disk block descriptor with the logical block number (starting from block
0 in the file) containing the page; the validity fault handler later uses this
information to load the page from the fle. Figure 9.17 shows a typical
arrangement, where the disk block descriptor indicates that the page is at logical
block offset 84 in the file. The kernel follows the pointer from the region to the
inode and looks up the appropriate disk block number (279).
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algorithm frecreg _/* frce an allocated region */
input:  pointer to a (locked) re
output: none.

(

if (region reference count non zero)
{
19 some process still using region */
release region lock;
if (region has an associated inode)
release inode lock;
return;

)
if (region has associated inode)
release inode (algorithm iput);

free physical memory still associated with region;
free auxiliary tables associted with region;
clar region fieds;

place region on region free lst;

unlock region;

Figure 6.25. Algorithm for Freeing a Region

algorithm detachreg /* detach a region from a process */

input:

pointer to per process region table entry

output; none

(

y memory management tables for process,

release a5 appropriate;

decrement process size;

decrement region reference count;

if (region reference count i 0 and reg
free region (algorithm freercg);

clsc /*cither reference count non-0 o region sticky bit on */

{

get auxi

not sticky bit)

free inode lock, if applicable (inode associated with region);
free region lock;

Figure 6.26. Algorithm Detachreg






index-300_1.png
288 MEMORY MANAGEMENT POLICIES

and the hardware sets the reference and modify bits of the page

write, and age b

table ry; Section 9.2.4 will consider hardware that does not have these
capabilities.
Region Page Table Entrics | Disk Block Descriptors
Page Table Entry
Page (Physical) Address Ag+p/wf Mod| Ref | Val [Prot
Disk Block Descriptor
Swap Type (swap, file,
Dev Block Num 61l 0, demand i)

Figure 9.13. Page Table Entries and Disk Block Descriptors

Each page table entry is associated with a disk block descriptor, which describes
the disk copy of the virtual page (Figure 9.13). Processes that share a region
thercfore access common page table entries and disk block descriptors. The
contents of a virtual page arc cither in a particular block on a swap device, in an
executable file, or not on a swap device. If the page is on a swap device, the disk
block descriptor contains the logical device number and block number containing
the page contents. If the page is contained in an exccutable fle, the disk block
descriptor contains the logical block number in the file that contains the page; the
kernel can quickly map this number into its disk address. The disk block descriptor
also indicates two special conditions st during exec: that a page is “demand fill"
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Figure 6.24. Loading a Text Region

6.5.6 Freeing a Region

When a region is no longer attached to any processes, the kernel can free the region
and return it to the list of free regions (Figure 6.25). If the region is associated
with an inode, the kernel releases the inode using algorithm iput, corresponding to
the increment of the inode reference count in allocreg. The kernel releases physical
resources associated with the region, such as page tables and memory pages. For
cxample, supposc the kernel wants to free the stack region in Figure 6.22.
Assuming the region reference count is 0, it releases the 7 pages of physical
memory and the page table.
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* A conditional P operation, abbreviated CP, that decrements the value of the
semaphore and returns an indication of true, if its valuc is greater than 0. If
the value of the semaphore is less than or equal to 0, the valuc of the semaphore
is unchanged and the return value is false.

The semaphores defined here are, of course, independent from the user-level
semaphores described in Chapter 11.

1232 Implementation of Semaphores

Dijkstra [Dijkstra 651 shows that it is possible to implement semaphores without
special ‘machine instructions. Figure 12.6 presents C functions to implement
semaphores. The function Pprim locks the semaphore by checking the values of the
array val; cach processor in the system controls one entry in the array. When a
processor locks a semaphore, it checks 0 see if other processors already locked the
semaphore (their entry in val would be 2), or if processors with a lower ID arc
currently trying to lock it (their entry in val would be 1). If cither condition is
true, the processor resets its entry in val to 1 and tries again. Pprim starts the
outer loop with the loop variable equal to the processor ID one greater than the one
that most recently used the resource, insuring that no one processor can monopolize
the resource (refer to [Dijkstra 651 or [Coffman 73] for a proof). The function
Vprim frees the semaphore and allows other processors to gain exclusive access to
the resource by clearing the entry of the executing processor in val and resetting
lastid.  The following code sequence would protect a resource.

Pprim(semaphore);
use resource here;
Vprim(semaphore);

Most machines have a set of indivisible instructions that do the equivalent
locking operation more cheaply, because the loops in Pprim are slow and would
drain performance. For instance, the IBM 370 scries supports an atomic compare
and swap instruction, and the AT&T 3B20 computer supports an atomic read and
clear instruction. When executing the read and clear instruction, for example, the
machine reads the value of a memory location, clears its value (sets it to 0), and
sets the condition code according to whether or not the original value was zero. If
another processor uses the read and clear instruction simultancously on the same
memory location, one processor is guaranteed to read the original value and the
other process reads the value 0: The hardware insures atomicity. Thus, the
function Pprim can be implemented more simply with the read and clear
instruction (Figure 12.7). A process loops using the read and clear instruction,
until it reads a nonzero value. The semaphore lock component must be initialized
ol

This semaphore primitive cannot be used in the kernel as is, because a process
executing it keeps on looping until it succeeds: If the semaphore is being used to
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blocks previously occupied by file B's data would be unusable except for files
smaller than 10 blocks (Figure 4.5). The kernel could minimize fragmentation of
storage space by periodically running garbage collection procedures to compact
available storage, but that would place an added drain on processing power.

For greater flexibility, the kernel allocates file space one block at a time and
allows the data in a fil (o be spread throughout the file system. But this allocation
scheme complicates the task of locating the data. The table of contents could
consist of a list of block numbers such that the blocks contain the data ‘belonging to
the file, but simple calculations show that a linear list of file blocks in the inode is
difficult to manage. If a logical block contains 1K bytes, then a file consisting of
10K bytes would require an index of 10 block numbers, but  fle containing 100K
bytes would require an index of 100 block numbers. Either the size of the inode
would vary according to the size of the file, or a relatively low limit would have to
be placed on the size of a file.

To keep the inode structure small yet still allow large files, the table of contents
of disk blocks conforms to that shown in Figure 4.6. The System V UNIX system
runs with 13 entries in the inode table of contents, but the principles are
independent of the number of entries. The blocks marked “direct” in the figure
contain the numbers of disk blocks that contain real data. The block marked
“single indirect” refers to a block that contains a list of direct block numbers. To
access the data via the indirect block, the kernel must read the indirect block, find
the appropriate direct block entry, and then read the direct block to find the data
The block marked “double indirect™ contains a list of lirect block numbers, and
the block marked “triple indirect” contains a list of double indirect block numbers.

In principle, the method could be extended to support “quadruple indirect
blocks,” “quintuple indirect blocks,” and so on, but the current structure has
sufficed in practice. Assume that a logical block on the file system holds 1K bytes
and that a block number is addressable by a 32 bit (4 byte) integer. Then a block
can hold up to 256 block numbers. The maximum number of bytes that could be
held in a file is calculated (Figure 4.7) at well over 16 gigabytes, using 10 direct
blocks and 1 indirect, 1 double indirect, and 1 triple indirect block in the inode.
Given that the file size field in the inode is 32 its, the size of a file is effectively
limited 0 4 gigabytes (2*2)

Processes access data in a file by byte offset. They work in terms of byte counts
and view a file as a stream of bytes starting at byte address 0 and going up to the
size of the file. The kernel converts the user view of bytes into a view of blocks:
The file starts at logical block 0 and continues to a logical block number
corresponding to the file size. The kernel accesses the inode and converts the
logical file block into the appropriate disk block. Figure 4.8 gives the algorithm
bmap for converting a file byte offset into a physical disk block.

Consider the block layout for the file in Figure 4.9 and assume that a disk block
contains 1024 bytes. 1f a process wants to access byte offset 9000, the kernel
caleulates that the byte is in direct block 8 in the file (counting from 0). It then
accesses block number 367; the 808th byte in that block (starting from 0) is byte
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algorithm dupreg _/* duplicate an existing region */
input: - pointer to region table cntry
output: pointer o a region that looks identical to input region

if (region type shared)
/9 caller will increment region reference count
* with subsequent attachreg call
.
return(input region pointer);

allocate new region (algorithm allocreg);

set up auxiliary memory management structures, as currently
exists in input region;

allocate physical memory for region contents;
to newly allocated

region;
return pointer 10 allocated region);

Figure 6.28. Algorithm for Dupreg

658 Duplicating a Region

The fork system call requires that the kernel duplicate the regions of a process. If
a region is shared (shared text or shared memory), however, the kernel need not
physically copy the region; instead, it increments the region reference count,
allowing the parent and child processes to share the region. If the region is not
shared and the kernel must physically copy the region, it allocates a new region
table entry, page table, and physical memory for the region. In Figure 6.27 for
example, process A forked process B and duplicated its regions. The text region of
process A is shared, so process B can share it with process A. But the data and
stack regions of process A are private, so process B duplicates them by copying
their contents to newly allocated regions. Even for private regions, a physical copy
of the region is not always necessary, as will be scen (Chapter 9). Figure 6.28
shows the algorithm for dupreg.

6.6 SLEEP

this chapter has covered all the low-level functions that are executed for the
itions to and from the state “kernel running” except. for the functions that
move a process into the sleep state. It will conclude with a presentation of the
algorithms for sleep, which changes the process state from “kernel running” o
“asleep in memory,” and wakeup, which changes the process state from “asleep” o
“ready to run” in memory or swapped.
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Figure 9.14. Relationship of Data Structures for Demand Paging

kernel of a swapping system makes a physical copy of the parent’s address space,
usually a wasteful operation, because processes often call exec soon after the fork
call and immediately frec the memory just copied. On the System V. paging
system, the kernel avoids copying the page by manipulating the region tables, page
table entrics, and pidata table entries: It simply increments the region reference
count of shared regions. For private regions such as data and stack, however, it
allocates a new region table cntry and page table and then examines cach parent
page table entry: If a page is valid, it increments the reference count in the pfdata
table entry, indicating the number of processes that share the page via different
regions (as opposed to the number that share the page by sharing the region). If
the page cxists on a swap device, it increments the swap-use table reference count
for the page

The page can now be referenced through both regions, which share the page
until a process writes to it. The kernel then copies the page so that each region has
a private version. To do this, the kernel turns on the “copy on write™ bit for every
page table entry in private regions of the parent and child processes during fork. If
cither process writes the page, it incurs a protection fault, and in handling the fault,
the kernel makes a new copy of the page for the faulting process. The physical
copying of the page is thus deferred until a process really needs it.

Figure 9.15 shows the data structures when a process forks. The processes
share access 10 the page table of the shared text region T, so the region reference
count is 2 and the pfdata reference count for pages in the text region is 1. The

|
|
1
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Torloop:
for G = first; i < NUMPROCS; i++)
(
if G == procid)
(
semaphore.vallil = 2;
for (= 1; i < NUMPROCS; i#+)
if § 1= procid & & semaphorc.valli) == 2)
goto loop:
lastid = procid;
retwrn; 7# success! now use resource */
)
else if (semaphore vallil)
g0t0 loop;
)
frst = 1;
goto forloop:
1
Vprim(semaphore)
struct semaphare semaphore;
(

lastid = (procid+1) % NUMPROCS;  /* reset to next processor */
semaphore.vallprocid) = 0;

Figure 12.6. Implementation of Semaphore Locking (continued)

semantics similar to those of the regular sleep algorithm (Chapter 6): It checks for
signals according 1o the priority value, enqueues the executing process on a first
first-out list of slecping processes, and does a context switch. The V' function
(Figure 12.9) gains exclusive aceess 10 the semaphore via the Pprim primitive and
increments the semaphore valuc. If any processes were on the semaphore slecp
queuc, the kernel removes the first one and changes its state to “ready o run.”

The P and ¥ functions are similar to the sleep and wakeup functions: The
major difference in implementation is that a semaphore is a data structure, whereas
the address used for slecp and wakeup is just a convenient number. A process will
always sleep when doing a P operation on a semaphore if the initial value of the
semaphore is 0, so P can replace the sleep function. However, the ¥ operation
wakes up only one process, whereas the uniprocessor wakeup function wakes up all
processes aslecp on an event address.

Semantically, use of the wakeup function indicates that a given system condition
is no longer true, hence all processes that were aslecp on the condition must wake
up. For example, when a buffer is no longer in use, it s incorrect for processes to
slecp on the event the buffer is busy, so the kernel awakens all processes that were
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Figure 4.9. Block Layout of a Sample File and its Inode

indirect block is in the 75th direct block in the single indirect block — block
number 3333. Finally, byte number 350,000 in the file is at byte number 816 in
block 3333.

Examining Figure 4.9 more closely, several block entries in the inode are 0,
meaning that the logical block entries contain no data. This happens if no process
ever wrote data into the file at any byte offsets corresponding to those blocks and
hence the block numbers remain at their initial value, 0. No disk space is wasted
for such blocks. Processes can cause such a block layout in a file by using the seek
and write system calls, as described in the next chapter. The next chapter also
describes how the kernel takes care of read system calls that access such blocks.

‘The conversion of a large byte offset, particularly one that is referenced via the
triple indirect block, is an arduous procedure that could require the kernel to access
three disk blocks in addition to the inode and data block. Even if the kernel finds
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6,57 Detaching a Reglon from a Process

The kernel detaches regions in the exec, exit, and shmdt (detach shared memory)
system calls. 1t updates the pregion entry and severs the connection to physical
memory by invalidating the associated memory management register triple
(algorithm detachreg, Figure 6.26). The address translation mechanisms thus
invalidated apply specifically to the process, not to the region (as in algorithm
Jfreereg). The kernel decrements the region reference count and the size field in the
process table entry according to the size of the region. If the region reference
count drops to 0 and if there is no reason to leave the region intact (the region is
not & shared memory region or a text region with the sticky bit on, as will be
described in Section 7.5), the kernel frees the region using algorithm freereg.
Otherwise, it releases the region and inode locks, which had been locked to prevent
race conditions as will be described in Section 7.5 but leaves the region and its
resources allocated.

Per Process Region Tables Regions

Text
Datal

Stack|

Text
Datal
Stacl

Data
Copy

Proc B

Figure 6.27. Dupli

a Region
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or “demand zero.” Section 9.2.1.2 will explain these conditions.
The pfdata table describes each page of physical memory and is indexed by
page number. The fields of an entry are

« The page state, indicating that the page is on & swap device or executable file,
that DMA is currently underway for the page (reading data from a swap
device), or that the page can be reassigned.

« The number of processes that reference the page. The reference count equals
the number of valid page table entries that reference the page. It may differ
from the number of processes that share regions containing the page, as will be
described below when reconsidering the algorithm for fork.

« The logical device (swap or file system) and block number that contains a copy
of the page.

« Pointers 1o other pfdata table entries on a list of frec pages and on a hash queue
of pages.

The kernel links entries of the pfdata table onto a frec list and a hashed list,
analogous to the linked lists of the buffer cache. The free list s a cache of pages
that are available for reassignment, but a process may fault on an address and stll
find the corresponding page intact on the free list. The free list thus allows the
kernel to avoid unnccessary read operations from the swap device. The kernel
allocates new pages from the list in least recently used order. The kernel also
hashes the pfdata table entry according to its (swap) device number and block
number. Thus, given a device and block number, the kernel can quickly locate a
page if it is in memory. To assign a physical page 10 a region, the kernel removes a
free page frame entry from the head of the free list, updates its swap device and
block numbers, and puts it onto the correct hash quee.

The swap-use table contains an entry for every page on a swap deviee. The
entry consists of a reference count of how many page table entries point o a page
on a swap device.

Figure 9.14 shows the relationship between page table entrics, disk block
descriptors, pfdata table entries, and the swap-use count table. Virtual address
1493K of a process maps into a page table entry that points to physical page 794;
the disk block descriptor for the page table entry shows that a copy of the page
exists at disk block 2743 on swap device 1. The pfdata table entry for physical
page 794 also shows that a copy of the page cxists at disk block 2743 on swap
device 1, and its in-core reference count is 1. Section 9.24.1 will cxplain why the
disk block number is duplicated in the pfdata table and the disk block descriptor.
The swap use count for the virtual page is 1, meaning that one page table entry
points to the swap copy.

9.2.1.1 Fork in a Paging System

As explained in Section 7.1, the kernel duplicates every region of the parent process
during the fork system call and attaches it to the child process. Traditionally, the
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iruct semaphore —
int VallNUMPROCSE: /* lock==~1 enty for cach prosesor */
int lasid; 7% 1D of ast processor to et semaphore */

int procid; 7 processor ID, unique per processor */

it lasti; 72 1D of last proc 1 get the semaphore */

INITGemaphore)

struct semaphore semaphore;

inti;
for G =0 i < NUMPROCS; i++) |
semaphore.valli] = 0;
]
Pprim(semaphore)
struct semaphore semaphore;
(

int i, first;

Toop:
first = lastid;
semaphore.vallprocid] = 1
/* continued next page */

Figure 12.6. Implementation of Semaphore Locking in C

lock a data structure, a process should sleep if it finds the scmaphore locked, 50
that the kernel can switch context to another process and do useful work. Given
Pprim and Vprim, it is possible to construct a more sophisticated set of kerne!
semaphore operations, P and V' that conform to the definitions in Section 12.3.1
First, let us define a semaphore to be a structure that consists of a lock ficld 10
control access to the semaphore, the value of the semaphore, and a queuc of
processes slecping on the semaphore. The lock ficld controls access to the
semaphore, allowing only one process to manipulate the other fields of the structur
during P and ¥ operations. It is reset when the P or ¥ operation completes. The
value field determines whether a process should have access to the critical region
protected by the semaphore. At the beginning of the P algorithm (Figure 12.8)
the kernel does a Pprim operation 10 ensure exclusive aceess to the semaphore and
then decrements the semaphore value. If the semaphore value is nonnegative, the
excuting process has access to the critical region: It resets the semaphore lock
with the Vprim operation so that other processes can access the semaphore and
rewrns anindication of success. If, as a result of decrementing its valuc, the
semaphore value is negative, the kernel puts the process to sleep, following
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70 direct blocks with 1K bytes cach = TOK bytes
1 indirect block with 256 direct blocks = 256K bytes
1 double indircet block with 256 indirect blocks = 64M bytes
1 triple indirect block with 256 double indirect blocks = _16G bytes

Figure 4.7. Byte Capacity of a File — 1K Bytes Per Block

algorithm bmap /* block map of logical file byic offet (o fle system block */
input: (1) inode

(2) byte offset
output: (1) block number in file system

(2) byte offset into block

(3) bytes of 1/0 in block

(4) read ahead block number

calculate logical block number in file from byte offset;
calculate start byte in block for 1/0; 7 output 24/
calculate number of bytes to copy to user;  /* output 3 */
check if read—ahead applicable, mark inode;  /* output 4 */
determine level of indirecti
il (not at necessary level of indirection)

caleulate index into inode or indirect block from
logical block number in file;
et disk block number from inode or indirect block;
release buffer from previous disk read, if any (algorithm brelse);
if (o more levels of indirection)
return (block number);
read indirect disk block (algorithm bread);
adjust logical block number in fle according to level of indirection;

Figure 4.8. Conversion of Byte Offset to Block Number in File System

9000 in the file. If a process wants to access byte offset 350,000 in the file, it must
access a double indirect block, number 9156 in the figure. Since an indirect block
has room for 256 block numbers, the first byte accessed via the double indirect
block is byte number 272,384 (256K + 10K); byte number 350,000 in a file is
therefore byte number 77,616 of the double indirect block. Since each single
indirect block accesses 256K bytes, byte number 350,000 must be in the Oth single
indirect block of the double indirect block — block number 331. Since each direct
block in a single indirect block contains 1K bytes, byte number 77,616 of a single
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to identify themselves to client processes
The connect system call requests that the kernel make a conncction to an
ng socket:

connect(sd, address, length);

The semantics of the parameters arc the same as for bind, but address is the
address of the target socket that will form the other end of the communications
i

Both sockets must use the same communications domain and protocol, and
the kernel arranges that the communications links are set up correctly. If the type
of the socket is a datagram, the connect call informs the kernel of the address to be
used on subsequent send calls over the socket; no connections are made at the time
of the call,

‘When a server process arranges to accept connections over a virtual circuit, the
kernel must queue incoming requests until it can service them. The listen system
call specifics the maximum queue length:

listen(sd, qlength)

where sd is the socket descriptor and glength is the maximum number of
outstanding requests.

Client Process Server Process

listen addr  accept addr

L

Figure 11.19. A Server Accepting a Call

The accept call receives incoming requests for a connection to a server process:
nsd = accept(sd, address, addrlen);

where sd is the socket descriptor, address points to a user data array that the
kernel fills with the return address of the connecting client, and addrlen indicates
the size of the user array. When accept returns, the kernel overwrites the contents
of addrlen with a number that indicates the amount of space taken up by the
address. _Accept returns a new socket descriptor nsd, different from the socket
descriptor sd. A server can continue listening to the advertised socket while
communicating with a client process over a separate communications channel
(Figure 11.19).
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algorithm bwrite  /* block write */
input:  buffer
output: none

initiate disk write;
if (1/0 synchronous)

sleep(event 1/0 complete);
release buffer (algorithm brelse);

)

else if (buffer marked for delayed write)
mark buffer to put at head of free list;

)

Figure 3.15. Algorithm for Writing a Disk Block

getblk, it marks the buffer “old” and writes the block to disk asynchronously. The
disk controller later interrupts the system and releases the buffer, using algorithm
brelse; the buffer ends up on the head of the free list, because it was “old.
Because of the two asynchronous 1/0 operations — block read ahead and delayed
write — the kernel can invoke brelse from an interrupt handler. Hence, it must
prevent interrupts in any procedure that manipulates the buffer free list, because
brelse places buffers on the free list.

