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The Mighty Question Mark


SYMBOLS



ALGEBRA IS just a variety of arithmetic.



Does that startle you? Do you find it hard to



believe? Perhaps so, because the way most of us go



through our schooling, arithmetic seems an "easy"



subject taught in the lower grades, and algebra is



a "hard" subject taught in the higher grades.



What's more, arithmetic deals with good, honest



numbers, while algebra seems to be made up of all



sorts of confusing  x's and y's.



But I still say there's practically no difference



between them and I will try to prove that to you.



Let's begin by saying that if you had six apples



and I gave you five more apples, you would have



eleven apples. If you had six books and I gave you



five more books, you would have eleven books.



If you had six dandelions and I gave you five more



dandelions, you would have eleven dandelions.



I don't have to go on that way, do I? You can



see that if you had six of any sort of thing at all



and I gave you five more of that same thing, you
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would end with eleven of it altogether. So we can



forget about the actual object we're dealing with,



whether apples, books, dandelions, or anything else,



and just concentrate on the numbers. We can say



simply that six and five are eleven, or that six plus



five equals eleven.



Now people are always dealing with numbers;



whether in the work they do, in the hobbies they



pursue, or in the games they play. They must



always remember, or be able to figure out if they



don't remember, that six plus five equals eleven, or



that twenty-six plus fifty-eight equals eighty-four,



and so on. What's more, they often have to write



down such arithmetical statements. But the writing



can get tedious, particularly where the numbers



grow large and complicated.



For that reason, ever since the earliest days of



civilization, people have been trying to figure out



good short-cuts for writing down numbers. The



best system ever invented was developed in India



some time in the 800's. In that system, each



number from one to nine had its own special mark.



The marks we use these days in our country are



1, 2, 3, 4, 5, 6, 7, 8, and 9. In addition, the system



includes a mark for zero, which we write as 0.



Any mark written down as a short-cut method



of representing something is called a "symbol."



(The very words you are now reading are symbols
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of the various sounds we make when we speak, and



the sound we make when we say "horse" is just a



symbol of the actual creature itself.)



The marks I have written two paragraphs ago



are symbols for the first nine numbers and zero,



and may be called "numerical symbols." The Arabs



picked them up from the mathematicians of India



and passed them on to the Europeans in about the



tenth century. We still call these numerical symbols



the "Arabic numerals," in consequence.



All numbers higher than nine can be written by



using combinations of these numerical symbols



according to a system which I won't explain here



because it is so familiar to you.* Thus, the number



twenty-three is written 23, while seven hundred and



fifty-two is written 752.



You can see how handy numerical symbols can



be. In fact, they are so handy that you would



never see anyone write: "The total is six thousand



seven hundred and fifty-two." It would always be



written, "The total  is 6752." A great deal of space



and effort is saved by writing the numerical symbols



in place of words, yet you are so accustomed to the



* Actually, I have explained the number system in a



book I wrote called  Realm of Numbers, published in



1959 by Houghton Mifflin Company. You don't have



to read it to understand this book, but you might find



it useful in explaining some arithmetical points I will



have to skip over a little quickly here.
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symbols that you read a sentence containing them



just as though the words had been spelled out.



Nor are the numerals the only symbols used in



everyday affairs. In business, it is so usual to have



to deal with dollars that a symbol is used to save



time and space. It is $, which is called the "dollar



sign." People just read it automatically as though



it were the word itself so that $7 is always read



"seven dollars." There is also  i for "cents," % for



"per cent," & for "and," and so on.



So you see you are completely at home with



symbols.



There's no reason why we can't use symbols to



express almost anything we wish. For instance, in



the statement six plus five equals eleven, we can



replace six by 6, five by 5, and eleven by 11, but



we don't have to stop there. We can have a symbol



for "plus" and one for "equals." The symbol for



"plus" is + and the symbol for "equals" is =.



We therefore write the statement: 6 + 5 = 11.


FACING THE UNKNOWN



We are so familiar with these symbols and with



others, such as — for subtraction, X for multiplication, and / for division that we give them no



thought. • We learn them early in school and they're



with us for life.