3.5 ADVANTAGES AND DISADVANTAGES OF THE BUFFER CACHE

Use of the buffer cache has several advantages and, unfortunately, some
disadvantages.

© The use of buffers allows uniform disk access, because the kernel does not need
to know the reason for the 1/0. Instead, it copics data to and from buffers,
regardiess of whether the data is part of a file, an inode, or a super block. The
buffering of disk 1/0 makes the code more modular, since the parts of the
kernel that do the 1/0 with the disk have onc interface for all purposes. In
short, system design is simpler.

* The system places no data alignment restrictions on user processes doing 1/0,
because the kernel aligns data internally. Hardware implementations frequently
require a particular alignment of data for disk 1/0, such as aligning the data on
2 two-byte boundary or on a four-byte boundary in memory. Without a buffer
mechanism, programmers would have to make sure that their data buffers were
correctly aligned. Many programmer crrors would result, and programs would
not be portable to UNIX systems running on machines with stricter address
alignment properties. By copying data from user buffers to system buffers (and
vice versa), the kernel eliminates the need for special alignment of user buffers,
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aigorithm breada /* block read and read ahead */
input: (1) file system block number for immediate read

(2) file system block number for asynchronous read
outputs buffer containing data for immediate read

{

if (Gt block not in cache)
{
get buffr for frst block (algorithm getbl:
if (buffer data not valid)
iitiate disk read;
)
if (second block ot in cache)
(
get buffer for sccond block (algorithm getbll);
if (buffer data valid)
release buffer (algorithm brelse);
else
initiate disk read;
)
if (st block was originally in cache)

(

read first block (algorithm bread);

return buffe

)
sleeplevent first buffer contains valid data);
return buffer;

Figure 3.14. Algorithm for Block Read Abead

releases the buffer when it awakens. If the write is asynchronous, the kernel starts
the disk write but does not wait for the write to complete. The kernel will release
the buffer when the 1/0 completes.

‘There are occasions, described in the next two chapters, when the kernel does
not_write data immediately to disk. If it does a “delayed write,” it marks the
buffer accordingly, releases the buffer using algorithm brese, and continues without
scheduling 1/0. The kernel writes the block to disk before another process can
reallocate the buffer to another block, as described in scenario 3 of getblk. In the
meantime, the kernel hopes that a process accesses the block before the buffer must
be written to disk; if that process subsequently changes the contents of the buffer,
the kernel saves an extra disk operation.

A delayed write is different from an asynchronous write, When doing an
asynchronous write, the kernel starts the disk operation immediately but does not
wait for its completion. For a “delayed write,” the kernel puts off the physical
write 1o disk as long as possible; then, recalling the third scenario in algorithm
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temporarily to secondary memory, called a swap device. If the kernel writes
entire processes to a swap device, the implementation of the UNIX system is
called a swapping system if it writes pages of memory to a swap device, it is
called a paging system.

* Allocating secondary memory for efficient storage and retrieval of user data.
This service constitutes the file system. The kernel allocates secondary storage
for user files, reclaims unused storage, structures the file system in a well
understood manner, and protects user files from illegal access.

« Allowing processes controlled access o peripheral devices such as terminals,
tape drives, disk drives, and network devices.

‘The kernel provides its services transparently. For example, it recognizes that a
given file is a regular file or a device, but hides the distinction from user processes.
Similarly, it formats data in a file for internal storage, but hides the internal format
from user processes, returning an unformatted byte stream. Finally, it offers
necessary services so that user-level processes can support the services they must
provide, while omitting services that can be implemented at the user level. For
example, the kernel supports the services that the shell needs to act as a command
interpreter: It allows the shell to read terminal input, to spawn processes
dynamically, to synchronize process execution, 1o create pipes, and to redirect 1/0.
Users can construct private versions of the shell to tailor their environments to their

ccifications without affecting other users. These programs use the same kernel
s as the standard shell,

1.5 ASSUMPTIONS ABOUT HARDWARE

The execution of user processes on UNIX systems is divided into two levels: user
and kernel. When a process executes a system call, the execution mode of the
process changes from user mode to kernel mode: the operating system executes
and attempts 10 service the user request, returning an error code if it fails. Even if
the user makes no explicit requests for operating system services, the operating
system still does bookkeeping operations that relate to the user process, handling
interrupts, scheduling processes, managing memory, and so on. Many machine
architectures (and their operating systems) support more levels than the two
outlined here, but the two modes, user and kernel, are suffcient for UNIX systems.
The differences between the two modes are

* Processes in user mode can access their own instructions and data but not kernel
instructions and data (or those of other processes). Processes in kernel mode,
however, can access kernel and user addresses. For example, the virtual address
space of a process may be divided between addresses that are accessible only in
kernel mode and addresses that are accessible in cither mode.

 Some machine instructions are privileged and result in an error when exccuted
in user mode. For example, a machine may contain an instruction that
manipulates the processor status register; processes executing in user mode
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Hinclude <sys/typesh>
#include <sys/socketh>

main()
{
int sd, ns;
char buf(256];
struct sockaddr sockaddr;
int fromlen;

sd = socket(AF_UNIX, SOCK_STREAM, 0);

/% bind name — don’t include null char in the name */
bind(sd, *sockname”, sizeof (sockname”) — 1);
listen(sd, 1);

for ()
{

ns = accept(sd, &sockaddr, &fromlen);
if (fork() == 0)

1% child */
close(sd);

read(ns, buf, sizeof (bun);
printfCserver read "%s'\n’, buf);

close(ns);

1

Figure 11.20. A Server Process in the UNIX System Domain

example, after return from the read system call. The server process loops and waits
for another connection request in the accept call.

Figure 1121 shows the client process that corresponds to the server process.
The client creates a socket in the same domain as the server and issues a connect
request for the name sockname, bound to some socket by a server process. When
the connect returns, the client process has a virtual circuit to a scrver process. In
this example, it wriles a single message and exirs.

If the server process were 1o serve processes on @ network, its system calls may
specify that the socket s in the “Internct domain” by

socket(AF_INET, SOCK_STREAM, 0);






index-70_1.png
35 ADVANTAGES AND DISADVANTAGES OF THE BUFFER CACHE 57

making user programs simpler and more portable.

+ Use of the buffer cache can reduce the amount of disk traffic, thereby increasing
overall system throughput and decreasing response time. Processes reading
from the fle system may find data blocks in the cache and avoid the need for
disk 1/0. The kernel frequently uses “delayed write" to avoid unnecessary disk
writes, leaving the block in the buffer cache and hoping for a cache hit on the
block. Obviously, the chances of a cache it are greater for systems with many
buffers. However, the number of buffers a system can profitably configure is
constrained by the amount of memory that should be kept available for
executing processes: if too much memory is used for buffers, the system may
slow down because of excessive process swapping or paging.

« The buffer algorithms help insure file system integrity, because they maintain a
common, single image of disk blocks contained in the cache. If two processes
simultaneously attempt to manipulate one disk block, the buffer algorithms
(getblk for example) serialize their access, preventing data corruption.

« Reduction of disk traffic is important for good throughput and response time,
but the cache strategy also introduces several disadvantages. Since the kernel
does not immediately write data to the disk for a delayed write, the system is
Vulnerable to crashes that leave disk data in an incorrect state. Although recent
system implementations have reduced the damage caused by catastrophic
events, the basic problem remains: A user issuing a write system call is never
sure when the data finally makes its way to disk.‘

 Use of the buffer cache requires an extra data copy when reading and writing to
and from user processes. A process writing data copies the data into the kernel,
and the kernel copies the data to disk; a process reading data has the data read
from disk into the kernel and from the Kernel to the user process. When
transmitting large amounts of data, the extra copy slows down performance, but
when transmitting small amounts of data, it improves performance because the
kernel buffers the data (using algorithms getblk and delayed write) until it is
cconomical to transmit to or from the disk.

3.6 SUMMARY

This chapter has presented the structure of the buffer cache and the various
methods by which the ernel locates blocks in the cache. The buffer algorithms
combine several simple ideas to provide a sophisticated caching mechanism. The
Kernel uses the least-recently-used replacement algorithm to keep blocks in the

4. The standard 1/0 package availabl o C language programs includes an fiusk call. This function
call flushes datafrom buffers in the user address space (part of the package) into the kerncl.
However, the user stll docs not know when the kernel writes the data o the dik.
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Layout of Virtual Addresses
. Swap Device
Virtual, Physical Addresses

Text | 0 278K-|-

1K _432K-|-

empty

Data [64K 573K-|"

65K 647K

66K 595K~
empty

Stack 128K 401K-|
empty

Figure 9.6, Mapping Process Space onto the Swap Deviee

Figure 9.6 gives an example of mapping the in-core image of a process onto a
swap device.! The process contains three regions for text, data, and stack: the text
region ends at virtual address 2K, and the data region starts at virtual address 64K,
leaving a gap of 62K bytes in the virtual address space. When the kernel swaps the
process out, it swaps the pages for virtual addresses 0, 1K, 64K, 65K, 66K, and
128K; it does not allocate swap space for the empty 62K bytes between the text
and data regions o the empty 61K bytes between the data and stack regions but
fills the swap space contiguously. When the kernel swaps the process back in, it
knows that the process has a 62K-byte hole by consulting the process memory map,
and it assigns physical memory accordingly. Figure 9.7 demonstrates this case.
Comparison of Figures 9.6 and 9.7 shows that the physical addresses occupied by

I For y, the virtual address space of & process i depicted as a linear array of page table
s n i o i ate e, dirgardin e fct hat achreion wully bas 8 searte page
table.
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The send and rec system calls transmit data over a connected socket:

count = send(sd, msg, length, flags);
where sd is the socket descriptor, msg is a pointer to the data being sent, leng i
its length, and count is the number of bytes actually sent. The flags paramete
may be set 10 the value SOF_OOB to send data “out-of-band,” meaning that dayg
being sent is not considered part of the regular sequence of data exchange betweey
the communicating processes. A “remote login" program, for instance, may song
2n “out of band” message to simulatc a user hitting the delete key at 2 terming,
‘The syntax of the recv system calls is

count = recv(sd, buf, length, flags);

where buf is the data array for incoming data, length is the expected length, and
count is the number of bytes copied to the user program. Flags can be set 1o
“peek” at an incoming message and cxamine its contents without removing it from
the queue, or to receive “out of band” data. The datagram versions of these system
calls, sendto and recyfrom, have additional parameters for addresses. Processes can
use read and write system calls on stream sockets instead of send and recv after the
connection is set up. Thus, servers can take care of network-specific.protocal
negotiation and spawn processes that use read and write calls only, s if they are
using regular files.
The shutdown system call closes a socket connection:

shutdown(sd, mode)

where mode indicates whether the sending side, the receiving side, or both sides no
longer allow data transmission. It informs the underlying protocols to close down
the network communications, but the socket descriptors are still intact. The lose
system call frecs the socket descriptor.

The getsockname system call gets the name of a socket bound by a previous
bind call:

getsockname(sd, name, length);

The getsockopt and setsockopt calls retrieve and sct various options associated with
the socket, according to the communications domain and protocol of the socket,
Consider the scrver program in Figure 11.20. The process creates g stycam
socket in the “UNIX system domain’ and binds the name socknane to 1. Thes 1
invokes the listen system call 10 specify the internal queue Tongth for incoming
thssages and enters a loop, waiting for incoming requests. The accept call sleeps
until the underlying protocol notices that a connection request i directed tonerd
the socket with the bound name; then, accepr returns a new descriptor for. she
incoming request. The server process forks a process to communicate with the
client process: parent and child processes close their respective descriptors so that
they do not interfere with communications traffic of the other prosest. The chid
Process carrics on its conversation with the client process, terminating, in this
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Figure 9.10. Sequence of Swapping Operations






index-403_1.png
12

MULTIPROCESSOR
SYSTEMS

The classic design of the UNIX system assumes the use of a uniprocessor
architecture, consisting of one CPU, memory, and peripherals. A multiprocessor
architecture contains two or more CPUs that share common memory and
peripherals (Figure 12.1), potentially providing greater system throughput, because
processes can run concurrently on different processors. Each CPU executes
independently, but all of them exccute one copy of the kernel. Processes behave
exactly as they would on a uniprocessor system — the semantics of each system call
remain the same — but they can migrate between processors transparently.
Unfortunately, a process docs not consume less CPU time. Some multiprocessor
systems are called attached processor systems, because the peripherals may not be
accessible to all processors. This chapter will not distinguish between attached
processor systems and general multiprocessor systems, unless explicitly stated.

Allowing several processors to exccute simultancously in kernel mode on behalf
of different processes causes integrity problems unless protection mechanisms are
used. This chapter explains why the original design of the UNIX system cannot
run unchanged on multiprocessor systems and considers two designs for running on
a multiprocessor.

91
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file automatically implies a change to the inode, but changing the inode does not
imply that the contents of the file change.

"The in-core copy of the inode contains the following ficlds in addition to the
fields of the disk inode:

« The status of the in-core inode, indicating whether

— the inode is locked,

— a process is waiting for the inode to become unlocked,

— the in-core represcntation of the inode differs from the disk copy as a result
of a change to the data in the inode,

— the in-core representation of the file differs from the disk copy as a result of
a change to the file data,

— the file is a mount point (Section 5.15).

« The logical device number of the file system that contains the file.

« The inode number. Since inodes are stored in a lincar array on disk (recall
Section 2.2.1), the kernel identifies the number of a disk inode by its position in
the array. The disk inode does not need this field

« Pointers o other in-core inodes. The kernel links inodes on hash queues and on
a free list in the same way that it links buffers on buffer hash queues and on the
buffer free list. A hash queue is identificd according to the inode’s logical
device number and inode number. The kernel can contain at most one in-core
copy of a disk inode, but inodes can be simultancously on a hash queue and on
the free list.

« A reference count, indicating the number of instances of the file that are ac
(such as when opened).

Many fields in the in-core inode are analogous to fields in the buffer header, and
the management of inodes is similar to the management of buffers. The inode lock,
when set, prevents other processes from accessing the inode; other processes set
flag in the inode when attempling to access it to indicate that they should be
awakened when the lock is released. The kernel sets other flags to indicate
discrepancies between the disk inode and the in-core copy. When the kernel needs
to record changes to the file or t0 the inode, it writes the in-core copy of the inode
to disk after examining these flags.

‘The most striking difference between an in-core inode and a buffer header is the
in-core reference count, which counts the number of active instances of the file. An
inode is active when a process allocates it, such as when opening a file. An inode is
on the free list only if its reference count is 0, meaning that the kernel can
reallocate the in-core inode to another disk inode. The frec list of inodes thus
serves as a cache of inactive inodes: If a process attempts to access a file whose
inode is not currently in the in-core inode pool, the kernel reallocates an in-core
inode from the free st for its use. On the other hand, a buffer has no reference
count; it is on the free list if and only if it is unlocked.
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swapper sleeps on the event that it wants to swap a process into memory but cannoy
find room for it. The clock will awaken the swapper once a second in that state
The kernel also awakens the swapper if another process goes to sleep, since it may
be more cligible for swapping out than the processes previously considered by the
swapper. If the swapper swaps out a process or if it sleeps because it could noy
swap out a process, it will resume execution at the beginning of the swapping
algorithm, attempting to swap in

Figure 9.10 depicts five processes and the time they spend in memory or on the
swap device as they go through a sequence of swapping operations. For simplicity,
assume that all processes are CPU intensive and that they do not make any system
calls; hence, a context switch happens only as a result of clock interrupts at 1-
second intervals. The swapper runs at highest scheduling priority, so it always runs
briefly at I-second intervals if it has work to do. Further, assume that the
processes are the same size and the system can contain at most two processes
simultancously in main memory.  Initially, processes A and B are in main memory
and the other processes are swapped out. The swapper cannot swap any processcs
during the first 2 seconds, because none have been in memory or on the swap device
for 2 seconds (the residency requirement), but at the 2-second mark, it swaps out
processes A and B and swaps in processes C and D. It attempts to swap in process
E, 100, but fails because there is no more room in main memory. At the 3 second
mark, process E is eligible for swapping because it has been on the swap device for
3 seconds, but the swapper cannot swap processes out of main memory because
their residency time is under 2 seconds. At the 4-second mark, the swapper swaps
out processes C and D and swaps in processes E and A.

The swapper chooses processes to swap in based on the amount of time the
processes had been swapped out. Another criterion could have been to swap in the
highest-priority process that is ready to run, since such processes deserve a better
chance to execute. It has been demonstrated that such a policy results in “slightly”
better throughput under heavy system load (sce [Peachey 841).

‘The algorithm for choosing a process o swap out to make room in memory has
more serious flaws, however. First, the swapper swaps out a process based on its
priority, memory-residence time, and nice value. Although it swaps out a process
only to make room for a process being swapped in, it may swap out a process that
does not provide enough memory for the incoming process. For instance, if the
swapper attempls to swap in a process that occupies | megabyte of memory and the
system contains no free memory, it i futile to swap out a process that occupies only
2K bytes of memory. An alternative strategy would be to swap out groups of

2. The Version 6 implementation of the UNIX system did not swap a process out to make room for an
incoming process untl the incoming process had been disk reident for 3 seconds. The outgoine
process had to reside in memory at least 2 seconds. The choice of the time interval cuts down on
thrashing and increases system throughput,
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Fincude  <sysliypesh>
#incude  <sys/ipch>
#include  <sys/msgh>
#define ALLTYPES 0

main0
{
struct msgform

long mtype;

char mtext[1024);
) msg;
register unsigned int id;

for (d=0; ; id4)
while (msgrov(id, &msg, 1024, ALLTYPES, IPC_NOWAIT) > 0)

Figure 11.22. An Eavesdropping Program
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« Number of links to the file, representing the number of names the file has in the
directory hierarchy. Chapter 5 explains file links in detail.

« Table of contents for the disk addresses of data in a file. Although users treat
the data in a file as a logical stream of bytes, the kernel saves the data in
discontiguous disk blocks. The inode identifies the disk blocks that contain the
file's data.

« File size. Data in a file is addressable by the number of bytes from the
beginning of the file, starting from byte offset 0, and the file size is 1 greater
than the highest byte offset of data in the file. For example, if a user creates a
file and writes only 1 byte of data at byte offset 1000 in the file, the size of the
file is 1001 bytes.

‘The inode does not specify the path name(s) that access the filc.

owner mjb
group o5
type regular file
perms rwxr-xr-x
accessed Oct 23 1984 1:45 P.M.
modified Oct 22 1984 10:30 A.M.
inode Oct 23 1984 1:30 PM.
size 6030 bytes
disk addresses

Figure 4.2, Sample Disk Inode

Figure 4.2 shows the disk inode of a sample file. This inode is that of a
regular file owned by “mjb,” which contains 6030 bytes. The system permits
“mjb" to read, write, or execute the file; members of the group “os” and all other
users can only read or execute the file, not write it. The last time anyone read the
file was on October 23, 1984, at 1:45 in the afternoon, and the last time anyone
wrote the file was on October 22, 1984, at 10:30 in the morning. The inode was
last changed on October 23, 1984, at 1:30 in the afternoon, although the data
the file was not written at that time. The kernel encodes the above information in
the inode. Note the distinction between writing the contents of an inode to disk
and writing the contents of a file to disk. The contents of a file change only when
writing it. The contents of an inode change when changing the contents of a file or
when changing its owner, permission, or link settings. Changing the contents of a
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Second, if the swapper sleeps because it could not find enough memory to swap
in a process, it searches again for a process to swap in although it had previously
chosen one. The reason is that other swapped processes may have awakened in the
meantime and they may be more cligible for swapping in than the previously
chosen process. But that is small solace to the original process still trying to be
swapped in. In some implementations, the swapper trics o swap out many smaller
processes to make room for the big process to be swapped in before searching for
another process to swap in; this is the revision in the swapper algorithm shown by
the comments in Figure 9.9

Third, if the swapper chooses a “ready-to-run" process to swap out, it is possible
that the process had not executed since it was previously swapped in. Figure 9.11
depicts such a case, where the kernel swaps in process D at the 2-second mark,
schedules process C, and then swaps out process D at the 3-sccond mark in favor of
process E (because of the interaction of the nice value) even though process D had
never run. Such thrashing is clearly undesirable.

One final danger is worthy of mention. If the swapper attempls to swap out &
process but cannot find space on the swap device, a system deadlock could arise if
the following four conditions are met: Al processes in main memory are asleep, all
“ready-to-run" processes are swapped out, there is 10 foom on the swap device for
new processes, and there s no room in main memory for incoming processes
Exercise 9.5 explores this situation. Interest in fixing problems with the swapper
has declined in recent years as demand paging algorithms have been implemented
for UNIX systems.

9.2 DEMAND PAGING

Machines whose memory architecture is based on pages and whose CPU. has
restartable instructions’ can support a kernel that implements a demand paging.
algorithm, swapping pages of memory between main memory and a swap device.
Demand paging systems free processes from size limitations otherwise imposed by
the amount of physical memory available on a machine. For instance, machines
that contain 1 or 2 megabytes of physical memory can execute processes whose
sizes are 4 or § megabytes. The kernel still imposes a limit on the virtual size of a
process, dependent on the amount of virtual memory the machine can address.
Since a process may not fit into physical memory, the kernel must load its relevant
portions into memory dynamically and execute it even though other parts are not
Toaded. Demand paging is transparent to user programs except for the virtual size

3.1 a machine exccutes “part” of an instruction and incurs a page faul, the CPU must restart the
instruction after handiing the fault, because intermediate computations done before the page fault
may have been lost.
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processes only if they provide enough memory for the incoming process.
Experiments using a PDP 11/23 computer have shown that such a strategy can
increase system throughput by about 10 percent under heavy loads (see [Peachey

84])

Figure 9.11. Thrashing due to Swapping
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Figure 12.1. Multiprocessor Configuration

12.1 PROBLEM OF MULTIPROCESSOR SYSTEMS

Recall from Chapter 2 that the design of the UNIX system protects the integrity of
kernel data structures by two policies: The kernel cannot preempt a process and
switch context to another process while executing in kernel mode, and it masks out
interrupts when executing a critical region of code if an interrupt handler could
corrupt kernel data structures. On a multiprocessor, however, if two or more
processes exceute simultancously in the kernel on scparate processors, the kernel
could become corrupt in spite of the protective measures that suffice for
uniprocessor systems.

struct queue [

) *bp, *bpl;

bp1=>forp = bp~>forp;
bpl—>backp = bp;
bp=>forp = bpl;

/* consider possible context switch here */
bp1—>forp> backp = bpl;

re 12.2. Placing a Buffer on a Doubly Linked List

For example, reconsider the fragment of code from Chapter 2 (Figure 12.2)
that places a data structure (pointer bp1) after an existing structure (pointer 4p)
Suppose two processes execute the code simultancously on different processors, sech
that processor A wants to place structure bpA after bp and processor B wats 1o
Place structure 4pB after bp. No assumptions can be made about the selative
processor exccution speed: the worst case is possible, where processor B could
exceute the four C statements before processor A can exceute another statement
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parent places the child in the “ready-to-run” state (see Figure 6.1) and returns to
user mode. Since the child is in the “ready-to-run” state, the swapper will
eventually swap it into memory, where the kernel will schedule it; the child will
complete its part of the fork system call and return 10 user mode.

Original Layout Expanded Layout
Virtual, Physical Addresses  Virtual, Physical Addresses Swap Device
Text | 0 278K o 278K.| -

IK 432K 1K_432K| e
empt empty
Data [64K S73K 64K _573K-|"”
65K 647K 65K _647K-""
66K 595K 66K 595K-|"”
empty empty
Stack 128K 401K 128K 401K”)
empty New Page 129K - -
empt
Figure 9.8. Adjusting Memory Map for Expansion Swap
9.1.2.2 Expansion Swap

If a process requires more physical memory than s currently allocated to it, either
as a result of user stack growth o invocation of the brk system call and if it needs
more memory than is currently available, the kernel does an expansion swap of the
process. It reserves enough space on the swap device to contain the memory space
of the process, including the newly requested space. Then, it adjusts the address
translation mapping of the process to account for the new virtual memory but does
not assign physical memory (since none was available). Finally, it swaps the
process out in a normal swapping operation, zeroing out the newly allocated space
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EXERCISES s

If several processes contend for a buffr, the kernel guarantees that none of them slecp
forever, but it docs not guarantce that & process will ot be starved out from use of a
buffer. Redesign gerblk 50 that a process is guaranteed eventual use of a buffer.
Redesign the algorithms for gerblk and brelse such that the kernel docs not follow a
Jeast-recently-used scheme but a firstin-first-out scheme. Repeat this problem using a
leastfrequently-used scheme.

Describe a scenario where the bulfer data is already vald in algorithm bread.
Describe the various scenarios that can happen in algorithm breada. What happens
o the next invocation of bread or breada when the current read-ahead block will be
read? In algorithm breada, i the first or second block are ot in the cache, the later
st to see if the buffer data is valid implics that the block could be in the buffer pool.
How is this possible?

Describe an algorithm that asks for and receives any free buffer from the buffer pool.
Compare this algorithm (o gerblk

Various system calls such as umount and sync (Chapter 3) require the kernel 10 flush
1o disk all buffers that are “delayed write” for a partcular file system. Describe an
algorithm that implements a buffer lush. What happens (o the order of buffers on the
free list as a result of the Aush operation? How can the kernel be sure that no other
process sneaks in and writes a buffer with delayed write (0 the fle system while the
fushing process slecps waiting for an 1/0 completion?

Define system response time as the average time it takes to complete a system call
Define system throughput as the number of processes the system can exccute in a
given time period. Describe how the buffer cache can help response time. Does it
necessarily help system throughput?
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Layout of Virtual Addresses
Virtual, Physical Addresses
Text | 0 401K
1K 370K+
empty

Swap Device

Data [64K 788K+
65K 492K
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Stack [128K 955K

empty

Figure 9.7. Swapping a Process into Memory

the process before and after the swap are not the same; however, the process does
not notice a change at user-level, because the contents of its virtual space are the
same.

Theoretically, all memory space occupied by a process, including its  area and
kernel stack, is eligible to be swapped out, although the kernel may temporarily
lock a region into memory while a sensitive operation is underway. Practically,
however, kernel implementations do not swap the u area if the u area contains the
address translation tables for the process. The implementation also dictates
whether a process can swap itself out or whether it must request another process to
swap it out (see exercise 9.4).

9.1.2.1 Fork Swap

The description of the fork system call (Section 7.1) assumed that the parent
process found enough memory to create the child context. Otherwise, the kernel
swaps the process out without frecing the memory occupied by the in-core (parent)
copy. When the swap is complete, the child process exists on the swap device; the
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frame contains the parameters to a function, its local variables, and the data
necessary (o recover the previous stack frame, including the value of the program
counter and stack pointer at the time of the function call. The program code
contains instruction sequences that manage stack growth, and the kernel allocates
space for the stack, as needed. In the program in Figure 1.3, parameters arge and
argy and variables fdold and fdnew in the function main appear on the stack when
main is called (once in every program, by convention), and parameters old and new
and the variable count in the function copy appear on the stack whenever copy is
called.

Because a process in the UNIX system can exccute in two modes, kernel o
user, it uses a scparate stack for each mode. The user stack contains the
arguments, local variables, and other data for functions exccuting in user mode.
The left side of Figure 2.4 shows the user stack for a process when it makes the
write system call in the copy program. The process startup procedure (included in
a library) had called the function main with two parameters, pushing frame 1 onto
the user stack; frame 1 contains space for the two local variables of main. Main
then called copy with two parameters, old and new, and pushed frame 2 onto the
user stack; frame 2 contains space for the local variable counr. Finally, the process
invoked the system call write by invoking the library function write. Each system
call has an entry point in a system call library; the system call library is encoded in
assembly language and contains special #rap instructions, which, when executed,
cause an “interrupt” that results in a hardware switch to kernel mode. A process
calls the library entry point for a particular system call just as it calls any function,
creating 2 stack frame for the library function. When the process exccutes the
special instruction, it switches mode (o the kernel, exccutes kernel code, and uses
the kernel stack.

The kernel stack contains the stack frames for functions executing in kernel
mode. The function and data entries on the kernel stack refer to functions and
data in the kernel, not the user program, but its construction is the same as that of
the user stack. The kernel stack of a process is null when the process exccutes in
user mode. The right side of Figure 2.4 depicts the kernel stack representation for
a process executing the write system call in the copy program. The names of the
algorithms are described during the detailed discussion of the write system call in
later chapters.

Every process has an entry in the kernel process rable, and cach process is
allocated a u area’ that contains private data manipulated only by the kernel. The
process table contains (or points t0) a per process region table, whose cntrics point
o entries in a region table. A region is a contiguous area of a process's address

3 The i in u area sands for “use” Another name for th i area s  block; his ook willalways
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buffer cache, assuming that blocks that were recently accessed are likely to be
accessed again soon. The order that the buffers appear on the free lst specifies the
order in which they were last used. Other buffer replacement algorithms, such as
first-in-first-out or least-frequently-used, are cither more complicated o implement
or result in lower cache hit ratios. The hash function and hash queues enable the
kernel to find particular blocks quickly, and use of doubly linked lists makes it casy
to remove buffers from the lists.

‘The kernel identifies the block it needs by supplying a logical device number
and block number. The algorithm getblk searches the buffer cache for a block and,
if the buffer is present and frec, locks the buffer and returns it. If the buffer is
locked, the requesting process sleeps until it becomes frec. The locking mechanism
ensures that only one process at  time manipulates a buffer. If the block is not in
the cache, the kernel reassigns a free buffer to the block, locks it and returns it.
The algorithm bread allocates a buffer for a block and reads the data into the
buffer, if necessary. The algorithm bwrite copies data into a previously allocated
buffer. If, in exccution of certain higher-level algorithms, the kernel determines
that it is not necessary to copy the data immediately to disk, it marks the buffer
“delayed write” to avoid unnccessary 1/0. Unfortunately, the “delayed write”
scheme means that a process is never sure when the data is physically on disk. If
the kernel writes data synchronously to disk, it invokes the disk driver to write the
block to the file system and waits for an 1/0 completion interrupt.

The kernel uses the buffer cache in many ways. It transmits data between
application programs and the file system via the buffer cache, and it transmits
auxiliary system data such as inodes between higher-level kernel algorithms and the
file system. It also uses the buffer cache when reading programs into memory for
exceution. The following chapters will describe many algorithms that use the
procedures described in this chapter. Other algorithms that cache inodes and pages
of memory also use techniques similar t0 those described for the buffer cache.

37 EXERCISES

1. Consider the hash function in Figure 3.3. The best hash function is one that
distributes the blocks uniformly over the set of hash queues. What would be an
optimal hashing function? Should a hash function use the logical device number in its
calculations?

2. In the algorithm gerblk, if the kernel removes a buffer from the free list, it must raise
the processor priority level to block out interrupts before checking the free lst, Why?

* 3. In algorithm gerblk, the kernel must raise the processor priority level to block dut
interrupts before checking if @ block is busy. (This is not shown in the text) Why?

4. In algorithm brelse, the kerncl enqueues the buffer at the head of the free list i the
buffer contents are invalid.  If the contents are invalid, should the buffer appear on &
hash queue?

5. Suppose the kernel does a delayed write of a block. What happens when another
process takes that block from its hash queue? From the free list?
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Algorithm swapper _/* swap in swapped out processes,
* swap out other processes o make room */
input:  none
output: none.
{
Toop:

for (all swapped out processes that are ready to run)
pick process swapped out longest;
if (no such process)
{
sleep (event must swap in);
goto loop;
1
if (enough room in main memory for process)
(
swap process in;
goto loop;
)
/* loop2: here in revised algorithm (sce page 285) */
for (all processes loaded in main memory, not zom
(

ie and not locked in memory)

if (there is a sleeping process)
choose process such that priority + residence time
s numerically highest;
else /* no sleeping processes */
choose process such that residence time + nice
s numerically highest;
)
if (chosen process not sleeping or residency requirements not
sai
seep (event must swap process n);
else
swap out process;
sotoloop;  /* goto loopa in revised algorithm */

Figure 9.9. Algorithm for the Swapper

A “ready-to-run” process must be core resident for at least 2 seconds before
being swapped out, and a process to be swapped in must have been swapped out for
at least 2 seconds. If the swapper cannot find any processes to swap out or if
neither the process to be swapped in nor the process to be swapped out have
accumulated more than 2 seconds? residence time in their environment, then the
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UNIX systems support a wide variety of networks. Traditional methods for
implementing protocol negotiation rely heavily on the ioctl system call but their
usage is not uniform across network types. The BSD system has introduced the
Socket system calls to provide a more general framework for network
communications. In the future, System V will usc the streams mechanism
described in Chapter 10 to handle network configurations uniformly.

11.6 EXERCISES

1. What happens if the wait cal is omitted by debug (Figure 1132 (Hint: There are
two possibilites.)
2. A debugger using pirace reads one word of data from a traced process per call. What
cations should be made in the kernel to read many words with one call? What
modifications would be neccssary for pirace?

3. Extend the prrace call such that pid need not be the child process of the callr.
Consider the security issues: Under what circumstances should a process be allowed to
read the address space of another, arbitrary process? Under what circumstances
should it be able to write the address space of another process?

4. Implement the set of message system calls s a user-level ibrary, using regular files,
named pipes. and locking primitives. When creating a message queue, create a control
file that records status of the queue; the file should be protected with file locks or other
convenient. mechanisms. When sending a message of a given type, create a named
pipe for all messages of that type if such a file does not alrcady cxist, and write the
data (with a prepended byte count) (o the named pipe. The control fle should
correlate the type number with the name of the named pipe. When reading messages,
the control file dircets the process 10 the correct named pipe. Compare this scheme to
the implementation described in the chapter for performance, code. complexity,
functionality.

5. What s the program in Figure 11.22 trying to0 do?

* 6. Write a program that attaches shared memory 100 close to the end of its stack, and let
the stack grow into the shared memory region. When docs it incur a memory fault?

7. Rewrite the program in Figure 11.14 and use the /PC_NOWAIT fag. so that the
semaphore operations are conditional. Demonstrate how this avoids deadlocks.

8. Show how Dijkstra’s P and ¥ semaphore operations could be implemented with named
pipes. How would you implement a conditional P operation?

9. Write programs that lock resources, using (a) named pipes, (b) the crear and unlink
system calls, and (c) the message system calls. Compare their performance.

10, Write programs to compare the performance of the message system calls to read and
write on named pipes.

1. Write programs (o compare the data-transfer speed using shared memory and
messages. The programs for shared memory should include semaphores to synchronize
‘completion of reads and writs.
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Lower Level File System Algorithms

namei
alloc free | ialloc ifree

iget iput  bmap

buffer allocation algorithms

getblk  brelse  bread breada bwrite

Figure 4.1 File System Algorithms

name to an inode, using the algorithms iger, iput, and bmap. Algorithms alloc and
free allocate and free disk blocks for files, and algorithms ialloc and ifree assign
‘and free inodes for files.

4.1 INODES

411 Defnition

Inodes exist in a static form on disk, and the kernel reads them i
inode to manipulate them. Disk inodes consist of the following fields:

to an in-core

« File owner identifier. Ownership is divided between an individual owner and a
‘group” owner and defines the set of users who have access rights to a file. The
superuser has access rights to all fles in the system.
« File type. Files may be of type regular, directory, character or block speci
FIFO (pipes).
« File access permissions. The system protects files according to three classes:
the owner and the group owner of the file, and other users; each class has access
ights 10 read, write and execute the file, which can be set individually. Because
4 directories cannot be executed, exccution permission for a directory gives the
right to search the directory for a file name.
« File access times, giving the time the file was last modified, when it was last
accessed, and when the inode was last modified.

o
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on the swap device (sec Figure 9.8). When the kernel later swaps the process inty
memory, it will allocate physical memory according to the new (augmented size)
address translation map. When the process resumes exccution, it will have enough
memory.

9.1.3 Swapping Processes In

Process 0, the swapper, is the only process that swaps processes into memory from
swap devices. At the conclusion of system initialization, the swapper goes into an
infinite loop, where its only task is 1o do process swapping, as mentioned in Section
7.9. It attempts to swap processcs in from the swap device, and it swaps processes
out if it needs space in main memory. The swapper sleeps if there is no work for it
10 do (for example, if there are no processes to swap in) or if it is unable t0 do any
work (there are no processes cligible to swap out); the kernel periodically wakes
up, as will be scen. The kernel schedules the swapper to excoute just as it
schedules other processes, albeit at higher priority, but the swapper executes only in
kernel mode. The swapper makes no system calls but uses internal kernel functions
to do swapping; it is the archetype of all kernel processes.

As mentioned briefly in Chapter 8, the clock handler measures the time that
each process has been in core or swapped out. When the swapper wakes up to
swap processes in, it examines all processes that are in the state “ready to run but
swapped out” and selects one that has been swapped out the longest (see Figure
9.9).If there is enough free memory available, the swapper swaps the process i
reversing the operation done for swapping out: It allocates physical memory, reads
the process from the swap device, and frees the swap space.

I the swapper successfully swaps in a process, it scarches the set of “ready-to-
run but swapped out” processes for others to swap in and repeats the above
procedure. One of the following situations eventually arises:

© No “ready-to-run” processes exist on the swap device: The swapper goes to
slecp until a process on the swap device wakes up or until the kernel swaps out
a process that is “ready o run." (Recall the state diagram in Figure 6.1)

® The swapper finds an eligible process to swap in but the system does not con
enough memory: The swapper attempts to swap another process out and, if
successful, restarts the swapping algorithm, searching for a process to swap in.

I the swapper must swap a process out, it examines every process in memory:
Zombie processes do not get swapped out, because they do not take up any physical
memory; processes locked in memory, doing region operations, for example, are also
not swapped out. The kernel swaps out slecping processes rather than those “ready
10 run,” because “ready-to-run” processes have a greater chance of being scheduled
soon. The choice of which sleeping process to swap out is a function of the process
priority and the time the process has been in memory. If there are no slecping
processcs in memory, the choice of which “ready-to-run” process to swap out is o
function of the process nice value and the time the process has been in memory.
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include <sys/typesh>
#include <sys/socketh>

main0
(
int sd, ns;
char buf(256];
struct sockaddr sockaddr;
int fromlen;

sd = socket(AF_UNIX, SOCK_STREAM, 0);
/* connect to name — null char is not part of name */

(connect(sd, “sockname®, sizeof (‘sockname") = 1) == —1)
exitO;

write(sd, "hi guy’, 6);

Figure 11.21. A Client Process in the UNIX System Domain

and bind a network address obtained from a name server. The BSD system has
library calls that do these functions. Similarly, the sccond parameter to the client's
connect would contain the addressing information needed to identify the machine
on the network (or routing addresses to send messages to the destination machine
via intermediate machines) and additional information to identify the particular
socket on the destination machine. If the server wanted to listen to network and
local processes, it would use two sockets and the select call to determine which
client is making a connection.

115 SUMMARY

This chapter has presented several forms of interprocess communication. It
considered process tracing, where two processes cooperate to provide a useful
facility for program debugging. However, process tracing via pirace is cxpensive
and primitive, because a limited amount of data can be transferred during each
call, many context switches occur, communication is restricted to parent-child
processcs, and processes must agree 1o be traced before exceution. UNIX System
V provides an IPC package that includes messages, semaphores, and shared
memory. - Unfortunately, they arc special purpose, do not mesh well with other
operating system primitives, and are not extensible over a network. However, they
are useful to many applications and afford better performance compared to other
schemes
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As observed in Chapter 2, every file on a UNIX system has a unique inode. The
inode contains the information necessary for a process to access a file, such as file
ownership, access rights, file size, and location of the file’s data in the file system.
Processes access files by a well defined set of system calls and specify a file by a
character string that is the path name. Each path name uniquely specifies a fle,
and the kernel converts the path name to the files inode.

‘This chapter describes the internal structure of fles in the UNIX system, and
the next chapter describes the system call interface to files. Section 4.1 examines
the inode and how the kernel manipulates it, and Section 4.2 examines the internal
structure of regular files and how the kernel reads and writes their data. Section
4.3 investigates the structure of directories, the files that allow the kernel to
organize the file system as a hierarchy of files, and Section 4.4 presents the
algorithm for converting user file names to inodes. Section 4.5 gives the structure
of the super block, and Sections 4.6 and 4.7 present the algorithms for assignment
of disk inodes and disk blocks to files. Finally, Section 4.8 talks about other file
types in the system, namely, pipes and device files.

‘The algorithms described in this chapter occupy the layer above the buffer
cache algorithms explained in the last chapter (Figure 4.1). The algorithm iger
returns a previously identified inode, possibly reading it from disk via the buffer
cache, and the algorithm iput releases the inode. The algorithm bmap sets kernel
parameters for accessing a file. The algorithm namei converts a user-level path

o0
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chooses the swap device in a round robin scheme, provided it contains enough
contiguous memory.  Administrators can create and remove swap devices
dynamically. If a swap device is being removed, the kernel does not swap data to
it; as data is swapped from it, it empties out until it is free and can be removed.

9.1.2 Swapping Processes Out

The kernel swaps a process out if it needs space in memory, which may result from
any of the following:

The fork system call must allocate space for a child process,
The brk system call increases the size of a process,

A process becomes larger by the natural growth of its stack,

The kernel wants to free space in memory for processes it had previously
swapped out and should now swap in.

‘The case of fork stands out, because it is the only case where the in-core memory
previously occupied by the process is nof relinquished.

When the kernel decides that a process is cligible for swapping from main
memory, it decrements the reference count of each region in the process and swaps
the region out if its reference count drops to 0. The kernel allocates space on a
swap device and locks the process in memory (for cases 1-3), preventing the
swapper from swapping it out (see exercise 9.12) while the current swap operation
is in progress. The kernel saves the swap address of the region in the region table
entry.