But then, later in our schooling, when we pick up



The Mighty Question Mark


5



new symbols, we are sometimes uneasy about them



because they seem strange and unnatural, not like



the ones we learned as small children. Yet why



shouldn't we learn new symbols to express new



ideas? And why should we hesitate to treat the



new symbols as boldly and as fearlessly as we treat



the old?



Let me show you what I mean. When we first



start learning arithmetic, what we need most of all



is practice, so that we will get used to handling



numbers. Consequently, we are constantly presented with numerous questions such as: How



much is two and two? If you take five from eight,



how much do you have left?



To write these questions down, it is natural to



use symbols. Therefore, on your paper or on the



blackboard will be written


2 + 2 =


8 - 5 =



and you will have to fill in the answers, which, of



course, are 4 and 3 respectively.



But there's one symbol missing. What you are



really saying is: "Two plus two equals  what?";



"Eight minus five equals  what?"



Well, you have good symbols for "two," "eight,"



"five," "plus," "minus," and "equals," but you



don't have a symbol for ' V h a t ? " Why not have
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one? Since we are asking a question, we might use



a question mark for the purpose. Then, we can



write



2 + 2 = ?



8 - 5 = ?



The ? is a new symbol that you are not used to



and that might make you uneasy just for that



reason. However, it is merely a symbol representing something. It represents an "unknown."



You always know just what 2 means. It always



stands for "two." In the same way + always



stands for "plus." The symbol ?, as I've used it



here, however, can stand for any number. In the



first case, it stands for 4; in the second case,  it



stands for 3. You can't know what it stands for,



in any particular case, unless you work out the



arithmetical problem.



Of course, in the cases given above, you can see



the answer at a glance. You can't, though, in more



complicated problems. In the problem



? equals a particular number, but you can't tell



which one until you work out the division. (I won't



keep you'in suspense because this is not a book of



problems. In this case, ? stands for 72.)
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thing out of nothing. Why put in the question



mark after all? Why not leave the space blank and



just fill in the answer as, in fact, is usually done?



Well, the purpose of symbols is to make life simpler.



The eye tends to skip over a blank space, and you



have no way of reading a blank space. You want



to fill the space with a mark of some sort just to



show that something belongs there, even if you



don't know exactly what for a moment.



Suppose, for instance, you had a number of



apples, but weren't sure exactly how many. However, a friend gave you five apples and, after that



gift, you counted your apples and found you had



eight altogether. How many did you have to begin



with?



What this boils down to is that some number plus



five equals eight. You don't know what that "some



number" is until you think about it a little. The



"some number" is an unknown. So you can write



? + 5 = 8



and read that as, "What number plus five equals



eight?" If you had tried to do away with symbols



such as a question mark and just left a blank



space, you would have had to write



+ 5 = 8



and you will admit that that looks funny and is
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hard to read. So the question mark, you see, comes



in handy.



Now would you be surprised to know that we are



already talking algebra? Well, we are. As soon as



we begin using a symbol for an unknown quantity,



we are in the realm of algebra. Most arithmetic



books, even in the very early grades, start using



question marks as I have been doing, and they're



teaching algebra when they do so.



But this is just arithmetic, you may be thinking.



Exactly! And that is what I said at the very



start. Algebra  is arithmetic, only broader and



better, as you will see as you continue reading



the book.



It teaches a way of handling symbols that is so



useful in considering the world about us that all of



modern science is based on it. Scientists couldn't



discuss the things that go on about us unless they



could use symbols. And even after they've done



that, they couldn't handle the symbols properly



unless they knew the rules that will be worked out



in this book.


INTRODUCING THE LETTER



Actually, the question mark is not a very good



symbol for an unknown. It's hard to read because



we usually come across it at the end of a question



where we don't read it. And if we force ourselves



The Mighty Question Mark 9



to read it, the result is a three-syllable phrase:



"question mark."



The natural symbol to use would be some letter



because everyone is familiar with letters and is



used to reading them. The trouble with that is,



however, that until Arabic numerals were introduced, people used letters as numerical symbols.



The Roman system was to use V for "five," X for



"ten," D for "five hundred," and so on. If you



tried to use letters to represent unknown values as



well, there would be endless confusion.



Once the Arabic numerals came in, however, that



freed the letters for other uses. Even so, it took



centuries for mathematicians to think of using the



letters. (Believe it or not, it is very hard to think



of good symbols. And often the lack of a good



symbol can delay progress in human thought for



centuries. A little thing like writing 0 for "zero"



revolutionized mathematics, for instance.)



The first person to use letters as symbols for



unknowns was a French mathematician named



Francois Vieta (fran-SWAH vee-AY-ta). He did



this about 1590 and is sometimes called "the father



of algebra" because of it.



Of course, there is still the chance of confusing



letters that stand for unknown quantities with



letters that form parts of words. For this reason, it



quickly became customary to use the letters at the
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end of the alphabet to symbolize unknowns. Those



letters were least frequently used in ordinary words,



so there would be least chance for confusion. The



least-used letter of all is  x, so that is used most



commonly to symbolize an unknown.



To allow even less chance of confusion, I will



write  x and any other such symbol for an unknown



in italics throughout this book. Thus, when the



letter is part of a word it would be "x"; when it is



a symbol for the unknown it will be  x.



Now, instead of writing "? + 5 = 8," we would



write "x + 5 = 8."



Do you see what an improvement this is? First



of all,  x is a familiar symbol, which we are used to



reading and which can be said in one syllable, "eks."



Of course, as soon as some people see the  x they



feel frightened. It begins to look like algebra. But



it's just a symbol doing the same job as the ? that



is to be found in all elementary arithmetic books.



It happens to be a "literal symbol" (one consisting



of a letter) instead of a numerical symbol, but the



same rules apply to both. If you can handle the



symbol 4, you can handle the symbol  x.
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Setting Things Equal


THE IMPORTANCE OF =



Now THAT we have  x, let's find out how



to handle it. Since I said, at the end of the last



chapter, that it could be handled in the same way



ordinary numbers are, let's start with ordinary



numbers.



Consider the expression



3 + 5 = 8



Notice, first, that it has an "equals sign" in it.



There are symbols to the left of the "equals sign"



and symbols to the right of it, and both sets of



symbols, left and right, represent the same quantity. The symbol to the right, 8, represents "eight."



The symbols to the left, "3 + 5," represent "three



plus five," and that comes out to "eight" also.



Whenever you have an "equals sign" with symbols



on both sides, each set of symbols representing the



same quantity, you have an "equation." (This



word comes from a Latin word meaning "to set



equal.") The word "equation" may make you
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think of "hard" mathematics, but you can see that



as soon as the school child works out the simplest



sum, an equation is involved.



Of course, in order for a set of symbols to make



up an equation, they must represent equal quantities on both sides of the equals sign. The expression, 4 + 5 = 8, is  not a true equation; it is a



false one. In mathematics, naturally, we try to



deal with true equations only.



So let's switch our attention now to an equation



which has a literal symbol in it, as is the case with


x + 5 = 8



The symbol  x can represent any number, to be



sure, but when it is part of an expression containing



an equals sign, it is only reasonable to want it to



express only those numbers that make a true equation out of the expression. If, in the expression



above, we decide to let  x represent "five," then we



can substitute 5 for  x and have the expression



5 + 5 = 8, which is not a true equation.



No, there is only one number that can be represented by  x in the expression if we are to make an



equation out of it, and that is "three." If we substitute 3 for  x, we have the expression 3 + 5 = 8,



which is an equation. No other number substituted



for  x will do.
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Of course, that is only what  x is equal to in this



particular expression. It may equal something else



entirely in other expressions.



If  x + 17 = 19, then  x = 2; if  x + 8 = 13, then


x = 5, and so on. In each case you must pick the



one number for  x that makes an equation out of



the expression.



SOLVING FOR  X



But how do you pick a proper number for  x when



the equation becomes comphcated? It is easy to



see that  x must be equal to 3 in the expression


x + 5 = 8, because we know at^once and with



hardly any thought that 3 + 5 = 8. But suppose



we had the expression  x + 1865 = 2491. How do we



pick the proper value of  x in that case?