The kernel swaps as much data as possible per 1/O operation dircatly between
the swap device and user address space, bypassing the buffer cache. If the
hardware cannot transfer multiple pages in one operation, the kernel software must
iteratively transfer one page of memory at a time. The exact rate of data transfer
and its mechanics therefore depend on the capabilities of the disk controller and the
implementation of memory management, among other factors. For instance, if
memory is organized in pages, the data to be swapped out is likely to be
discontiguous in physical memory. The kernel must gather the page addresses of
data to be swapped out, and the disk driver may use the collection of page
addresses 10 set up the 1/0. The swapper waits for cach 1/O operation to complete
before swapping out other data.

It is not necessary that the kernel write the entire virtual address space of a
process to a swap device. Instead, it copies the physical memory assigned to a
process to the allocated space on the swap device, ignoring unassigned virtual
addresses. When the kernel swaps the process back into memory, it knows the
virtual address map of the process, so it can reassign the process to the correct
virwal addresses. The kernel climinates an extra copy from a data buffer to
physical memory by reading the data into the physical memory locations that were
previously set up to conform t0 the virtual address locations.
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algorithm brelsc
input:  locked buffer
output: none
(
wakeup all procs: event, waiting for any buffer to become frec;
wakeup all procs: event, waiting for this buffer (o become frec;
raise processor execution level to block interrupts:
i (buffer contents valid and buffer not old)
enqueue buffer at end of free list
else
enqueue buffer at beginning of frec lst
lower processor execution level to allow interrupts;
unlock(buffer);

Figure 3.6. Algorithm for Releasing a Buffer

Before continuing to the other scenarios, let us consider what happens to :
buffer after it is allocated. The kernel may read data from the disk to the buffe
and manipulate it or write data to the buffer and possibly to the disk. The kerne
leaves the buffer marked busy; no other process can access it and change it
contents while it is busy, thus preserving the integrity of the data in the buffer
When the kernel finishes using the buffer, it releases the buffer according ta
algorithm brelse (Figure 3.6). It wakes up processes that had fallen asleep because
the buffer was busy and processes that had fallen aslecp because no buffers
remained on the free list. In both cases, release of a buffer means that the buffer i
available for use by the slecping processes, although the first process that gets the
buffer locks it and prevents the other processes from getting it (recall Section
22.24). The kernel places the buffer at the end of the free list, unless an 1/0
error occurred or unless it specifically marked the buffer “old,” as will be scen later
in this chapter; in the latter cases, it places the buffer at the beginning of the free
list. The buffer is now free for another process to claim it.

Just as the kernel invokes algorithm brelse when a process has no more need for
a buffer, it also invokes the algorithm when handling a disk interrupt to release
buffers used for asynchronous 1/0 t0 and from the disk, as will be seen in Section
3.4. The kernel raises the processor execution level to prevent disk interrupts while
manipulating the free list, thereby preventing corruption of the buffer pointers that
could result from a nested call 1o brelse. Similar bad cffects could happen if an
interrupt handler invoked brelse while a process was exceuting gerblk, so the kerncl
raises the processor exccution level at strategic places in gerblk, t0o. The exercises
explore these cases in greater detail.

In the second scenario in algorithm gerblk. the kernel searches the hash queue
that should contain the block but fails 10 find it there. Since the block cannot be
on another hash queue because it cannot “hash” elsewhere, it is not in the buffer





index-27_1.png
1 GENERAL OVERVIEW OF THE SYSTEM

style so that new programs can work with existing programs.
For example, the program grep searches a set of files (parameters 10 grep) for
n pattern:

grep main ac be cc

searches the three files ac, b.c, and c.c for lines containing the string “main” anc
prints the lines that it finds onto standard output. Sample output may be:

a.c: main(arge, argy)

c.c: /* here is the main loop in the program */

c.c: mainQ
The program we with the option —I counts the number of lines in the standard
input file. The command line

counts the number of lines in the files that contain the string “main™; the output
from grep is “piped” directly into the we command. For the previous sample
output from grep, the output from the piped command is

3
‘The use of pipes frequently makes it unnecessary to create temporary fles.

1.4 OPERATING SYSTEM SERVICES

Figure 1.1 depicts the kernel layer immediately below the layer of user application
programs. The kernel performs various primitive operations on behalf of user
processes to support the user interface described above. Among the services
provided by the kernel are

* Controlling the exceution of processes by allowing their creation, termination or
suspension, and communication

* Scheduling processcs fairly for execution on the CPU. Processes share the CPU
in a time-shared manner: the CPU® exccutes a process, the kernel suspends it
when its time quantum clapses, and the kernel schedules another process to
execute. The kernel later reschedules the suspended process

* Allocating main memory for an executing process. The kernel allows processes
10 share portions of their address space under certain conditions, but protects
the private address space of a process from outside tampering. 1f the system
runs low on free memory, the kernel frees memory by writing a process

5. Chapter 12 will consder muliprocessor systems; until then, assume a single processor model,
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akeup all processes siceping (event
semaphore value becomes 0);
continue;
)
feverse all semaphore operations already done
this system call (previous iterations):
if (Rags specify not (0 slecp)
return with error;
Sep (event semaphore value increases);
gotostart;  /* start loop from beginning */

else  /* semaphore operation is zero */

if (semaphore value non 0)
(
reverse all semaphore operations done
his system call;
if (Rags specify not 10 slecp)
return with rror;
sleep (event semaphore value == 0);
sotostart;  / restart loop */ |
)
)
) 7* for loop ends here */
/* semaphore operations all succeeded */
update time stamps, process ID's;
return value of last semaphore operated on before call succeeded;

]

Figure 11.15. Algorithm for Semaphore Operation (continucd)

the absolute value of the semaphore operation, the kernel puts the process to sleep
on the event that the value of the semaphore increases. Whenever a process slecps
in the middle of a semaphore operation, it sleeps at an interruptible priority; hence,
it wakes up on receipt of a signal.

Consider the program in Figure 11.14, and suppose a user executes it (a.0u)
three times in the following sequence:

aout &
acuta &
aoutb &

When run without any parameters, the process creates a semaphore set with two
clements and initializes their values t0 1. Then, it pauses and slceps until
awakened by a signal, when it removes the semaphore in cleanup. When executing
the program with parameter 'a’, the process (A) does four scparate semaphore
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33 SCENARIOS FOR RETRIEVAL OF A BUFFER
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99

freelist header

(b) Remove First Block from Free List, Assign to 18

Figure 3.7. Second Scenario for Buffer Allocation
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algorithm semop 7% semaphore operations */
inputs: (1) semaphore descriptor

(2) array of semaphore operations.

(3) number of clements in array |

eheck legality of semaphore descriptor;
start; read array of semaphore operations from user to kernel space;
check permissions for all semaphore operations;

for (each scmaphore operation in array)

if (semaphore operation is positive) |
{
add “operation” to semaphore value;
if (UNDO flag set on semaphore operation)
update process undo structure;
wakeup all processes sleeping (event semaphore valuc increases); |

elsc if (semaphore operation s negative )

if (“operation” + semaphore value >= 0)
{
add “operation” o semaphore value;
if (UNDO flag set)
update process undo structure;
if (semaphore value 0)
/* continued next page */

igure 11.15. Algorithm for Semaphore Operation

it is waiting occurs and then restarts the system call. Because the kernel saves the
semaphore operations in a global array, it reads the array from user space again if
it must restart the system call. Thus, operations are done atomically — either &l
at once or ot at all

The kernel changes the value of a semaphore according to the value of the
operation. If positive, it increments the value of the semaphore and awakens all
processes that are waiting for the value of the semaphore to increase. If the
semaphore operation is 0, the kernel checks the semaphore value: If 0, it continues
with the other operations in the array; otherwise, it increments the number of
processes asleep, waiting for the semaphore value to be 0, and goes to sleep. If the
semaphore operation is negative and its absolute value is less than or equal to the
value of the semaphore, the kernel adds the operation value (a negative pumber) 10
the semaphore value. If the result is 0, the kernel awakens all processes aslecp,
aiting for the semaphore value to be 0. If the value of the semaphore is ess thap
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Address  Units

1 10000

Figure 9.1. Initial Swap Map

Sigorithm malloc/* algorithm (0 allocate map space */
input: (1) map address  /* indicates which map (0 use */
(2) requested number of
output: address, if successful
0. otherwise
(

for (every map entry)

if (current map entry can fit requested units)
(
if (requested units == number of units in entry)
delete entry from mag
else
adjust start address of entr
return (original address of entry);

1
)

retrn(0);

Figure 9.2, Algorithm for Allocating Space from Maps

As the kernel allocates and frees resources, it updates the map so that it continues
to contain accurate information about free resources.

Figure 9.2 gives the algorithm malloc for allocating space from maps. The
kernel searches the map for the first entry that contains enough space to
accommodate the request. If the request consumes all the resources of the map
entry, the kernel removes the entry from the array and compresses the map (that
is, the map has one fewer entries). Otherwise, it adjusts the address and unit fields
of the entry according to the amount of resources allocated. Figure 9.3 shows the
sequence of swap map configurations after allocating 100 units, 50 units, then 100
units again. The kernel adjusts the swap map to show that the first 250 units have
been allocated, and that it now contains 9750 fre units starting at address 251.

When freeing resources, the kernel finds their proper position in the map by
address. Three cases are possible:
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11.3 NETWORK COMMUNICATIONS

Programs such as mail, remote file transfer, and remote login that wigh ;,
communicate with other machines have  historically used ad hoc methods y.
establish connections and t0 exchange data. For example, standard mail prograny,
save the text of a user's mail messages in a particular file, such as “/usr/mail/mjy.
for user “mjb". When a person sends mail to another user on the same machipe.
the mail program appends the mail to the addressee’s file, using lock fies ang
temporary files to preserve consistency. When a person reads mail, the moy
program opens the person's mail file and reads the messages. To send mail to 3
user on another machine, the mail program must ultimately find the appropriate
‘mail file on the other machine. Since it cannot manipulate files there direcly, 3
process on the other machine must act as an agent for the local mail process; hence
the local process needs a way to communicate with s remote agent across machine
boundaries. The local process is called the client of the remote server process.

Because the UNIX system creates new processes via the fork system call, the
server process must exist before the client process attempts to establish 3
connection. It would be inconsistent with the design of the system if the remote
kernel were 1o create a new process when a conncction request comes across the
network. Instead, some process, usually init, creates a server process that reads a
communications channel until it receives a request for service and then follows
some protocol to complete the setup of the connection. Client and server programs
typically choose the network media and protocols according to information in
application data bases, or the data may be hard-coded into the programs.

For example, the uucp program allows file transfer across a network and remote
execution of commands (see [Nowitz 80]). A client process queries a data base for
address and routing information (such as a telephone number), opens an auto-
dialer device, writes or ioctls the information on the open file descriptor, and calls
up the remote machine. The remote machine may have special lines dedicated for
use by uucps its init process spawns getty processes — the servers — to monitor the
lines and wait for connection notification. After the hardware connection is
established, the client process logs in, following the usual login protocol:  gerty
execs a special command interpreter, uucico, specified in the “/ete/passwd® e,
and the client process wries command sequences to the remote. machine, causing
the remote machine to execute processes on behalf of the local machine

Network communications have posed a problem for UNIX systems, because
messages must frequently include data and control portions. The control portion
‘may contain addressing information to specify the destination of a message
Addressing information is structured according 10 the type of network and protoccl
being used. Hence, processes need to know what type of network they are alking
1o, Eoing against the principle that users o not have to be aware of a file type,
because all devices look like files. Traditional methods for implementing network
gommunications consequently rely heavily on the ioet/ system call to specify control
information, but usage is not uniform across network types. This has the
unfortunate side effect that programs designed for one network may not be able to
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Figure 3.12. Race for a Locked Buffer

3.4 READING AND WRITING DISK BLOCKS

Now that the buffer allocation algorithm has been covered, the procedures for
reading and writing disk blocks should be easy to understand. To read a disk block
(Figure 3.13), a process uses algorithm gerblk to scarch for it in the buffer cache.
If it is in the cache, the kernel can return it immediately without physically reading
the block from the disk. If it is not in the cache, the kernel calls the disk driver to
“schedule” a read request and goes 1o slecp awaiting the event that the 1/0
H completes. The disk driver notifies the disk controller hardware that it wants to
i read data, and the disk controller later transmits the data to the buffer. Finally,
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of UNIX System V also support demand paging. The entire process does not haye
to reside in main memory to execute, and the kernel loads pages for a process og
demand when the process references the pages. The advantage of a demand paging
policy is that it permits greater flexibility in mapping the virtual address space of
process into the physical memory of @ machinc, usually allowing the size of
process to be greater than the amount of available physical memory and allowing
more processes to fit simultancously in main memory. The advantage of o
swapping policy is that it is casier to implement and results in less system overhead.
This chapter discusses the two memory management policies, swapping and paging

9.1 SWAPPING

There are three parts to the description of the swapping algorithm: managing
space on the swap device, swapping processes out of main memory, and swapping
processes into main memory.

9.1.1 Allocation of Swap Space

The swap device is a block device in a configurable section of a disk. Whereas the
kernel allocates space for files one block at a time, it allocates space on the swap
device in groups of contiguous blocks. Space allocated for files is used statically.
since it will exist for a long time, the allocation scheme is flexible to reduce the
amount of fragmentation and, hence, unallocatable space in the file system. But
the allocation of space on the swap device is transitory, depending on the pattern of
process scheduling. A process that resides on the swap device will cventually
migrate back to main memory, freeing the space it had occupied on the swap
device. Since speed is critical and the system can do 1/O faster in onc multiblock
operation than in several single block operations, the kernel allocates contiguous
space on the swap device without regard for fragmentation.

Because the allocation scheme for the swap device differs from the allocation
scheme for file systems, the data structures that catalog free space differ too. The
kernel maintains free space for file systems in a linked list of free blocks, accessible
from the fle system super block, but it maintains the free space for the swap deviee
in an in-core table, called a map. Maps, used for other resources besides the swap
device (some device drivers, for example), allow a first-fit allocation of contiguous
“blocks” of a resource.

A map is an array where each entry consists of an address of an allocatable
resource and the number of resource units available there; the kernel interprets the
address and units according to the type of map.  Initially, a map contains one entry
that indicates the address and the total number of resources. For instance, the
kernel treats each unit of the swap map as a group of disk blocks, and it treats the
address as a block offset from the beginning of the swap area. Figure 9.1
illustrates an initial swap map that consists of 10,000 blocks starting at address 1.
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Arg s declared as a union

union semunion (

int val;
struct semid_ds *semstat;  /* see appendix for definition */
unsigned short *array:

Jarg;

‘The kernel interprets arg based on the value of emd, similar to the way it interprets
ioctl commands (Chapter 10). The expected actions take place for the cmds that
retrieve or set control parameters (permissions and others), set one or all semaphore
values in a set, or read the semaphore values. The appendix gives the details for
cach command. For the remove command, IPC_RMID, the kernel finds all
processes that have undo structures for the semaphore and removes the appropriate
triples. Then, it reinitializes the semaphore data structure and wakes up all
processes sleeping until the occurence of some semaphore event: When the
processes resume execution, they find that the semaphore 1D is no longer valid and
return an error to the caller.

1124 General Comments

There are several similarities between the file system and the IPC mechanisms.
The “get” system calls are similar to the crear and open system calls, and the
“control” system calls contain an option to remove descriptors from the system,
similar to the unlink system call. But no operations are analogous to the file
system close system call. Thus, the kernel has no record of which processes can
access an IPC mechanism, and, indeed, processes can access an IPC mechanism if
they guess the correct ID and if access permissions are suitable, even though they
never did a “get” call. The kernel cannot clean up unused IPC structures
automatically, because it never knows when they are no longer nceded. Errant
processes can_thus leave unneeded and unused structures cluticring the system.
Although the kernel can save state information and data in the IPC structures after
the death of a process, it is better to use files for such purposes.

The IPC mechanisms introduce a new name space, keys, instead of the
traditional, all-pervasive files. It is difficult to extend the semantics of keys across a
network, because they may describe different objects on different machines: In
short, they were designed for a single-machine environment.  File names are more
amenable to a distributed environment as will be seen in Chapter 13. Use of keys
instead of file names also means that the IPC facilities are an cntity unto
themselves, uscful for special-purpose applications, but lacking the tool-building
capabilities inherent in pipes and files, for example. Much of their functionality
can be duplicated using other system facilities, 5o, esthetically, they should not be
in the kernel. However, they provide better performance for closely cooperating
application packages than standard file system facilities (sce the exercises).
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Figure 3.11. Fifth Scenario for Buffer Allocation

do not control the allocation of kernel buffers dircctly, so they cannot purposely
“hog” buffers. The kernel loses control over a buffer only when it waits for the
completion of 1/0 between the buffer and the disk. It is conceivable that a disk
drive is corrupt so that it cannot interrupt the CPU, preventing the kernel from
ever releasing the buffer. The disk driver must monitor the hardware for such
cases and return an error to the kernel for a bad disk job. In short, the kernel can
guarante that processes sleeping for a buffer will wake up eventually.

It is also possible to imagine cases where a process is starved out of accessing a
buffer. In the fourth scenario, for example, if several processes slcep while waiting
for a buffer to become frec, the kernel does not guarantee that they get a buffer in
the order that they requested onc. A process could slecp and wake up when a
buffer becomes free, only to go to sleep again because another process got control of
the buffer first. Theoretically, this could go on forever, but practically, it is not a
problem because of the many buffers that are typically configured in the system.

3. The mount system call is an exception, because it allocats a buffr until a laier wmount call. This
exception s not critcal, because the total mumber of buffers far exceeds. the number af actve
mounted file systems.





index-287_1.png
%1 SWAPPING s

Address  Units Address  Units
251 9750 101 50
251 9750
(@
()

Address Units

1 150

251 9750

(©

Figure 9.4. Frecing Swap Space
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Figure 9.5. Allocating Swap Space from the Second Entry in the Map

swap space starting at address 151 Although the 350 units were allocated
separately, there is no reason the kernel could not frec them at once. (It does not
do s for swap space, since requests for swap space are independent of each other.)
The kernel realizes that the freed resources fit neatly into the hole between the first
and second entries in the swap map and creates one entry for the former two (and
the freed resources).

‘Traditional implementations of the UNIX system use one swap device, but the
latest implementations of System V. allow multiple swap devices. The kernel
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The kernel structure consists of three parts: the socket layer, the protocol layer,
and the device layer (Figure 11.18). The socket layer provides the interfacy -+
between the system calls and the lower layers, the protocol layer contain, the
protocol modules used for communication (TCP and IP in the figure), and 1,
device layer contains the device drivers that control the network devices. Legal
combinations of protocols and drivers are specified when configuring the sysicnts
method that s not as fleible as pushing streams modules. - Processes commuriey
using the client-server model: a server process listens to a socker, one end point
2 two-way communications path, and client processes communicate to the sirvg:
process over another socket, the other end point of the communications path, whih
may be on another machine. The kernel maintains internal connections and rouey
data from client to server.

Sockets that share common communications properties, such as naming
conventions and protocol address formats, are grouped into domains. The 4.2 B3
system supports the “UNIX system domain” for processes communicating on one
machine and the “Internet domain” for processes communicating across a network
using the DARPA (Defense Advanced Research Project Agency) communications
protocols (see [Postel 80] and [Postel 811). Each socket has a type — a virtugl
circuit (stream socket in the Berkeley terminology) or datagram. A virwal circu
allows sequenced, reliable delivery of data. Datagrams do not guarantee sequenced,
reliable, or unduplicated delivery, but they are less expensive than virtual circuits,
because they do not require expensive setup operations; hence, they are useful for
some types of communication. The system contains a default protocol for every
legal domain-socket type combination. For example, the Transport Conneet
Protocal (TCP) provides virtual circuit service and the User Datagram Protoscl
(UDP) provides datagram service in the Internet domain.

The socket mechanism contains several system calls. The socker system call
establishes the end point of a communications link.

sd = socket(format, type, protocol);

Format specifies the communications domain (the UNIX system domain or the
Internet domain), 1ype indicates the type of communication over the socket (istusi
cireuit or datagram), and protocol indicates a particular protocol 1o contral the
ommunication.  Processes use the socket descriptor sd in other system calls. The
close system call closes sockets.

The bind system call associates a name with the socket descriptor

bind(sd, address, length);

S$d is the socket descriptor, and address points 10 a structure that specifies an
identifer specific o the communications domain and protocal specifed in xhe sovher
fyetem call. Length is the length of the address structure; without this parameter.
the kernel would not know how long the address is because it can vary across
domains and protocols. For exampl, an address in the UNIX system dorsain o s
fle name.. Server processes bind addresses 10 sockets and “advertise sheir mamscs
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Figure 9.3. Allocating Swap Space

1. The freed resources completely fill a hole in the map: they are contiguous to
the entries whose addresses would immediately precede them and follow them
in the map. In this case, the kernel combines the newly freed resources and
the existing (two) entries into one entry in the map.