We could try different numbers one after the other



and wait until we happened to hit one that would



make an equation out of the expression. If we were



lucky, we might eventually happen to light on the



number 626. If we substitute it for  x, we have



626 + 1865 = 2491, and behold, this is an equation. Hurrah! We now know that  x = 626, and we



have solved the equation.



Mathematicians, however, hate to use hit-andmiss tactics as a method of solving an equation.



It's too uncertain and takes too long. Besides,
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there are methods for solving an equation that are


not hit-and-miss. There are  rules for solving equations. *



The rules tell you how to rearrange an equation so



that it becomes easier to solve for  x. There are



numerous ways of rearranging an equation, but



there is one thing you must always be careful of.



In rearranging an equation, you must always keep



it a true equation! Whatever you do, you must



always see to it that the symbols on the left side



of the equals sign represent the same quantity as



those on the right side.



* About 825, some of these rules were first presented



in a book written by an Arabian mathematician named



Mohammed ibn Musa al-Khowarizmi. The name of



his book, in Arabic, is "ilm al-jabr wa'l muqabalah,"



which means, in English, " t h e science of reduction and



cancellation." Reduction and cancellation were the



methods he used to deal with equations, you see.



Al-Khowarizmi didn't use the symbols we use today,



but his methods for dealing with equations so



impressed Europeans when they first obtained translations of his book t h a t the subject of handling equations is still called "algebra," which is a mispronunciation of the second word in the book's title.
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One way of rearranging an equation without



making it false is to add the same quantity to both



sides, or to subtract the same quantity from both



sides. We can see examples of this clearly if we



use only numerical symbols. For instance, since



3 + 5 = 8, then



3 + 5 - 4 = 8 - 4



and



3 + 5 + 7 = 8 + 7



In the first case, both sides of the equation equal



four; in the second, both sides equal fifteen.



Well, anything that applies to numerical symbols



applies also to literal symbols. (This is the key to



understanding algebra.) If we say that  x + 5 = 8



is an equation, then x + 5 + 3 = 8 + 3 is also



an equation, and so is  x + 5 — 2 = 8 — 2.



Now suppose, in this particular case, we subtract five from each side of the equation. We begin



with  x + 5 = 8 and, subtracting five from each side,



we have



x + 5 - 5 = 8 - 5



But if we add five to any quantity, then subtract



five, we are left with the quantity itself. It's like



taking five steps forward, then five steps backward;



we end where we started. Thus, 3 + 5 — 5 = 3;



17 + 5 — 5 = 17, and so on.



16


A L G E B R A



Consequently,  x + 5 - 5 =  x, and when we say



that  x + 5 - 5 = 8 — 5, we are actually saying


x = 8 - 5.



What we have worked out, then, is this:



If  x + 5 = 8



then  x =8 — 5



We seem to have rearranged the equation by



shifting the 5 from the left side to the right side.



Such a shift is called a "transposition" (from Latin



words meaning "to put across"), but please be



very careful to notice how it came about. We



didn't really move the 5; what we did do was to



subtract a 5 from both sides of the equation, and



the effect was as though we had moved the 5.



Nowadays, mathematicians like to concentrate



on subtracting equal numbers from (or adding



equal numbers to) both sides of an equation and let



what seems to be the transposition take care of



itself. However, as one gets used to handling equations, it begins to seem a waste of time always to



add and subtract numbers when the same result



arises by just shifting a number from one side of the



equation to the other. I will do this throughout the



book and I will talk about "transposing" and



"transposition." I hope you will continue to think



of such a way of treating equations as nothing more



than a short cut, and remember that what I am
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really doing is subtracting equal numbers from (or



adding equal numbers to) both sides of the equation.



Notice also that when I transposed the 5 in the



equation I used above as an example, the plus sign



changed to a minus sign. This shows one of the



dangers of shifting numbers without stopping to



think of what you are really doing. If you merely



shift a 5, why should the plus sign be affected? But



if you subtract 5 from both sides of the equation,



then the plus sign automatically becomes a minus



sign as the 5 seems to shift.



What if we had started with the equation


x - 5 = 8



We can add 5 to both sides of the equation and keep



it true, so that x — 5 + 5 = 8 + 5. But since


x — 5 + 5 =  x (if you go backward five steps, then



forward five steps, you end in the starting place)



then


x = 8 + 5



Again, it is as though we Jiad shifted, or transposed, the 5, and again we have changed the sign,



this time from minus to plus.



Now addition, represented by the plus sign, and



subtraction, represented by the minus sign, are



examples of "operations" performed upon numbers,



whether represented by numerals or by letters.
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These operations are constantly used in arithmetic



and also in algebra, so they may be called "arithmetical operations" or "algebraic operations." We



are concentrating on algebra in this book, so I will



speak of them as algebraic operations.



Addition and subtraction, taken together, are



examples of "inverse operations," meaning that one



of them undoes the work of the other. If you add



five to begin with, you can undo the effect by subtracting five afterward. Or if you subtract five to



begin with, you can undo that by adding five afterward. We have just had examples of both.



You can see then that transposition changes an



operation to its inverse. An addition becomes a subtraction on transposition, and a subtraction becomes



an addition.



Do you see why all this should be helpful? Let's



go back to the big-number equation I used near the



beginning of the chapter. It was



x + 1865 = 2491



By transposition, the equation becomes


x = 2491 - 1865



The expression on the right side of the equation


«
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is now ordinary arithmetic. It can be easily worked



out to 626, so we ean write


x = 626



and we have solved for  x not hit-and-miss, but by



the smooth working out of an algebraic rule. In the



same way, the equation  x — 3489 = 72 becomes, by



transposition,  x = 72 + 3489, so that  x works out



to be equal to 3561.



But how can you be sure you have solved the



equation? How can you feel certain that you can



trust the rules of algebra? Whenever you have



obtained a numerical value for  x in however complicated an equation and by however complicated



a method, you should be able to substitute that



numerical value for  x in the original equation without making nonsense of it.



For the equation  x — 3489 = 72, I have just



worked out the value of  x to be 3561. Substituting that for  x in the equation, we have



3561 — 3489 = 72. Common arithmetic shows us



that this is an equation, so our value for  x is correct.



No other numerical value would have made an



equation out of this expression.



Now that we have a rule, how is it best to state



it? I have been using particular numbers. I have



said that if you begin with  x + 5 = 8, you can
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change that to  x = 8 — 5, and if you begin with


x + 1865 = 2491, you can change that to x =



2491 — 1865. However, when you put a rule that



way there is always the danger that you might be



giving the impression that the rule holds only for



the particular set of numbers you have used as



an example.



One way of trying to avoid that would be to list



the rule for all possible sets of numbers, but no one



would be foolish enough to try that. There is an



endless group of sets of numbers and such a task



would never be finished. Instead, we can turn to the



use of symbols again.



Suppose we let  a and  b stand for a pair of numbers.



They might stand for 1 and 2, or for 3 and 5, or for



75 and 8,358,111 — any pair of numbers at all.



Then we can say that one rule covering the handling



of equations is this:



If  x +  a =  b



then  x =  b —  a



And if  x — a =  b



then  x =  b +  a



Now, you see, the rule covers not just particular



sets of numbers, but any set. We have used general



symbols, instead of particular numerals.
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Have I gone too far now? I have said that  a and


b can stand for any numbers, so suppose I let  a



stand for 8 and  b stand for 3. Now the general



equation  x +  a = b becomes  x + 8 = 3. The rule



of transposition lets the equation be changed to


x — 3 — 8, and the question is: What does 3 — 8



mean?



The early mathematicians considered expressions



of the type of 3 — 8 to have no meaning. How can



you take eight away from three? If you only have



three apples, how can anyone take eight apples



from you? What they decided, then, was that an



equation such as  x + 8 = 3 had no solution for  x



and they refused to work with such equations.



This will not do, however. Mathematicians hate



to be in a position where they are faced with an



unknown for which they can find no solution.



Sooner or later, one of them will work up a system



which will allow a solution. In this case, the



mathematician to do so was an Italian named



Geronimo Cardano (kahr-DAH-no), back about



1550.  f



The system is simple enough. If you have three



apples, it  is possible for someone to take eight



apples from you. All that has to happen is for you
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to give him the three you have and agree to owe



him five more. You must assume a debt.