2. The freed resources partially fill 2 hole in the map. If the address of the
freed resources are contiguous with the map entry that would immediately
precede them or with the entry that would immediately follow them (but not
both), the kernel adjusts the address and units fields of the appropriate entry
to account for the resources just freed. The number of entries in the map
remains the same,

3. The freed resources partially fill a hole but are not contiguous to any
resources in the map. The kernel creates a new entry for the map and inserts
it in the proper position.

Returning to the previous cxample, if the kernel frees 50 units of the swap
resource starting at address 101, the swap map contains a new entry for the freed
resources, since the returned resources are ot contiguous to existing cntries in the
map. If the kernel then frees 100 units of the swap resource starting at address 1.
it adjusts the first entry of the swap map since the freed resources arc contiguous (0
those in the first entry. Figure 9.4 shows the sequence of swap map configurations
corresponding to these events.

Suppose the kernel now requests 200 units of swap space. Because the first
entry in the swap map only contains 150 units, the kernel satisfies the request from
the second entry (sec Figure 9.5). Finally, suppose the kernel frecs 350 units of
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work for other networks.

There has been considerable effort to improve network interfaces for UNIX
systems. The streams implementation in the latest releases of System V. provides
an elegant mechanism for network support, because protocol modules can be
combined flexibly by pushing them onto open streams and their use is consistent at
user level. The next section briefly describes sockets, the BSD solution to the
problem

11.4 SOCKETS

The previous section showed how processes on different machines can communicate,
but the methods by which they establish communications are likely to differ,
depending on protocols and media. Furthermore, the methods may not allow
processes to communicate with other processes on the same machine, because they
assume the existence of a server process that sleeps in a driver open o read system
call. To provide common methods for interprocess communication and to allow use
of sophisticated network protocols, the BSD system provides a mechanism known as
sockets (see [Berkeley 831). This section briefly describes some user-level aspects
of sockets.

Client Process Server Process

Socket Layer | T Socket Layer
, H
1

TCP Té?

Protocol Layer 1 Protocol Layer
1P P
f f

i Ethernet Ethernet
Device Layer  “pperee Drernet Device Layer
Network

Figure 11.18. Sockets Model





index-67_1.png
54 ‘THE BUFFER CACHE

algorithm bread  /* block read /.
input: _file system block number
output: buffer containing data
{
get buffer for block (algorithm getbll);
if (buffer data valid)
return buffer;
initiate disk read;
sleeplevent disk read complete);
return(buffer);

]

Figure 3.13. Algorithm for Reading a Disk Block

the disk controller interrupts the processor when the 1/0 is complete, and the disk
interrupt handler awakens the slecping process; the contents of the disk block are
now in the buffer. The modules that requested the particular block now have the
data; when they no longer need the buffer they release it so that other processes can
access it

Chapter 5 shows how higher-level kernel modules (such as the file subsystem)
may anticipate the need for a second disk block when a process reads a file
sequentially. The modules request the second 1/0 asynchronously in the hope that
the data will be in memory when needed, improving performance. To do this, the
Kernel executes the block read-ahead algorithm breada (Figure 3.14): The kernel
checks if the frst block is in the cache and, if it s not there, invokes the disk driver
10 read that block. If the second block s not in the buffer cache, the kernel
instructs the disk driver to read it asynchronously. Then the process goes to sleep
awaiting the cvent that the 1/0 is complete on the first block. When it awakens, it
returns the buffer for the first block, and does not care when the 1/0 for the second
block completes. When the 1/0 for the second block does complete, the disk
controller interrupts the system; the interrupt handler recognizes that the 1/0 was
asynchronous and releases the buffer (algorithm brelse). If it would not release the
buffer, the buffer would remain locked and, therefore, inaccessible to all processes.
It is impossible to unlock the buffer beforchand, because 1/0 to the buffer was
active, and hence the buffer contents were not valid. Later, if the process wants to
read the second block, it should find it in the buffer cache, the 1/O having
completed in the meantime. If, at the beginning of breada, the first block was in
the buffer cache, the kernel immediately checks if the second block is in the cache
and proceeds as just described.

The algorithm for writing the contents of a buffer to a disk block is similar
(Figure 3.15). The kernel informs the disk driver that it has a buffer whose
contents should be output, and the disk driver schedules the block for I/0. If the
write s synchronous, the calling process goes 10 sleep awaiting 1/ completion and
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Similarly, it assigns higher priority 10 processes waiting 1o read terminal input than to
processes waiting 10 write terminal output. Justify both cases.

The algorithm for the clock interrupt handler recalculates process priorities and
reschedules processes in I-second intervals. Discuss an algorithm that dynamically
changes the interval depending on system load. Is the gain worth the added
complexity?

The Sixth Edition of the UNIX system uses the following formula to adjust the recent
CPU usage of a process:

decay(CPU) = max(threshold priority, CPU = 10);

and the Seventh Edition uses the formula:
decay(CPU) = 8 * CPU;

Both systems calculate process prioriy by the formula
priority = CPU/16 + (base level priority):

“Try the example in Figure 8.4 using these decay functions.
Repeat the example in Figure 8.4 with seven processes instead of three. Repeat the
‘example assuming there are 100 clock interrupts per second instead of 60. Comment.
Design a scheme such that the system puts a time limit on how long a process
executes, forcing it o exit i it exceeds the time limit. How should the user distinguish
such processes from processes that should run for ever? If the only requirement was
10 run such a scheme from the shell, what would have (o be done?

When a_process executes the wait system call and finds a zombie process, the kernel
adds the child’s CPU usage field 10 the parent's. What s the rationale for penalizing
the parent?

‘The command ice causes the subscquent command 10 be invoked with the given nice
value, as in

nice 6 nroff —mm big_memo > output

‘Write C code for the nice command.

Trace the scheduling of the processes in Figurc 8.4 given that the nice value of process
Als S or =5

Implement a system call, renice x y, where x is a process ID (of an active process)
and y is the value that its nice value should take.

Reconsider the example in Figure 8.6 for the fair share scheduler. Suppose the group
containing process A pays for 33% of the CPU and the group containing processes B
and C pays for 6% of the CPU time. What should the sequence of scheduled
processes look like? Generalize the computation of process. priorities so that it
normalizes the value of the group CPU usage field

Implement the command date: with no arguments, the command  prints the system’s
opinion of the current date; using a parameter, as in

date mmddhhmmyy

a (super) user can set the system's opinion of the current date to the corresponding
month, day, year, hour, and minute. For example,

date 0911205084
sets the system date to September 11, 1984, 8:50 pm.
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operations in the loop: It decrements the value of semaphore 0, decrements p,
value of semaphore I, exccutes the print statement, and then increments the vajy.
of semaphores 1 and 0. A process gocs 1o slecp if it attempts to decrement 1y
value of a semaphore that is 0, and hence the semaphore is considercd fockes
Because the semaphores were initialized to 1 and no other processes are using (he
semaphores, process A will never sleep, and the semaphore values will osclg
between 1 and 0. When executing the program with parameter 'b', the process (3)
decrements semaphores 0 and 1 in the opposite order from process A. Wher
processes A and B run simultancously, a situation could arise whereby process 4
has locked semaphore 0 and wants to lock semaphore 1, but process B has locked
semaphore 1 and wants to lock semaphore 0. Both processes sleep, unable to
continue. They are deadlocked and exit only on receipt of a signal.

To avoid such problems, processes can do multiple semaphore operations
simultaneously. Using the following structures and code in the last example would
give the desired effect.

struct sembuf psembufl2];

psembuf(O].sem_num = 0;
pembufl1].sem_num = 1;
psembuf(0].sem_op = —1;
psembul1]sem_op =

semop(semid, psembuf, 2);

Psembuf is an array of semaphore operations that decrements semaphores 0 and 1
simultaneously. I cither operation cannot succeed, the process sleeps until they
both succeed. For instance, if the value of semaphore 0 is 1 and the value of
semaphore 1 is 0, the kernel would leave the values intact until it can decrement
both values.

A process can set the IPC_NOWAIT flag in the semop system call; if the kernel
arrives at a situation where the process would slecp because it must wait for the
semaphore value to exceed a particular value or for it to have value 0, the kernel
rewns from the system call with an error condition. Thus, it is possible to
implement a conditional semaphore, whereby a process does not sleep if it cannot
do the atomic action,

Dangerous situations could occur if a process does a semaphore operation,
presumably locking some resource, and then exis without resetting the semaphore
value. Such situations can occur as the result of a programmer error or bocquse of
reccipt of a signal that causes sudden termination of a process. If, in Figure 11,14
again, the process receives a kill signal after decrementing the semaphore valucs, it
has no chance to reincrement them, because Kill signals cannot be caught. Hence,
other processes would find the semaphore locked cven though the process that had
locked it no longer exists. To avoid such problems, & process can st the
SEM_UNDO flag in the semop call; when it exits, the kernel reverses the effect of
gvery semaphore operation the process had done. To implement this feature, the
kernel maintains  table with one entry for every process in the system, Each eniry
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25K and 40K bytes, respectively, the kernel charges the process for 75K byey
(S0K/5 + 25K + 40K). For a paging system, it calculates the memory usage by
counting the number of valid pages in cach region. Thus, if the interrupted process
uses two private regions and shares another region with another process, the kerne|
charges it for the number of valid pages in the private regions plus half the number
of valid pages in the shared region. The kernel writes the information in an
accounting record when the process exits, and the information can be used for
customer billing.

835 Keeping Time

The kernel increments a timer variable at every clock interrupt, keeping time in
clock ticks from the time the system was booted. The kernel uses the timer
variable to return a time value for the time system call, and to calculate the total
(real time) exccution time of a process. The kernel saves the process start time in
its u area when a process is created in the fork system call, and it subtracts that
value from the current time when the process exits, giving the real execution time
of the process. Another timer variable, set by the stime system call and updated
once a second, keeps track of calendar time.

8.4 SUMMARY

‘This chapter has described the basic algorithm for process scheduling on the UNIX
system. The kernel associates a scheduling priority with every process in the
system, assigning the value when a process goes to sleep or, periodically, in the
clock interrupt handler. The priority assigned when a process goes to sleep is &
fixed value, dependent on the kernel algorithm the process was executing. The
priority assigned in the clock handler (o when a process returns from kernel mode
to user mode) depends on how much time the process has recently used the CPU:
It receives a lower priority if it has used the CPU recently and a higher priority.
otherwise. The nice system call allows a process to adjust one parameter used it
computation of process priority.

This chapter also described system calls dealing with time: setting and
retrieving kernel time, retrieving process exccution times, and setting process alarm
signals.  Finally, it described the functions of the clock interrupt handler, which
keeps track of system time, manages the callout table, gathers statistics, and
arranges for invocation of the process scheduler, process swapper, and page stealer.
The swapper and page stealer are the topics of the next chapier.

8.5 EXERCISES

1. In assigning priorities when a process goes (0 sleep, the kernel assigns a higher priorty
10 8 process waiting for & locked inode than (o a process waitng for a locked bufter.
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excautes by following a strict sequence of instructions that is self-contained and
does not jump to that of another process; it reads and writes its data and stack
scctions, but it cannot read or write the data and stack of other processes.
Processes communicate with other processes and with the rest of the world via
system calls.

In practical terms, a process on a UNIX system is the entity that is created by
the fork system call. Every process except process 0 is created when another
process exceutes the fork system call. The process that invoked the fork system
call is the parent process, and the newly created process is the child process. Every
process has one parent process, but & process can have many child processes. The
kernel identifies cach process by its process number, called the process 1D (PID).
Process 0 is a special process that is created “by hand” when the system boots;
after forking a child process (process 1), process 0 becomes the swapper process.
Process 1, known as init, is the ancestor of every other process in the system and
enjoys a special relationship with them, as explained in Chapter 7.

A user compiles the source code of a program to create an executable file, which
consists of several pars:

« a set of “headers” that describe the attributes of the fle,

« the program text,

« a machine language representation of data that has initial values when the
program starts exccution, and an indication of how much space the kernel
should allocate for uninitialized data, called bss? (the kernel initializes it to 0 at
run time),

« other sections, such as symbol table information.

For the program in Figure 1.3, the text of the executable file is the generated code
for the functions main and copy, the initialized data is the variable version (put
into the program just so that it should have some initialized data), and the
uninitialized data is the array buffer. System V versions of the C compiler create a
separate text section by default but support an option that allows inclusion of
program instructions in the data section, used in older versions of the system.

‘The kernel loads an executable file into memory during an exec system call, and
the loaded process consists of at least three parts, called regions: text, data, and
the stack. The text and data regions correspond 1o the text and data-bs sections of
the exccutable file, but the stack region is automatically created and its size is
dynamically adjusted by the kernel at run time. The stack consists of logical stack
frames that are pushed when calling a function and popped when returni
special register called the stack pointer indicates the current stack depth. A stack

2 The e b comes from a ssmbly ucdorperaton o e 80 7090 macine, whichsod o
“block started by symbol.” -
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cache. So the kernel removes the first buffer from the free list instead; that buffer
had been allocated to another disk block and is also on a hash queue. If the buffer
has not been marked for a delayed write (as will be described later), the kernel
marks the buffer busy, removes it from the hash queue where it currently resides,
ns the buffer header's device and block number to that of the disk block for
which the process is searching, and places the buffer on the correct hash queue.
The kernel uses the buffer but has no record that the buffer formerly contained
data for another disk block. A process searching for the old disk block will not find
it in the pool and will have to allocate a new buffer for it from the free list, exactly
as outlined here. When the kemnel finishes with the buffer, it releases it as
described above. In Figure 3.7, for example, the kernel scarches for block 18 but
does ot find it on the hash queue marked “blkno 2 mod 4." It therefore removes
the first buffer from the free list (block 3), assigns it to block 18, and places it on
the appropriate hash queue.

In the third scenario in algorithm gerbIk. the kernel also has to allocate a buffer
from the free list. However, it discovers that the buffer it removes from the free
list has been marked for “delayed write,” 50 it must write the contents of the buffer
to disk before using the buffer. The kernel starts an asynchronous write to disk and
tries to allocate another buffer from the free list. When the asynchronous write
completes, the kernel releases the buffer and places it at the head of the free st
The buffer had started at the end of the free list and had traveled to the head of
the frec list. If, after the asynchronous write, the kernel were to place the buffer at
the end of the frec lst, the buffer would get a free trip through the frec list,
working against the least recently used algorithm. For example, in Figure 38, the
kernel cannot find block 18, but when it attempts t0 allocate the first two buffers
(one at a time) on the free list, it finds them marked for delayed write. The kernel
removes them from the free list, starts write operations to disk for the blocks, and
allocates the third buffer on the free list, block 4. It reassigns the buffer’s device
and block number fields appropriately and places the buffer, now marked block 18,
on its new hash queue.

In the fourth scenario (Figure 3.9), the kernel, acting for process A, cannot find
the disk block on its hash queue, 50 it attempts to allocate a new buffer from the
free list, as in the sccond scenario. However, no buffers are available on the free
list, 5o process A goes to sleep until another process exceutes algorithm brelse,
frecing a buffer. When the kernel schedules process A, it must search the hash
queue again for the block. It cannot allocate a buffer immediately from the free
list, because it is possible that several processes were waiting for a free buffer and
that one of them allocated a newly freed buffer for the target block sought by
process A Thus, searching for the block again insures that only one buffer
contains the disk block. Figure 3.10 depicts the contention between two processes
for a free buffer.

The final scenario (Figure 3.11) is complicated, because it involves complex
relationships between several processes. Suppose the kernel, acting for process A,
searches for a disk block and allocates a buffer but goes to sleep before freeing the
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The CPU scheduling algorithm described in the last chapter is strongly influenced
by memory management policies. At least part of a process must be contained in
primary memory to run; the CPU cannot execute a process that exists entircly in
secondary memory. However, primary memory is a precious resource that
frequently cannot contain all active processes in the system. For instance, if a
system contains 8 megabytes of primary memory, nine I-megabyte processes will
not fit there simultancously. The memory management subsystem decides which
processes should reside (at least partially) in main memory, and manages the parts
of the virtual address space of a process that are not core resident. It monitors the
amount of available primary memory and may periodically writc processes to a
secondary memory device called the swap device to provide more space in primary
memory.” At a later time, the kernel reads the data from the swap device back to
main memory.

Historically, UNIX systems transferred entire processes between primary
memory and the swap device, but did not transfer parts of a process independently,
except for shared text. Such a memory management policy is called swapping. It
made sense to implement such a policy on the PDP 11, where the maximum
process size was 64K bytes. For this policy, the size of a process is bounded by the
amount of physical memory available on a system. The BSD system (release 4.0)
was the first major implementation of a demand paging policy, transferring
memory pages instead of processes to and from a secondary device; recent releases

m
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semaphore id | | semid semaphore id | | semid | semid
jsemaphore num| o emaphore num| o 1
adjustment 1 adjustment R
(@) After first operation (®) After second operation

semaphore id | | semid

emaphore num| | 0 empty
adjustment 1
(©) After third operation (@ After fourth operation

Figure 11.17. Sequence of Undo Structures

the process increments a semaphore value, because the adjustment value of the
undo structure is 0. Figure 11.17 shows the sequence when invoking the program
with parameter "a’.  After the first operation, the process has one triple for semid
with semaphore number 0 and adjustment value 1, and after the second operation,
it has a second triple with semaphore number 1 and adjustment value 1. If the
process were o exit suddenly now, the kernel would go through the triples and add
the value 1 1o cach semaphore, restoring their values 10 0. In the regular case, the
kernel decrements the adjustment value of semaphore 1 during the third operation.
corresponding to the increment of the semaphore value, and it removes the triple,
because its adjustment value is 0. After the fourth operation, the process has 1o
more triples, because the adjustment values would all be 0,

The array operations on semaphores allow processes to avoid deadlock problems,
as illustrated above, but they are complicated, and most applications do not nced
their full power. Applications that require use of multiple semaphores should deal
with deadlock conditions at user level, and the kernel should not contain such
complicated system calls.

The semet! system call contains a myriad of control operations for semaphores:

semetl(id, number, cmd, arg);
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Process A Process B

Cannot find block b
on hash queue

No buffers on free list

Sleep

Cannot find block b
on hash queuc

No buffers on free list

Sleep.

Somebody frees a buffer: brelse

Takes buffer from free list

Assign to block b

Time

Figure 3.10. Race for Free Buffer

In the end, process B will find its block, possibly allocating a new buffer from
the frec list as in the second scenario. In Figure 3.1, for example, a process
searching for block 99 finds it on its hash queue, but the block is marked busy.
The process sleeps until the block becomes free and then restarts the algorithm
from the beginning. Figure 3.12 depicts the contention for a locked buffer.

The algorithm for buffer allocation must be safe; processes must not slecp
forever, and they must eventually get a buffer. The kernel guarantees that all
processes waiting for buffers will wake up, because it allocates buffers during the
execution of system calls and frees them before returning.’ Processes in user mode
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PROCESS SCHEDULING AND TIME

Programs can use a uscr-level sleep function
seeplseconds);

to suspend execution for the indicated number of seconds. Implement the function
using the alarm and pause system calls. What should happen if the process had called
alarm before calling sleep? Consider two possibiltics: that the previous alarm call
would expire while the process was siceping, and that it would expire after the sleep
completed.

Refering to the last problem, the kernel could do a context switch between the alarm
and pause calls in the sleep function, and the process could receive the alarm signal
before it call pause. What would happen? How can this race condition be fxed?
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Figure 11.16. Undo Structures for Semaphores

points 10 2 set of undo structures, one for each semaphore used by the process
(Figure 11.16). Each undo structure is an array of triples consisting of a
semaphore ID, a semaphore number in the set identified by ID, and an adjustment
value.

The kernel allocates undo structures dynamically when a process executes its
first semop system call with the SEM_UNDO flag set. On subsequent semop
system calls with the SEM_UNDO flag set, the kernel searches the process undo
structures for one with the same semaphore ID and number as the semop
operation: If it finds onc, it subtracts the value of the semaphore operation from
the adjustment value. Thus, the undo structure contains a negated summation of
all semaphore operations the process had done on the semaphore for which the
SEM_UNDO flag was set. If no undo structure for the scmaphore exists, the
kernel creates one, sorting a list of structures by semaphorc ID and number. If an
adjustment value drops 10 0, the kernel removes the undo structure. When a
process exits, the kernel calls @ special routine that gocs through the undo
structures associated with the process and does the specified action on the indicated
semaphore.

Referring back to Figure 11.14, the kernel creates an undo structure every time
the process decrements the semaphore value and removes the structure every time
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Search for Block 18, Empty Free List

Figure 3.9. Fourth Scenario for Allocating Buffer

buffer. For example, if process A attempts 10 read a disk block and allocates a
buffer as in scenario 2, then it will sleep while it waits for the 1/0 transmission
from disk to complete. While process A sleeps, suppose the kernel schedules @
second process, B, which tries to access the disk block whose buffer was just locked
by process A. Process B (going through scenario 5) will find the locked block on
the hash queue. Since it is illegal to use a locked buffer and it is illegal to allocate
a second buffer for a disk block, process B marks the buffer “in demand” and then
slecps and waits for process A to relcase the buffer

Process A will eventually release the buffer and notice that the buffer is in
demand. It awakens all processes slecping on the event “the buffer becomes free,"”
including process B. When the kernel again schedules process B, process B must
verify that the buffer is frec. Another process, C, may have been waiting for the
same buffer, and the kernel may have scheduled C to run before process B; process
C may have gone 1o slecp leaving the buffer locked. Hence, process B must check
that the block is indeed frec.