In the same way, if you are at the starting post



of a race, take three steps forward, then eight steps



backward, you end up five steps behind the starting post.



All you need is some way of showing numbers that



are less than zero; that represent a debt; that mark



a position behind the starting post. Cardano



pointed this out carefully. Since such numbers are



come across in the process of subtraction, the minus



sign is used to distinguish them from ordinary



numbers.



Thus 3 - 8 = - 5 . If x = 3 - 8, then  x = - 5 .



Cardano's system produced a reasonable solution



for  x in such cases.



Numbers with a minus sign, which symbolize



quantities less than zero, are called "negative



numbers." The word "negative" comes from a



Latin word meaning "to deny." That shows how



reluctantly mathematicians came to use such numbers even after they realized they had to, unless



they wanted to leave certain equations unsolved.



It was as though they were still denying that such



numbers really existed.



Ordinary numbers, symbolizing quantities greater



than zero, are called "positive numbers." When
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you want to show beyond the shadow of a doubt



that a number is a positive number and not a



negative one, you can put a plus sign before it.



This is done because, in the process of addition,



only positive numbers ever arise out of positive



numbers. Instead of writing simply 5, you might



write + 5 .



Positive numbers, however, were used for so



many centuries before negative numbers were
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accepted — and, what's more, positive numbers are



still used so much more than are negative numbers



— that everybody takes the plus sign for granted.



Whenever you see a number without a sign, you



can safely assume it is a positive number. This



means that if you want to use a negative number,



you  must put a minus sign before it, or everyone



will take it for a positive number.



There is one drawback to this particular system



of signs and that is that we are making the same



sign do two different jobs, which can be confusing.



The sign + is used to indicate the operation of



addition, in which case it is properly called the



"plus sign." It is also used to indicate a number to



be positive, in which case it should be called the



"positive sign." In the same way, the minus sign



should be called the "negative sign" when it is



used to indicate a negative number.



One reason why we can get away with letting



these symbols do double duty is that the positive



sign (which is used so much more than the negative



sign) is generally omitted, so that we're not even



aware of it. It makes us think the plus sign is all



there is. But let's try to write an equation with the



positive signs included.



For instance, the equation  x + 3 = 5 should



really be written


(+x) + (+3) = (+5)
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We use the parenthesis to show that the + symbol



inside it belongs to the number and is a positive



sign. The parenthesis hugs symbol and number



together, so to speak. The + symbol between the



parentheses is a true plus sign and signifies the



process of addition.



Let's see how this works out if we use negative



numbers. Suppose we have the equation


(+x) + (-3) = (+5)



Well, when we add a negative number to something, we are adding a debt, so to speak. If I give



you a three-dollar debt, I am adding that debt to



your possessions, but that is the same as making



you poorer by three dollars. I am taking three



dollars from you. There the equation can also be



written


(+x) - (+3) = (+5)



Very much the same thing happens, if we subtract a negative number, as in


(+x) - (-3) = (+5)



If I take a three-dollar debt away from you by



offering to pay it myself, you are automatically



three dollars richer. It is as though I had given



you three dollars in cash. So this equation can



be written


(+x) + (+3) = (+5)
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Now let's make this as simple and as familiar in



appearance as possible by leaving out the positive



signs and the parentheses that go with them.



Instead of saying that  (+x) + ( — 3) is the same as


(+x) — (+3), we will say that


x+ ( - 3 ) =  x - 3



This looks like an equation, but it is more than



that. An ordinary equation, such as  x + 2 = 5, is



true only for a particular value of  x; in this case



only for  x = 3.



The statement that  x + (—3) is the same as


x — 3, however, holds true for all values of  x. No



matter how much money you have, in other words,



adding a three-dollar debt is the same as taking



away three dollars in cash.



Statements which hold true for all possible values



of  x are called "identities." Often, but not always,



a special sign is used to indicate an identity, and I



will make use of it whenever I want to show an



identity. The "identity sign" consists of three short



dashes, =, a kind of reinforced equality, so to



speak. It is read "is the same as" or "is identical



with."