Process B must also verify that the buffer contains the disk block that it
originally requested, because process C may have allocated the buffer to another
block, as in scenario 2. When process B executes, it may find that it had been
waiting for the wrong buffer, 50 it must search for the block again: If it were to
allocate a buffer automatically from the free list, it would miss the possibility that
another process just allocated a buffer for the block.
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elsc if Gargh{1100]
{

frst = 0;
second =

semid = semget (SEMKEY, 2, 0777);
psembulsem_op = —1
prembutsem_fig = SEM_UNDO;
vsembuf sem _op = 1;
vsembufsem_fig = SEM_UNDO;

for (count = 0; 5 count++)

psembuf sem_num = first;
semop(semid, &psembuf, 1);
psembuf.sem num = second;

semop(semid, &psembuf, 1);

printf Cproc %d count %d\n’, getpid), count);
vsembu. sem_mum = second

semop(semid, &vsembu,
vsembuf sem_num = first;
semop(semid, &vsembut, 1);

1

cleanup()

semetl(semid, 2, IPC_RMID, 0);
exit0;

Figure 11.14. Locking and Unlocking Operations (continued)

The kernel reads the array of semaphore operations, oplist, from the user
address space and verifies that the semaphore numbers are legal and that the
process has the necessary permissions to read or change the semaphores (Figure
T115).  If permission is not allowed, the system call fails. If the kernel must sleep
as it does the list of operations, it restores the semaphores it has already operated
0n 10 their values at the start of the system call; it sleeps until the event for which
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passing scheme at user level with the file system, messages provide applications
with a more efficient way to transfer data between processes.

A process can query the status of a message descriptor, st its status, and
remove a message descriptor with the msgerl system call. The syntax of the call is

msgetl(id, cmd, mstatbuf)

where id identifies the message descriptor, cmd specifies the type of command, and
mstatbuf is the address of a user data structure that will contain control parameters
or the results of a query. The implementation of the system call is straightforward;
the appendix specifies the parameters in detail

Returning to the server example in Figure 11.8, the process catches signals and
calls the function cleanup to remove the message queue from the system. If it did
not catch signals or if it reccives a SIGKILL signal (which cannot be caught), the
message queue would remain in the system even though no processes refer 1o it
Subscquent attempts to create (exclusively) a new message queue for the given key
would fail until it was removed

1122 Shared Memory

Processes can communicate directly with cach other by sharing parts of their
virtual address space and then reading and writing the data stored in the shared
memory. The system calls for manipulating shared memory are similar to the
system calls for messages. The shmget system call creates a new region of shared
memory or returns an existing onc, the shmat system call logically attaches a
region 10 the virtual address space of a process, the shmdt system call detaches a
region from the virtual address space of a process, and the shmctl system call
manipulates various parameters associated with the shared memory. Processes read
and write shared memory using the same machine instructions they use to read and
write regular memory. ~ After attaching shared memory, it becomes part of the
virtual address space of a process, accessible in the same way other virtual
addresses are; no system calls are needed to access data in shared memory.
The syntax of the shmget system call is

shmid = shmget(key, size, flag);

where size is the number of bytes in the region. The kernel searches the shared
memory table for the given key: if it finds an entry and the permission modes are
acceptable, it returns the descriptor for the entry. If it does not find an entry and
the user had set the IPC_CREAT flag to create a new region, the kernel verifies
that the size is between system-wide minimum and maximum values and then
allocates a region data structure using algorithm allocreg (Section 6.5.2). The
kernel saves the permission modes, size, and a pointer to the region table entry in
the shared memory table (Figure 11.9) and sets a flag there to indicate that no
memory is associated with the region. It allocates memory (page tables and 5o on)
for the region only when a process attaches the region to its address space. The
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EXERCISES ¥

EXERCISES
Consider the following sequence of commands:

grep main a.c b c.c > grepout &

we =1 < grepout &

m grepout &
The ampersand (*&") at the end of each command line informs the shell to run the
‘command in the background, and it can execute each command line in parallel. Why
is this not equivalent to the following command line?

8rep main a.c b c.c|we =1

Consider the sample kernel code in Figure 27 Suppose a context switch happens
when the code reaches the comment, and suppose another process removes a buffer
from the linked list by executing the following code:

remove(gp)
struct queue *qp:
{

qp=>forp=>backp = qp—>backp;

ap—>backp—>forp = qp—> forp;

qp=>forp = qp=>backp = NULL;
)

Consider three cases:

— The process removes the structure bp! from the linked list

— The process removes the structure that currently follows bp! on the linked list.

= The process removes the structure that originally followed p! before bp was half
placed on the linked lst.

‘What i the status of the linked list after the original process completes cxecuting the

code after the comment?

What should happen if the kernel attempts to awaken all processes slecping on an

‘event, but no processcs arc asleep on the cvent at the time of the wakeup?
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Hinclude <sys/typesh>
include  <sys/ipe.h>
#include  <sys/shm.h>

#define SHMKEY 75
#define K 1024
int shmi

extern char *shmat();
shmid = shmget (SHMKEY, 64 * K, 0777);

addr = shmat(shmid, 0, 0);
pint = Gint *) addr;

while (*pint == 0)

for =0 i <256, i44)
PrintfCTd\n®, *pint++);
)

Figure 11.12. Sharing Memory Between Processes

rebooted.

Dijkstra published the Dekker algorithm that describes an implementation of
semaphores, integer-valued objects that have two atomic operations defined for
them: P and ¥ Gee [Dijkstra 681). The P operation decrements the value of &
semaphore if its value is greater than 0, and the ¥ operation increments its value,
Because the operations are atomic, at most one P or ¥ operation can succeed on 5
semaphore at any time. The semaphore system calls in System V. are
generalization of Dijkstra’s P and ¥ operations, in that several operations can be
done simultancously and the increment and decrement operations can be by valucs
greater than 1. The kernel does all the operations atomically; no other processes
adjust the semaphore values unil all operations are done. If the kernel cannor do
all the operations, it does not do any; the process sleeps until it can de all the
operations, as will be explained.

A semaphore in UNIX System V consists of the followis

elements:

* The value of the semaphore,
* The process ID of the last process to manipulate the semaphore,
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logical device number and block number that they wish to access when they
attempt to retrieve a block. For example, if a process wants to read data from a
file, the kernel determines which file system contains the file and which block in the
file system contains the data, as will be scen in Chapter 4. When about to read
data from a particular disk block, the kernel checks whether the block is in the
buffer pool and, if it is not there, assigns it a free buffer. When about to write data
to  particular disk block, the kernel checks whether the block is in the buffer pool,
and if not, assigns a free buffer for that block. The algorithms for reading and
writing disk blocks use the algorithm getblk (Figure 3.4) to allocate buffers from
the pool.

This section describes five typical scenarios the kernel may follow in gerblk to
allocate a buffer for a disk block.

I The kernel finds the block on its hash queue, and its buffer is free.

The kernel cannot find the block on the hash queue, 5o it allocates a buffer
from the free list.

3. The kernel cannot find the block on the hash queuc and, in attempting to
allocate a buffer from the free list (as in scenario 2), finds a buffer on the
free list that has been marked “delayed write.” The kernel must write the
“delayed write” buffer to disk and allocate another buffer.

4. The kernel cannot find the block on the hash queue, and the free list of
buffers is empty.

5. The kernel finds the block on the hash queue, but its buffer is currently busy.

Let us now discuss cach scenario in greater detail.

When searching for a block in the buffer pool by its device-block number
combination, the kernel finds the hash queue that should contain the block. It
searches the hash queue, following the linked list of buffers until (in the first
scenario) it finds the buffer whose device and block number match those for which
it is searching. The kernel checks that the buffer is free and, if so, marks the
buffer “busy” so that other processes? cannot access it. The kernel then removes
the buffer from the free list, because a buffer cannot be both busy and on the free
list. If other processes attempt to access the block while the buffer is busy, they
slecp until the buffer s released, as will be seen. Figure 3.5 depicts the first
scenario, where the kernel scarches for block 4 on the hash queue marked “blkno 0
mod 4" Finding the buffer, the kernel removes it from the free list, leaving blocks
S and 28 adjacent on the free list.

2. Recall from the last chapter that all kernel operations e done i the contexi of a process that is
‘xccuting in kernel mode. Thus, the term “other processes” means that they are also cxecuting
kernel mode. This tcrm will be uied when describing the interaction of several processes executng.
kernel modes if there is no interprocess interaction, the term “kernel” will b uscd
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Hinclude  <sys/typesh>
dinclude  <sys/ipeh>
#include  <sys/shmh>
#define SHMKEY 75

#defne K 1026
int shmid;
main()
(
int i, *pint;

char *addrl, *addr2;
extern char *shmat(;
extern cleanupO;

for =0 i <20 i44)
signalG, cleanup);

shmid = shmgct(SHMKEY, 128 * K, 0777 | IPC_CREAT);

addrl = shmat(shmid, 0, 0);

addr2 = shmat(shmid, 0, 0);

[(“addr] Ox%x addr2 Ox%x\n”, addrl, addr2);

pint = Gnt *) addrl;

for (=0 i <256 i++)

*pint+
pint = (int *) addrl;
“pint = 256;

pint = Gnt *) add
for (= 0;

“pinc-+);

cleanupO
{

shmtl(shmid, IPC_RMID, 0);
exitO;

Figure 11.11. Attaching Shared Memory Twice to a Process

m
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Figure 3.3. Buffers on the Hash Queues

Figure 3.3 shows buffers on their hash queues: the headers of the hash queues
are on the lef side of the figure, and the squares on cach row are buffers on & hash
dupue. Thus. squares marked 28, 4, and 64 represent buffers on the hash queue for
blkno 0 mod 4" (block number 0 modulo 4). The dotted lines between the buffers
fepresent the forward and back pointers for the hash queuc; for simpliciy, later
figures in this chapter will not show these pointers, but their existance, fy impl
Similarly, the gure identifies blocks only by their block number, and it uses 3ty
function dependent only on 4 block number; howeer, implementations ue the
number, too.

cach buffer always exists on a hash queue, but there is no significance 1o its
e comon the queuc. As stated above, no two buffers may simultancously sontaiy
the contents of the same disk block; thercfore, every disk block in ho. s pool
Dulfer ooy, nd only one hash queuc and only once on that queue, Howevcy. o

2 oy searches the hash queue if it is looking for a particular bulfer. yod - removes
& buffer from the free ls if it is looking for any free buffer. The ooy scction will
show how the kernel finds particular disk blocks in the buffer cache, and how it
Thanipulates buffers on the hash queues and on the free list. Ty summarize, a
Duffer is always on @ hash queue, but it may or may ot be on the frge 1o

3.3 SCENARIOS FOR RETRIEVAL OF A BUFFER

s scen in Figure 2.1, high-level kernel algorithms in the file subsystem invoke the
algorithms for managing the buffer cache. The high-lovel algorithms determine the
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Hinclude  <sys/typesh>
#include  <sys/ipeh>
#include  <sys/semh>

#deine SEMKEY 75
int semid;

unsigned int count;

1 definition of sembuf in file sys/sem.h
* struct sembut (

* unsigned shortsem_num;

* short sem o

struct sembuf psembuf, vsembuf; 7# ops for Pand V */

main(arge, arge)
int arge;
char argv);

int i, first, second;
short initarray[2), outarrayl2);
extern cleanup(;

if Grge == 1)

for G

0§ <20, i)

signalG, cleanup);
semid = semgetSEMKEY, 2, 0777 | IPC_CREAT);
initarray(0] = initarray[1]
semetl(semid, 2, SETALL, initarray);
semetl(semid, 2, GETALL, outarray);
printf Csem init vals %d %d\n", outarrayl0), outarrayl1]);
pauseQ; /* slecp until awakened by a signal */

)

/* continued next page */

Figure 11.14. Locking and Unlocking Operations

of the last semaphore operated on in the set before the operation was done, The
format of each element of oplist

¢ the semaphore number identifying the semaphore array entry being operated on,
* the operation,
o flags.
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o The number of processes waiting for the semaphore value to increase,
« The number of processes waiting for the semaphore value to equal 0.
The semaphore system calls are semget 1o create and gain access to a set of
semaphores, semet! to do various control operations on the set, and semop to
manipulate the values of semaphores.

Semaphore
b Semaphore Arrays
I o o 2 B A
——{0 112
]
{01112

Figure 11.13. Data Structures for Semaphores

The semget system call creates an array of semaphores:
id = semget (key, count, flag);

where key, flag and id are similar to those parameters for messages and shared
memory. The kernel allocates an entry that points to an array of semaphore
structures with count elements (Figure 11.13). The entry also specifies the number
of semaphores in the array, the time of the last semop call, and the time of the last
semctl call. For example, the semger system call in Figure 11.14 creates a
semaphore with two elements.

Processes manipulate semaphores with the semop system call:

oldval = semop(id, oplist, count);

1d s the descriptor returned by semget, oplist is a pointer to an array of semaphore
operations, and count s the size of the array. The return value, oldval, is the value
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kernel also sets a flag on the region table enry to indicate that the region shoyg
ot be freed when the last process attached to it exifs. Thus, data in shareg
s intact even though no processes include it as part of their viuug

Shared Process Table -
Memory Region Per Process
Table’ ‘Table Region Table
J Gatter
shmat)

Figure 11.9. Data Structures for Shared Memory

A process attaches a shared memory region to its virtual address space with the
shmat system call

virtaddr = shmat(id, addr, flags);

1d, returned by a previous shmget system call, identifies the shared memory region,
addr i the virtual address where the user wants to attach the shared memory, and
Slags specify whether the region is read-only and whether the kernel should round
Off the user-specified address. The return value, virtaddr, is the virtual address
Where the kernel attached the region, not necessarily the value requested by the
process.

When excuting the shmat system call, the kernel verifies that the process has
the necessary permissions to access the region (Figure 11.10). It examines the
address the user specifies: If 0, the kernel chooscs a convenient virtual address.

i
|
|
i
|
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which contains the data in recently used disk blocks.

Figure 2.1 showed the position of the buffer cache module in the kernel
architecture between the file subsystem and (block) device drivers. When reading
data from the disk, the kernel atiempis 1o read from the buffer cache. If the data
is already in the cache, the kernel does not have to read from the disk. If the data
is not in the cache, the kernel reads the data from the disk and caches it, using an
algorithm that tries to save as much good data in the cache as possible. Similarly,
data being written to disk is cached so that it will be there if the kernel later tries
to read it. The kemel also attempts to minimize the frequency of disk write
operations by determining whether the data must really be stored on disk or
whether it is transient data that will soon be overwritten. Higher-level kernel
algorithms instruct the buffer cache module 1o pre-cache data or to delay-write
data to maximize the caching effect. This chapter describes the algorithms the
kernel uses to manipulate buffers in the buffer cache

3.1 BUFFER HEADERS

During system initialization, the kernel allocates space for a number of buffers,
configurable according to memory size and system performance constraints. A
buffer consists of two parts: a memory array that contains data from the disk and
a buffer header that identifies the buffer. Because there is a one to one mapping of
buffer headers to data arrays, the ensuing text will frequently refer to both parts as
a “buffer,” and the context should make clear which part is being discussed.

The data in a buffer corresponds to the data in a logical disk block on a file
system, and the kernel identifies the buffer contents by examining identifier fields in
the buffer header. The buffer is the in-memory copy of the disk block; the contents
of the disk block map into the buffer, but the mapping is temporary until the kernel
decides to map another disk block into the buffer. A disk block can never map into
more than one buffer at a time. If two buffers were to contain data for one disk
block, the kernel would not know which buffer contained the current data and could
write incorrect data back to disk. For example, suppose a disk block maps into two
buffers, A and B. If the kernel writes data first into buffer A and then into buffer
B, the disk block should contain the contents of buffer B if all write operations
completely fill the buffer. However, if the kernel reverses the order when it copies
the buffers to disk, the disk block will contain incorrect data.

The buffer header (Figure 3.1) contains a device number field and a block
number field that specify the file system and block number of the data on disk and
uniquely identify the buffer. The device number is the logical file system number

1. The buffer cache is  software structure that should not be confused with hardware caches that speed.
memory reerences.
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because the kernel can transfer more data per disk operation and therefore make
fewer time-consuming operations. For example, reading 1K bytes from a disk in
one read operation is faster than reading 512 bytes twice. However, if a logical
block is 100 large, effective storage capacity may drop, as will be shown in Chapter
5. For simplicity, this book will use the term “block” to mean a logical block, and
it will assume that a logical block contains 1K bytes of data unless explicily stated

otherwise.

e inode list data blocks

Figure 2.3. File System Layout

A file system has the following structure (Figure 2.3).

* The boot block occupies the beginning of a file system, typically the first sector,
and may contain the bootstrap code that is read into the machine to boo, or
initialize, the operating system. Although only one boot block is needed to boot
the system, every file system has a (possibly empty) boot block.

© The super block describes the state of a file system — how large it is, how
many files it can store, where to find free space on the fle system, and other
information.

® The inode list is a list of inodes that follows the super block in the file system.
Administrators specify the size of the inode list when configuring a file system.
The kernel references inodes by index into the inode list. One inode is the oot
inode of the file system: it is the inode by which the directory structure of the
file system is accessible after execution of the mount system call (Section 5.14)

* The data blocks start at the end of the inode list and contain file data and
administrative data. An allocated data block can belong to one and only one
file in the file system

222 Processes

This section cxamines the process subsystem more closely. It describes the
structure of a_process and some process data structures used for memory
management. Then it gives a preliminary view of the process state diagram and
considers various issues involved in some state transitions.

A process is the execution of a program and consists of a pattern of bytes that
the CPU interprets as machine instructions (called “text"), data, and stack. Many
processes appear 1o exccute simultancously as the kernel schedules them for
exccution, and several processes may be instances of one program. A process
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s mentioned in the previous chapter, the Kernel maintains files on mass storage
devices such as disks, and it allows processes to store new information or to ecei)
previously stored information. When a process wants to access data from a file. the
kernel brings the data into main memory where the process can cxamine it, alter it
and request that the data be saved in the fle system again. For cxample, recall the
copy program in Figure 1.3: The kernel reads the data from the first file intg
hemory, and then writes the data into the sccond file. Just as it must bring flo
data into memory, the kernel must also bring suxiliary data into memory 1o
manipulate it. For instance, the super block of a file system describes the free
thace available on the file system, amon other things. The kernel reads the Super
Block into memory to access its data and writes it back to the fle system wher ¢
yishes to save its data. Similarly, the inode describes the layout of § e, Th
kernel reads an inode into memory when it wants to access data in e and i
the inode back 1o the file system when it wants to update the flo layout. It
manipulates this ausiliary data without the explicit knowledge or request of running
processes.

The kernel could read and write directly 10 and from the disk for all e system
Socesscs, but system response time and throughput would be poor because of the
slow disk ransfer rate. The kernel therefore atiempts o minimipe he frequency of
disk access by keeping a pool of internal data buflers, called the buffer cache,!
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identifier may have been removed. The kernel searches for the process region
attached at the indicated virtual address and detaches it from the process address
space, using algorithm detachreg (Section 6.5.7). Because the region tables have
no back pointers to the shared memory table, the kernel sarches the shared
memory table for the entry that points to the region and adjusts the field for the
time the region was last detached.

Consider the program in Figure 11.11: A process creates a 128K-byte shared
memory region and attaches it twice t0 its address space at different virtual
ddresses. It writes data in the “first” shared memory and reads it from the
second” shared memory. Figure 11.12 shows another process attaching the same
region (it gets only 64K bytes, to show that cach process can attach different
amounts of a shared memory region); it waits until the first process writes a
nonzero value in the first word of the shared memory region and then reads the
shared memory. The first process pauses to give the second process a chance to
execute; when the first process catches a signal, it removes the shared memory
region.

PN process usesthe shmerl system call to query status and set parameters for the
shared memory region:

shmetl(id, cmd, shmstatbuf);

1d identifies the shared memory table entry, emd specifies the type of operation,
and shmstatbuf is the address of a user-level data structure that contains the status
information of the shared memory table entry when querying or setting its status.
The kernel treats the commands for querying status and changing owner and
permissions similar to the implementation for messages. When removing a shared
memory region, the kernel frees the entry and looks at the region table entry: If no
process has the region attached 1o its virtual address space, it frees the region table
entry and all its resources, using algorithm freereg (Section 6.5.6). If the region is
still attached to some processes (its reference count is greater than 0), the kernel
Just clears the flag that indicates the region should not be freed when the last
process detaches the region. Processes that are using the shared memory may
continue doing 5o, but no new processes can atach it. When all processes detach
the region, the kernel frees the region. This is analogous to the case in the file
system where a process can open a file and continue to access it after it is unlinked.

1123 Semaphores

The semaphore system calls allow processcs to synchronize exccution by doing a sct
of operations atomically on a set of semaphores. Before the implementation of
semaphores, a process would create a lock file with the crear system call if it
wanted to lock a resource: The creat fails if the file alrcady exists, and the process
would assume that another process had the resource locked. The  major
disadvantages of this approach are that the process does not know when to try
again, and lock files may inadvertently be left behind when the system crashes or is
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Figure 3.2. Free List of Buffers

another block until all other buffers have been used more recently. The kernel
maintains a free list of buffers that preserves the least recently used order. The
firee list is a doubly linked circular list of buffers with a dummy buffer header that
marks its beginning and end (Figure 3.2). Every buffer is put on the free list when
the system is booted. The kernel takes a buffer from the head of the free list when
it wants any free buffer, but it can take a buffer from the middle of the free list if
identifies a particular block in the buffer pool. In both cases, it removes the
buffer from the free list. When the kernel returns a buffer to the buffer pool, it
usually attaches the buffer 1o the tail of the free list, occasionally to the head of the
frec list (for error cases), but never to the middle. As the kernel removes buffers
from the free list, a buffer with valid data moves closer and closer to head of the
frec list (Figure 3.2). Hence, the buffers that are closer to the head of the free list
have not been used as recently as those that are further from the head of the free
list,

When the kernel accesses a disk block, it searches for a buffer with the
appropriate device-block number combination. Rather than scarch the entire buffer
pool, it organizes the buffers into separate queues, hashed as a function of the
device and block number. The kernel links the buffers on a hash queue into a
circular, doubly linked list, similar to the structure of the frec list. The number of
buffers on a hash queue varies during the lifetime of the system, as will be seen.
The kernel must use a hashing function that distributes the buffers uniformly across
the set of hash queucs, yet the hash function must be simple so that performance
does not suffer. System administrators configure the number of hash queues when
generating the operating system.
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igorithm shovat 7% atiach shared memory *7
input: (1) shared memory descriptor
(2) virtual address o attach memory

3) fags
output: virtual address where memory was attached

check validity of descriptor, pers
if (user specified virtual address)

round off virtual address, as specified by flags;

eheck legality of virtual address, sze of region;
)
else/* user wants kernel to find good address */

kernel picks virtual address: crror if none available;
attach region 1o process address space (algorithm attachreg);
if (region being attached for first time)

allocate page tables, memory for region

(algorithm growreg);

return virtual address where attached);

Figure 11.10. Algorithm for Attaching Shared Memory

The shared memory must not overlap other regions in the process virtual address
space; hence it must be chosen judiciously so that other regions do not grow into
the shared memory. For instance, a process can increase the size of its data region
with the brk system call, and the new data region is virtually contiguous with the
previous data region; therefore, the kernel should not attach a shared memory
region close to the data region. Similarly, it should not place shared memory close
10 the top of the stack 5o that the stack will not grow into it. For example, if the
stack grows towards higher addresscs, the best place for shared memory is
immediately before the start of the stack region.

The kernel checks that the shared memory region fits into the process address
space and attaches the region, using algorithm atiachreg. If the calling process is
the Arst to attach the region, the kernel allocates the necessary tables, using
algorithm growreg, adjusts the shared memory table entry field for “last time
attached,” and returns the virtual address at which it attached the region.

A process detaches a shared memory region from its virtual address space by

shmdt(addr)

Where addr is the virtual address returned by a prior shmat call. Although it
would seem more logical to pass an identifer, the virtual address of the shared
memory is used so that a process can distinguish between several instances of a
shared memory region that are attached to its address space, and because the
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(see Section 2.2.1), not a physical device (disk) unit number. The buffer header
also contains a pointer 1o a data array for the buffer, whose size must be at least a5
big as the size of a disk block, and a status field that summarizes the current statys
of the buffer. The status of a buffer is a combination of the following conditions:

* The buffer is currently locked (the terms “locked” and “busy” will be used
interchangeably, as will “free” and “unlocked”),

 The buffer contains valid data,

© e kemnel must write the buffer contents 1o disk before reassigning the buffer:
this condition is known as “delayed-write,”

2 The kernel s currently reading or writing the contents of the buffer (0 disk,

* A process is currently waiting for the buffer to become free,

The buffer header also contains two sets of pointers, used by the buffer allocation
algorithms to maintain the overall structure of the buffer pool, as explained in the
next section,

32 STRUCTURE OF THE BUFFER POOL

The kernel caches data in the buffer pool according t0 a least recently used
lgorithm: - after it allocates a buffer t0 a disk block, it cannot use the buger 1o
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include  <sys/typesh>
#include  <sys/ipeh>
include  <sys/msgh>

#define MSGKEY 75
struct msgform

fong mtype;
char mtext(256];

) msg;

int msgi

main()

{

. pid, *pint;
extern cleanup0;

for (im0, i <20, i+4)
signal(i, cleanup);
‘msgid = msgect(MSGKEY, 0777 | IPC_CREAT);

for )
{

‘mgrov(msgid, &msg, 256, 1, 0;

pint = (int *) msg.micxt;

pid = *pint;

printfCserver: receive from pid %d\n", pid);
msg.mtype = pid;

“pint = getpid;
msgsnd(msgid. &msg, sizeof i), 0);

)
)
cleanup()
(
msgetl(msgid, IPC_RMID, 0);
exit;
LA

Figure 11.8. A Server Process

Messages arc formatted as type-data pairs, whereas file data is a byte stream.
The type prefix allows processes to select messages of a particular type, if desired,
feature not readily available in the file system. Processes can thus extract messages
of particular types from the message queue in the order that they arrive, and the
kernel maintains the proper order. Although it is possible to implement a message
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algorithm msgrey 7% receive message °/
input: (1) message descriptor
(2) address of data array for incoming message
(3) size of data array
(4) requested message type
() fags
output number of bytes in returned message
(
check permissions;
Toop:
check legality of message descriptor:
7* find message 10 return to user */
if (requested message type == 0)
onsider first message on queue;
else if (requested message type > 0)
consider first message on queue with given type;
clse /* requesied message type < 0 %/
onsider fist of the lowest typed messages on queue,
such that its type is <= absolute value of
requested type;
if (here is @ message)

adjust message size or return error if user size 100 small;
copy message type, text from kernel space to user space;
unlink message from queue;
retrn;

)

7% 00 message */

if (Rags specify not to slecp)
return with error;

slecp (event message arrives on queue);

goto loop;

Figure 11.7. Algorithm for Receiving a Message

the IPC_CREAT flag in the msgger call and receives all messages of type 1 —
requests from client processcs. It reads the message text, finds the process ID of
the client process, and sets the return message type to the client process ID. In this
example, it sends its process ID back to the client process in the message text, and
the client process receives messages whose message type cquals its process ID.
Thus, the server process receives only messages sent to it by client processes, and
client processes receive only messages sent to them by the server. The processes
0operate to set up multiple channels on one message queue.
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processes and user procosses: They use the same sct of system calls available to the
general commanity. They are distinguished from general user processes only in the
rights and privileges they are allowed. For example, file permission modes may
allow administrative processes to manipulate files otherwise off-limits to general
users. Internally, the kernel distinguishes a special user called the superuser,
endowing it with special privileges, as will be seen. A user may become a superuser
by going through a login-password sequence or by exccuting special programs.
Other uses of superuser privileges will be studied in later chapters. In short, the
kernel does not recognize a separate class of administrative processes

25 SUMMARY AND PREVIEW

‘This chapter has described the architecture of the kernel; its two major components
are the file subsystem and the process subsystem. The file subsystem controls the
storage and retricval of data in user files. Files are organized into file systems,
which are treated as logical devices; a physical device such as a disk can contain
several logical devices (fle systems). Each file system has a super block that
describes the structure and contents of the file system, and cach file in a file system
is described by an inode that gives the attributes of the file. System calls that
‘manipulate files do so via inodes.

Processes exist in various states and move between them according to well-
defined transition rules. I particular, processes exceuting in kernel mode can
suspend their execution and enter the slecp state, but no process can put another
process to sleep. The kernel is non-preemptive, meaning that a process exccuting in
kernel mode will continue to execute until it enters the sleep state or uatil it returns
to exccute in user mode. The kernel maintains the consistency of its data
structures by enforcing the policy of non-preemption and by blocking interrupts
when exeeuting critical regions of code.

The remainder of this text describes the subsystems shown in Figure 2.1 and
their interactions in etail, starting with the file subsystem and continuing with the
process subsystem. The next chapter covers the buffer cache and describes buffer
allocation algorithms, used in the algorithms presented in Chapters 4, 5, and 7
Chapter 4 cxamines internal algorithms of the file system, including the
manipulation of inodes, the structure of files, and the conversion of path names to
inodes. Chapter $ explains the system calls that use the algorithms in Chapter 4 to
access the file system, such as open, close, read, and write. Chapter 6 deals with
the basic ideas of the context of a_process and its address space, and Chapter 7
covers system calls that deal with process management and use the algorithms in
Chapter 6. Chapter 8 cxamines process scheduling, and Chapter 9 discosses
memory management algorithms. Chapter 10 covers device drivers, postponed 10
this point so that the relationship between the terminal driver and. process
management can be explained. Chapter 11 presents several forms of interprocess
communication. Finally, the last two chapters cover advanced topics, including
multiprocessor systems and distributed systems.






index-478_1.png
N0 O S

INDEX

Mknod system call, 10, 107, 108, 143, 314,
352,353
dircctory, 74
use of, 241
Modify bit, 287, 288, 296, 303, 305, 306
Monitor, 410
Motorola 68000, 166, 167, 189
Mount command, 123
Mount point, 63, 120-127, 144
crossing, 122, 123
Mount system call, 24, 119123, 145, 235
buffers and, 52
device and, 314
disk sections and, 325
in distributed system, 426, 427
Mount table, 120123, 126
Msgetl system call, 361, 367
Msgget system call, 361
use of, 365
Msgrev system call, 361
algorithm, 365
use of, 390
Msgsnd system call, 361
algorithm, 362
Mullender, 72
Multics, 2, 190
Multihop, 433
Multilevel feedback, 248
Multiplexing, 348-350
Multiprocessor systems, 391, 392, 395
performance, 410
Mutual exclusion, 30, 77, 410

N

Named pipe, 111-117, 144
creation of, 107
Namei algorithm, 74, 75, 90, 125, 126
chroot and, 110
distributed system, 427
mount point and, 122-126
unlink and, 135
use of, 92, 93, 106, 129, 221, 223
Network communications, 23, 382, 383
IPC and, 381
Newcastle connection, 413, 414, 422-425,
430-432

465

Nice command, 269
Nice system call, 254
use of, 207, 208
Nice value, 255, 282
fork and, 194
swap and, 280, 285
No delay
driver open procedure, 318
named pipe and, 115
terminal, 341
Non-preemption, 30
Nowitz, 382
NSC Serics 32000, 189
Nucleus, 410

o

Open system call, 21, 22, 92:96
comparison o chdir, 109
comparison to ceat, 106
comparison o shared memory, 370
driver interface, 314, 316318
in distributed system, 427, 428
in Newcastle connection, 424
in satelie system, 416
inode and, 63, 65
‘multipie calls, 101
named pipe and, 111, 113, 115
sticky bit and, 226
terminal, 343
unlink and, 135, 137
use of, 8

Operating system services, 14

Operating system rap, 165, 16

Organick, 2

3

P semaphore operation, 372, 389, 396-402,
408, 411
Page, 152154, 230, 272, 286, 289, 300
aging, 295, 296
cache, 289
fault, 190, 293, 298
Page frame data table, See Pfdata
Page stealer, 238, 294-297, 300, 307, 309,
310





index-374_1.png
362 INTERPROCESS COMMUNICATION

algorithm msgsnd 7% send a message */
input: (1) message queue descriptor

(2) address of message structure.

@) size of message

@) fags
output: number of bytes sent

check legality of descriptor, permissions;
while (not enough space to store message)

(Rags specify not to wait)
retrn;
slecp(until event cnough space is available);

get message header;
read message text from user space to kernel;
adjust data structures: enqueue message header,
message header points to data,
counts, time stamps, process 1D;
wakeup all processes waiting to read message from queuc;

Figure 114, Algorithm for Msgsnd

in the message header, sets the message header to point to the message data,
and updates various statistics fields (number of messages and bytes on queue, time
stamps and process ID of sender) in the queue header. The kernel then awakens
processes that were asleep, waiting for messages to arrive on the queue. If the
number of bytes on the queue exceeds the queue's limit, the process sleeps unil
other messages are removed from the queue. If the process specified not to wait
(flag IPC_ NOWAIT), however, it returns immediately with an error indication.
Figure 115 depicts messages on a queue, showing queue headers, linked lists of
message headers, and pointers from the message headers to a data area.

Consider the program in Figure 11.6: A process calls msgget to get a descriptor
for MSGKEY. It sets up a message of length 256 bytes, although it uses only the
firt. integer, copies its process ID into the message text, assigns the message type
value 1, then calls msgsnd 1o send the message. We will return to this example
later.

A process receives messages by

count = msgrev(id, msg, maxcount, type, flag);

where id is the message descriptor, msg is the address of a user structure to contain
the received message, maxcount is the size of the data array in msg, fype specifics
the message type the user wants to read, and flag specifics what the kernel should
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in the entry structure. The kernel increments the descriptor number so that the
next instance of assigning the entry will return a different descriptor. Hence,
system calls will fail if a process attempts o access an entry by an old
descriptor, as explained earlier.

1121 Messages

There are four system calls for messages: msgger returns (and possibly creates) a
message descriptor that designates a message queuc for use in other system calls,
msgetl has options to set and return parameters associated with a message
descriptor and an option to remove descriptors, msgsnd sends a message, and
msgrev receives a message.

The syntax of the msgget system call is

msgqid = msgget(key, flag);
where msggid is the descriptor returned by the call, and key and flag have the
semantics described above for the general “get” calls. The kernel stores messages
on a linked list (queue) per descriptor, and it uses msggid as an index into an array
of message queue headers. In addition to the general IPC permissions field
mentioned above, the queue structure contains the following fields:

« Pointers to the first and last messages on a linked list;

« The number of messages and the total number of data bytes on the linked list;
« The maximum number of bytes of data that can be on the linked li

 The process IDs of the last processes to send and receive messages;
« Time stamps of the last msgsnd, msgrev, and msgel operations.

When a user calls msgget to create a new descriptor, the kernel searches the array
of message queues to see if one exists with the given key. If there is no entry for
the specified key, the kernel allocates a new queue structure, initializes it, and
returns an identifier to the user. Otherwise, it checks permissions and returns.

A process uses the msgsnd system call 1o send a message:

msgsnd(msgqid, msg, count, flag)

where msggid is the descriptor of a message queue typically returned by a msgger
call, msg is a pointer to a structure consisting of a user-chosen integer type and a
character array, count gives the size of the data array, and flag specifies the action
the kernel should take if it runs out of internal buffer space.

‘The kernel checks (Figure 11.4) that the sending process has writc permission
for the message descriptor, that the message length does not exceed the system
limit, that the message queue does not contain 100 many bytes, and that the
message type is a positive integer. If all tests succeed, the kernel allocates space for
the message from a message map (recall Section 9.1) and copies the data from user
space. The kernel allocates a message header and puts it on the end of the linked
list of message headers for the message queue. It records the message type and
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Finclude  <sys/typesh>
#include  <sysipeh>
#incude  <sys/msgh>
#define MSGKEY 75

struct msgform {

long  miype;
char  miex(256];

3

main()

{
struct msgform msg:
int msgid, pid, *pint;

msgid = msgget(MSGKEY, 0777);

pid = getpid0;

pint = Gint *) msgmtext;

*pint = pi 7% copy pid into message text */
msg.mtype = 1;

msgsnd(msgid, &msg, sizeof in0), 0);
msgrov(msgid, &msg, 256, pid, 0);  /* pid i used as the msg type */
printf Cclient: receive from pid %din, *pint);

Figure 11.6. A Client Process

A process can receive messages of a particular type by sctting the fype
parameter appropriately. If it is a positive integer, the kernel returns the first
message of the given type. If it is negative, the kernel finds the lowest type of all
messages on the queue, provided it is less than or equal to the absolute value of
type, and returns the first message of that type. For example, if a queue contains
three messages whose types are 3, 1, and 2, respectively, and a user requests &
message with type =2, the kernel returns the message of type 1. In all cases, if 10
messages on the queue satisfy the receive request, the kernel puts the process o
sleep, unless the process had specified 1o return immediately by setting the
IPC_NOWAIT bt in flag.

Consider the programs in Figures 11.6 and 118. The program in Figure 11.8
shows the structure of a server that provides generic service to client processes. For
instance, it may receive requests from client processes to provide information from
a database; the server process is a single point of access to the database, making
consistency and security casier. The server creates a message structure by setting
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Figure 11.5. Data Structures for Messages

do if no messages are on the queue. The return value, count, is the number of
bytes returned to the user.

The kernel checks (Figure 11.7) that the user has the necessary access rights to
the message queue, as above. If the requested message type is 0, the kernel finds
the first message on the linked list. If its size is less than or equal to the size
requested by the user, the kernel copies the message data to the user data structure
and adjusts its internal structures appropriately: It decrements the count of
messages on the queue and the number of data bytes on the queue, sets the reccive
time and receiving process ID, adjusts the linked list, and frees the kernel space
that had stored the message data. If processes were waiting to send messages
because there was no room on the list, the kernel awakens them. If the message is
bigger than maxcount specified by the user, the kernel returns an error for the
System call and leaves the message on the queue. If the process ignores size
constraints, however (bit MSG_NOERROR is set in fiag), the kernel truncates the
message, returns the requested number of bytes, and removes the entire message
from the list.






index-484_1.png
interaction with protection fault
‘handler, 06

VAX, 171, 189, 205, 206, 306, 307, 310,
31,393

Version 6, 282

Version 7, 144

Viault, algorithm, See Vali
handler

Veork, 291, 292, 309

Vhand, See Page stealer

Virtual address, 18, 158, 189, 278, 298

Virtual address space, 15, 151, 152, 156,
159

Virtual address translation, See Address
translation

Virtual circuit, 384

Virtual terminal, 348, 349

VMS, 307

Volume table of contents, 326, 352

fault

w

Wait system call, 21, 213, 216
algorithm, 214, 215, 242
in multiprocessor, 408
time and, 269

INDEX

tracing and, 356, 357
use of, 233
Wakeup, 33, 34, 37, 184
algorithm, 150, 182, 186, 187, 190
comparison to V operation, 399, 403
Weinberger, 138, 265
‘Window of terminal, 348, 349, 354
‘Window of working set, 286
Working set, 286, 287, 307, 310
Write system call, 21, 71, 100-102
disk interface, 328
driver interface, 314, 320, 328
fork and, 197
pipe and, 113-115, 143
read-only file system and, 144
streams interface, 346
terminal interface, 334, 335
Write-append mode, 93, 140

X
Xalloc, algorithm, 223, 224
z

Zombie, 147, 149, 213-217, 258, 280

an





index-370_1.png
358

31

INTERPROCESS COMMUNICATION

#dcfine TR SETUP 0
#define TR_WRITE 5
#define TR_RESUME 7
int addr;

main(arge, argy)
int arge;
char *argy{];

int i, pid;

sscanf(argel1], “%x", &addr);

if ((pid = fork0) == 0)
(

ptrace(TR_SETUP, 0,0, 0);
execl(‘race”, "trace", 0);
exit0;

for (i =0; i <32 i+4)

{

wait(Gnt *) 0);

/% write value of i into address addr in proc pid */

if (ptrace(TR_WRITE,
exit;

addr += sizeof(ino);

7 traced process should resume exccution */

ptrace(TR_RESUME, pi

1,0

Figure 11.3. Debug — A Tracing Process

A debugger such as sdb has access o the traced process's symbol table, from

which it determines the addresses it uses as parameters to prrace calls.

The use of prrace for process tracing is primitive and suffers several drawbacks.

® The kernel must do four context switches to transfer a word of data between
debugger and a traced process: The kernel switches context in the debugger in
the pirace call until the traced process replies to a query, switches context to
and from the traced process, and switches context
with the answer 10 the pirace call,

traced process, but process tracing is consequently slow.

back 1o the debugger process
The overhead is necessary, because @
debugger has no other way to gain access to the virtual address space of a
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set condition false;
wakeup (event: the condition is false);

Figure 2.9 depicts a scenario where three processes, A, B, and C, contend for a
locked buffer. The slecp condition is that the buffer is locked. The processes
execute one at a time, find the buffer locked, and sleep on the event that the buffer
becomes unlocked. Eventually, the buffer is unlocked, and all processes wake up
and enter the state “ready to run.” The kernel eventually chooscs one process, say
B, to cxecute. Process B executes the “while” loop, finds that the buffer is
unlocked, sets the buffer lock, and proceeds. If process B later goes 10 slecp again
before unlocking the buffer (waiting for completion of an 1/0 operation, for
example), the kernel can schedule other processes to run. If it chooses process A,
process A executes the “while” loop, finds that the buffer is locked, and goes 1o
sleep again; process C may do the same thing. Eventually, process B awakens and
unlocks the buffer, allowing cither process A or C to gain access to the buffer.
Thus, the “while-slecp” loop insures that at most one process can gain access to a
resource.

Chapter 6 will present the algorithms for sleep and wakeup in greater detail. In
the meantime, they should be considered “atomic™ A process enters the sleep state
instantaneously and stays there until it wakes up. After it goes to sleep, the kernel
schedules another process to run and switches context to it.

2.3 KERNEL DATA STRUCTURES

Most kernel data structures occupy fixed-size tables rather than dynamically
allocated space. The advantage of this approach is that the kernel code is simple,
but it limits the number of entries for a data structure to the number that was
originally configured when generating the system: 1If, during operation of the
system, the kernel should run out of entries for a data structure, it cannot allocate
space for new entrics dynamically but must report an error to the requesting user.
If, on the other hand, the kernel is configured so that it it is unlikely to run out of
table space, the extra table space may be wasted because it cannot be used for
other purposes. Nevertheless, the simplicity of the kernel algorithms has generally
been considered more important than the need to squeeze out every last byte of
main memory. Algorithms typically use simple loops to find free table cntries, &
method that s casier to understand and sometimes more efficient than merc
complicated allocation schemes.

2.4 SYSTEM ADMINISTRATION

Administrative processes are loosely classified as those processes that do various
functions for the general welfare of the user community. Such functions includs
disk formatting, creation of new fil systems, repair of damaged fil systems, kernel
debugging, and others. Conceptually, there is no difference between administrative
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access rights allowed 1o the opening process. The user file descriptor  table
identifies all open fles for a process. Figure 2.2 shows the tables and their
relationship to cach other. The kernel returns a file descriptor for the open and
creat system calls, which is an index into the user file descriptor table. When
exceuting read and write system calls, the kernel uses the file descriptor to access
the user file descriptor table, follows pointers to the fle table and inode table
entries, and, from the inode, finds the data in the file. Chapters 4 and 5 describe
these data structures in great detail. For now, suffice it t0 say that use of three
tables allows various degrees of sharing access o a file.

The UNIX system keeps regular files and directories on block devices such as
tapes or disks. Because of the difference in access time between the two, few, if
any, UNIX system installations use tapes for their file systems. In coming years,
diskless work stations will be common, where files are located on a remote system
and accessed via a network (see Chapter 13). For simplicity, however, the ensuing
text assumes the use of disks. An installation may have several physical disk units,
each containing one or more file systems. Partitioning a disk into several fil
systems makes it easier for administrators to manage the data stored there. The
kernel deals on a logical level with file systems rather than with disks, treating cach
one as a logical device identified by a logical device number. The conversion
between logical device (file system) addresses and physical device (disk) addresses
is done by the disk driver. This book will use the term device to mean a logical
device unless explicitly stated otherwise.

A file system consists of a sequence of logical blocks, each containing 512, 1024,
2048, or any convenient multiple of 512 bytes, depending on the system
implementation. The size of a logical block is homogencous within a file system but
may vary between different file systems in a system configuration. Using large
logical blocks increases the effective data transfer rate between disk and memory,
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PATH, 245
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PDP, 223, 271
PDP 11/23, 284
PDP 11/70, 219
PDP 7,2
Peachey, 282, 284
Per process region table, See Pregion
Plault algorithm, See Protection fault
handler
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PID, 25, 150, 192-194, 214
Pike, 348, 423
Pipe, 13, 60, 88, 108, 111, 116, 117, 144,
226,239, 245
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delayed write and, 102
signal and, 200
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comparison to IPC, 355
standard input and, 96
use of, 198, 199, 234
Pipe device, 112
Pipeline, 245
Plock system call, 310
Pop streams module, 347
Postel, 384
Preempt state, 147-150, 248
Preemption, 100, 254, 392
Pregion, 26, 28, 152, 155, 161, 173, 177,
179,181, 201
context and, 160
shared memory, 368
Prepaging, 309
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Prioriy, 21, 169, 187, 194, 247, 249, 250,
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Process control subsystem, 19, 21
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Process 0,25, 74, 109, 147, 212, 235, 238,
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Profil system call, 265, 266
Profile driver, 264
Profiling, 260, 264, 265
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Programmed 1/0, 322
Programmed interrupt, 162, 264
Prolog, 4
Protection bits, 286, 305, 310
Protcction faull, 223, 298, 303-305






index-372_1.png
360 INTERPROCESS COMMUNICATION

© Each mechanism contains a “get” system call to create a new entry o ©
retrieve an existing one, and the parameters to the calls include a key and flags,
The kernel searches the proper table for an entry named by the key. Processes
can call the “get" system calls with the key IPC_PRIVATE to assure the Tetury
of an unused entry.  They can set the PC_CREAT bit in the flag field to creays
a new entry if one by the given key does not already exist, and they can force.
an error notification by setting the /PC_EXCL and IPC_CREAT flags, if an
entry already exists for the key. The “get” system calls return a kernel-chosen
descriptor for use in the other system calls and are thus analogous to the file
system creat and open calls.

® For each IPC mechanism, the kernel uses the following formula to find the
index into the table of data structures from the descriptor:

index = deseriptor modulo (number of entries in table)

For example, if the table of message structures contains 100 entrics, the
descriptors for entry 1 are 1, 101, 201, and 50 on. When a process removes an
entry, the kernel increments the descriptor associated with it by the number of
entries in the table: The incremented value becomes the new deseriptor for the
entry when it is next allocated by a “get” call. Processes that attempt to access
the entry by its old descriptor fail on their access. Referring to the previous
example, if the descriptor associated with message entry 1 is 201 when it is
removed, the kernel assigns a new descriptor, 301, to the entry. Processes that
attempt to access descriptor 201 receive an error, because it is no longer valid
The kernel eventually recycles descriptor numbers, presumably after 2 long time
Iapse.

* Pach IPC entry has a permissions structure that includes the user D and group
ID of the process that created the cniry, a user and group ID set by the
“oontrol” system call (below), and a set of read-write-exccute permissions for
user, group, and others, similar to the file permission modes.

* Bach entry contains other status information, such as the process ID of the last
process 10 update the entry (send a message, receive a message, attach shared
memory, and so on), and the time of last access or update.

* Each mechanism contains a “control” system call to query status of an entry, to
set status information, or to remove the entry from the system. When  process
queries the status of an entry, the kernel verifies that the process has read
permission and then copies data from the table entry to the user address,
Similarly, to sct parameters on an entry, the kernel verifies that the user ID of
the process matches the user ID or the creator user ID of the entry or that the
process is run by a superuser; write permission is not sufficient to st
parameters. The kernel copies the user data into the table entry, setting the
user 1D, group ID, permission modes, and other filds dependent on the type of
mechanism. The kernel does not change the creator user and group ID fields
30 the user who created an entry retains control rights (o it. Finally, a user can
remove an entry if it is the superuser or if its process ID matches cither 1D field

j
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Rmdir command, 134
Root directory, 73, 74

Root inode, 24, 76, 120, 122, 123, 127, 145
Roo inode number, 73, 123

Round robin, 248, 251, 255
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Rubout key, 342
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Server process, 382, 387, 429-432
Service procedure, 345, 347, 350
Setjmp, algorithm, 170, 171
use of, 188, 318
Setpgrp system call, 210, 211
terminal, 342
use of, 343
Setuid program, 227-229, 243, 424
tracing and, 359
Setuid system call, 227-229
Seventh Edition, 269

‘Shared memory, 151, 189, 359, 367-370,

372,389
attaching, 371
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region, 181
‘Shared memory table, 368
Shell, 11, 12, 15, 336, 343, 353
dup and, 119
exce and, 226
implementation, 232-235, 244, 245
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Shmat system call, 367-369
Shmetl system call, 367, 370
‘Shmdt system call, 367, 369
‘Shget system call, 367, 368
Shutdown system call, 386
Signal, 21, 22, 130, 150, 187, 200-210,
239-241, 245, 249
catching, 205-209, 220
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driver open procedure, 318
fault causes, 300
handler, 202-205, 210, 240
ignoring, 203
in distributed system, 429, 430
in satellite system, 419-422, 431
pipe and, 200
recogaition, 203
sleep and, 188
from terminal, 329, 342
Signal system call, 200-210, 240
in satellte system, 419
Sixth Edition, 269
(Slash) /proc, 359
Slave processor, 393, 410
Seep. 30, 31, 33, 37, 201, 249
address, 183, 184
algorithm, 150, 182-190, 209
comparison to P operation, 399
context switch and, 169, 254
event, 28, 33, 34, 37, 150, 183, 184,
187
in wait, 214
lock, 395, 396
priority, 187, 188
streams and, 351
swap and, 280
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« A debugger process can trace several child processes simultancously, although
this feature is rarely used in practice. More critically, a debugger can only
trace child processes: 1f a traced child forks, the debugger has no control over
the grandchild, a severe handicap when debugging sophisticated programs. If a
traced process execs, the later execed images are still being traced because of
the original pirace, but the debugger may not know the name of the execed
image, making symbolic debugging difficult.

o A debugger cannot trace a process that is already executing if the debugged
process had not called prrace to let the kernel know that it consents 10 be
traced. This is inconvenient, because a process that needs debugging must be

illed and restarted in trace mode.

o Itis impossible to trace seruid programs, because users could violate security by
writing their address space via pirace and doing illegal operations. For
example, suppose a seruid program calls exec with file name “privatefile”. A
clever user could use prace to overwrite the file name with “/bin/sh”, executing
the shell (and all programs executed by the shell) with unauthorized permission.
Exec ignores the seruid bit if the process is traced to prevent a user from
overwriting the address space of & setuid program.

Killian [Killian 84] describes a different scheme for process tracing, based on
the file system switch described in Chapter 5. An administrator mounts a file
system, “/proc”; users identify processes by their PID and treat them as files in
“/proc”. The kernel gives permission to open the files according to the process user
1D and group ID. Users can examine the process address space by reading the file,
and they can st breakpoints by wriring the file. Stat returns various statistics
about the process. This method removes three disadvantages of pirace. First, it is
faster, because a debugger process can transfer more data per system call than it
can with prrace. Second, a debugger can trace arbitrary processes, not necessarily
a child process. Finally, the traced process does not have to make prior
arrangement to allow tracing; a debugger can trace existing processes. As part of
the regular file protection mechanism, only a superuser can debug processes that
are setuid to root.

112 SYSTEM V IPC

The UNIX System V IPC package consists of three mechanisms. Messages allow
processes to send formatted data streams to arbitrary processes, shared memory
allows processes to share parts of their virtual address space, and semaphores allow
processes to synchronize execution. Implemented as a unit, they share common
Properties.

* Each mechanism contains a table whose entries describe all instances of the
mechanism.
* Each entry contains a numeric key, which is its user-chosen name.
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this issue for multiprocessor systems, where the solution outlined here is insufficient.

“To review, the kernel protects its consistency by allowing a context switch only
when a process puts itself 1o sleep and by preventing one process from changing the
state of another process. It also raises the processor execution level around critical
regions of code to prevent interrupts that could otherwise cause inconsistencies.
The process scheduler periodically preempts processes executing in user mode so
that processes cannot monopolize use of the CPU.

2.2.2.4 Sleep and wakeup

A process exccuting in kernel mode has great autonomy in deciding what it s going
todo in reaction to system events. Processes can communicate with each otber and
“suggest” various alternatives, but they make the final decision by themselves. As
will be scen, there is a set of rules that processes obey when confronted with various
circumstances, but each process ultimately follows these rules under its own
initiative. For instance, when 2 process must temporarily suspend its cxecution
(“g0 10 sleep”), it does 5o of its own free will. Consequently, an interrupt handler
cannot go to sleep, because if it could, the interrupted process would be put to sleep
by default

Processes go to sleep because they are awaiting the occurrence of some event,
such as waiting for 1/0 completion from a peripheral device, waiting for a process
10 exit, waiting for system resources to become available, and so on. Processes are
5aid 1o sleep on an event, meaning that they are in the slecp state until the event
ocurs, at which time they wake up and enter the state “ready to run.” Many
processes can simultancously sleep on an event; when an event occurs, all processes
slecping on the event wake up because the event condition is no longer true. When
a process wakes up, it follows the state transition from the “slecp” state to the
“ready-to-run” state, where it is eligible for later scheduling; it does nof execute
immediately. Sleeping processes do not consume CPU resources: The kernel does
not constantly check to see that a process is still sleeping but waits for the event to
occur and awakens the process then.

For example, a process cxecuting in kernel mode must sometimes lock a data
structure in case it goes to sleep at a later stage; processes attempting to
manipulate the locked structure must check the lock and sleep if another process
owns the lock. The kernel implements such locks in the following manner:

whille (condition is truc)
sleep (event: the condition becomes false);
set condition true;

It unlocks the lock and awakens all processes asleep on the lock in the following
manner:
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Wait causes the process to sleep until it discovers a child process that had cxited or
a process asleep in trace mode. If wait_stat is not 0, it points t0 an address that
contains status information on return from the call. Only the 16 low order bits are
written. If wait returns because it found a child process that had exited, the low
order 8 bits are 0, and the high order 8 bits contain the low order 8 bits the child
process had passed as a parameter t0 exit. If the child exited because of a signal,
the high order 8 bits are 0, and the low order 8 bits contain the signal number. In
addition, bit 0200 is set if core was dumped. If wair returns because it found a
traced process, the high order 8 bits (of the 16 bits) contain the signal number that
caused it to stop, and the low order 8 bits contain octal 0177.

write

write(fd, buf, count)
int fd, count;
char *buf;

Write writes count bytes of data from user address buf to the file whose descriptor
is fd.
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timet  statime;  /* time of last access */
tmeX  sUmtime;  /* time of last modification */
GmeX  sictime;  /* time of last status change */

stime
stime(tptr)
long *tptr;

Stime sets the system time and date, according to the value pointed to by ipir
Times are specified in seconds since 00:00:00 January, 1, 1970, GMT.

syne
sync0)
Sync flushes file system data in system buffers onto disk.

time
time(tloc)
long *tloc;

Time returns the number of seconds since 00:00:00 January 1, 1970, GMT. If tloc
is not 0, it will contain the return value, too.

#include <sys/types.h>
#include <sys/timesh>

times(tbuf)
struct tms *tbuf;

Times returns the clapsed real time in clock ticks from an arbitrary fixed time in
the recent past, and fills tbuf with accounting information:

struct tms {
time_t  tms_utime; /* CPU time spent in user mode */
time_t s stime; /% CPU time spent in kernel mode */
time L ims_cutime; /% Sum of tms_utime and tms_cutime of children */
timet s sutime; /% Sum of tms_stime and tms_sutime of children */





index-462_1.png
APPENDIX ~ SYSTEM CALLS 449

SIGBUS  bus error
SIGSEGV  scgmentation violation
SIGSYS  bad argument in system call
SIGPIPE  write on a pipe with no reader
SIGALRM  alarm

SIGTERM  software termination
SIGUSRI  user-defined signal

SIGUSR2  second user-defined signal
SIGCLD  death of child

SIGPWR  power failure

The interpretation of function is as follows

SIG_DFL  default operation. For all signals except SIGPWR and SIGCLD,
process terminates. It creates a core image for signals SIGQUIT,
SIGILL, SIGTRAP, SIGIOT, SIGEMT, SIGFPE, SIGBUS, SIGSEGY, and
SIGSYS.

SIG_IGN  ignore the occurrence of the signal.

funcion  an address of a procedure in the process. The kernel
arranges to call the function with the signal number as argument
when it returns t0 user mode. The kernel automatically resets
the value o the signal handler to SIG_DFL for all signals.
except SIGILL, SIGTRAP, and SIGPWR. A process cannot catch
SIGKILL signals.

stat

stat(filename, statbuf)
char *filename;
struct stat *statbuf;

fstat(fd, statbuf)
int
struct stat *statbuf;

Stat returns status information about the specified file. Fstat does the same for the
open file whose descriptor is fd. The structure of starbuf s:

struet stat |
dev.t 7% device number for dev containing file */
inot * inode number */
ushort 7* fle type (sce mknod) and perms (see chmod) */
short 7% number o links for file */
ushort 7% user D of file's owner *
ushort 7* group ID of files group */
dev t /* major and minor device numbers */
off 1 1% size in bytes */
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unlink

unlink(filename)
char *filename;

Remove the directory entry for the indicated file.

#include <ustath>

ustat(dev, ubuf)

int dev;

struct ustat *ubuf;
Ustat returns statistics about the file system identified by dev (the major and minor
number). The structure ustat s defined by:

struct ustat
daddr t  fifree; /2 number of free blocks */
inot ™ fxinode;  /* number of free inodes */
char  ffnamel6l; /* flsys name */

char  ffpackl6l;  /* filsys pack name */

utime
#include <sys/types.h>

utime(filename, times)
char *flename;
struct utimbuf *times;

Utime sets the access and modification times of the specified file according to the
value of times. If 0, the current time is used. Otherwise, fimes points to the
following structure:

struct utimbuf (
met  axtime;  /*access time */
timet  modiime; /* modification time */

)

Al times are measured from 00:00:00 January 1, 1970 GMT.
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ulimit

ulimit(cmd, limit)
int emd;
long limit;

Ulimit allows a proeess to set various limits according to the value of cmd:

1 return maximum file size (in 512 byte blocks) the process can write

2 set maximum fle size to limit.
3 return maximum possible break value (highest possible address in data region).

umask(mask)
int mask;

Set the file mode creation mask and return the old value. When creating a file,
permissions are turned off if the corresponding bits in mask are set.

umount(specialfile)
char *specialfile;

Unmount the file system in the block special device specialfle.

uname
#include <sys/utsname.h>

uname(name)
struct utsname *name;

Uname returns system-specific information according to the following structure:

struct utsname (

char sysnamel9k  /* name */

char nodenamelS);  /* network node name */

char 1% system version information */
char /% more version information */

char machinel9);  /* hardware */
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struct queue

) *bp, *bpl;
bpl=>forp = bp—>forp;

bpl—>backp = bp;

bp—>forp = bpl;

/* consider possible context switch here */
bp1—> lorp—> backp = bpl;

Figure 2.7. Sample Code Creating Doubly Linked List

bpl

>
I

Placing bp1 on doubly linked st

T —fm =

Figure 2.8. Incorrect Linked List because of Context Switch

comment, the interrupt handler could corrupt the links if it manipulates the
pointers, as illustrated carlier. To solve this problem, the system could prevent al
merrupts while exccuting in kernel mode, but that would delay servicing of the
interrupt, possibly hurting system throughput. ~Instead, the kernel raises the
Pracessar excaution level to prevent interrupts when entering critical regions of
gode. A section of code s critical if execution of arbitrary interrupt handices equld
result in consistency problems. For example, if a  disk interrupt handler
manipulates the buffer queues in the figure, the section of code where the Kerne|
manipulates the buffer queues is a critical region of code with respect 1o the disk
interrupt handler. Critical regions are small and infrequent <o that system
hroughput is largely unaffected by their existence. Other operating systems sope
this problem by preventing all interrupts when exccuting in systews sates or by
using claborate locking schemes to ensure consistency. Chapler 12 will return 1o






index-461_1.png
448 APPENDIX ~ SYSTEM CALLS

shmget(key, size, flag)

key_tkey:

int size, flag;
Shmget accesses or creates a shared memory region of size bytes. The parameters
key and flag have the same meaning as they do for misgger.

shmop

#include <sys/typesh>
#include <sys/ipe.h>
#include <sys/shm.h>

shmat(id, addr, flag)
int id, flag;
char *addr;

shmdt(addr)
char *addr;

Shmat attaches the shared memory region identified by id to the address space of a
process. 1f addr is 0, the kernel chooses an appropriate address to attach the
region. Otherwise, it attempts 0 attach the region at the specified address. If the
SHM_RND bit is on in flag, the kernel rounds off the address, if necessary. Shmat
returns the address where the region is attached.

Shmdt detaches the shared memory region previously attached at addr

signal
#include <signal.h>
signal(s

int sig;
void (*func) 0;

Signal allows the calling process to control signal processing. The values of sig are:

, function)

SIGHUP  hangup

SIGINT interrupt
SIGQUIT  quit

SIGILL illega instruction
SIGTRAP trace trap
SIGIOT 10T instruction

SIGEMT  EMT instruction
SIGFPE  floating point exception
SIGKILL kil
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setgid(gid)

int gid;
Setuid sets the real and effective user ID of the calling process. If the effective
user 1D of the caller is superuser, setuid resets the real and effective user IDs.
Otherwisc, if its real user 1D equals uid, setuid resets the effective user ID o uid
Finally, if its saved user ID (set by exccuting a setuid program in exec) equals uid,
setuid resets the effective user ID 10 uid. Seigid works the same way for real and
effective group IDs.

shmetl

#include <sys/types.h>
#include <sys/ipch>
#include <sys/shm.h>

shmetl(id, cmd, buf)
int id, cmd;
struct shmid_ds *buf;
Shmetl does various control operations on the shared memory region identified by
id. The structure shmid_ds is defined by:

sruct shmid_ds (
structfpe_perm  shm_perm; /* permission struct */

int shm_segsz;  /* size of segment ¥/
it pad; 7 usd by sytem ¥/

ushort shm_ipid; id of last operation */
ushort e, bdof e ]

ushort /% number currently atiached */
short /2 used by system */

time ¢ Y 74 last attach time */

time t shm_diime; /* last detach time */

ime 1 shm ctime; /% last change time */

The operations are:

IPCSTAT  read values of shared memory header for id into buf.
IPCSET et shm_perm.uid, shm_perm.gid, and shm_perm.mode (9 low-order

bits) in shared memory header according 10 values in buf.
IPC_RMID  remove shared memory region for id.

shmget

#include <sys/types.h>
#include <sys/ipch>
#include <sys/shm.h>