So we can write:  x + (—3)  = x — 3, or  x —



( - 3 )  = x + 3.



To make the rule general, we should avoid using
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particular numbers. It works for all numbers and



we should therefore use general symbols, such as



the letter a, and say


x +  (—a) = x —  a


x — (—a) = x +  a


AVOIDING THE NEGATIVE



This way of switching from negative to positive



comes in handy when negative numbers occur in



equations and must be dealt with. Suppose you had



the equation  x + ( — 3) = 5. You would transpose



the —3, changing the addition to a subtraction



(it is the sign of the operation that is changed, not



the sign of the number) and get  x = 5 — (—3).



This can at once be changed to  x = 5 + 3,



which comes out to 8.



Or you could tackle the equation before transposing. Keeping the rules of signs in mind, you



could change  x + (—3) to i-( + 3 ) , which, of



course, you would write as simply  x — 3, so that



the equation becomes  x — 3 = 5. Transposing, you



would get  x = 5 + 3, which again comes to 8.



You see, if you use algebraic rules properly, the



value of  x will always come out the same, no matter



what route you take to arrive at that solution.
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If you work out an equation one way and come out



with  x = 6, then work it out another way and come



out with  x = 8, you can be sure that you have made



a mistake in handling the rules.



Sometimes, in working with complicated equations, it is not easy  to see where a mistake in



handling the rules was made. Then it seems as



though one can use the rules to show something



that is nonsense; that 1 = 2, for instance. Such



an apparent contradiction is called a "fallacy,"



from a Latin word meaning "deceive." Professional mathematicians working out new advances



are particularly anxious to avoid fallacies, but once



in a while even the best of them may fall victim



to one.



The rules governing positive and negative signs



offer another advantage. They make it possible to



avoid subtraction altogether by changing all subtractions to additions. Instead of ever writing


x — 3, we can always write  x + ( — 3).



The point in doing this is that some of the rules



governing addition are not the same as those



governing subtraction. I can show this by first



considering operations involving numerical symbols



only.



It doesn't matter, does it, in what order



given numbers are added? Thus, 5 + 3 = 8, and



3 + 5 = 8. If Joe gives you $5 and Jim gives you
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$3, you don't care which one pays up first; you end



with $8 total either way. Using general symbols,



you can say


a +  b = b +  a



But how about subtraction? If 5 — 3 = 2, does



3 — 5 give you the same quantity? It does not.



As you now know, 3 — 5 = — 2. The two answers



are not the same and therefore



where, as you can probably guess, the symbol



means "is not identical with."*



You see, then, that if you're handling only additions, you can relax as far as the order in which the



symbols are taken is concerned. If you're handling



subtractions, you have to be careful about the



order, or you may find yourself coming out with



the wrong answer.



This is not likely to happen in ordinary arithmetic, where you would probably never write



3 — 5 when you mean 5 — 3. However, in complicated equations where arrangements and rearrangements are constantly being made, it is only too



* Of course, if o and 6 represented the same number,



then  a — b = b —  a, because both expressions would



equal 0. This, however, is not an important exception.



It is what mathematicians call "trivial."
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easy to shift the order of the various symbols without noticing, You might then find yourself in the



middle of a fallacy.



To avoid trouble, you might eliminate all subtractions by changing expressions like  a — b to


a +  ( — b). Then the order makes no difference.



If you write an expression as  x — 3, for instance,



you must never write it as 3 —  x. If you write it



instead as  x + (—3), you can write it as ( — 3) +  x



with complete ease of mind.



This method of changing subtraction to the addition of negative numbers is called "algebraic



addition" simply because one first comes across it



in algebra. It is really no different from ordinary



addition, however, once you have learned to handle



positive and negative signs.



Incidentally, when a negative number is the first



symbol in an expression, it is not necessary to use



the parenthesis since there is no sign for any operation preceding it, and no chance of confusing the



negative sign with a minus sign. For that reason,


x + (— a) is always written with the parenthesis,



but (—a) +  x is usually written as simply —  a +  x.











3



More Old Friends


A NEW KIND OF SHIFT



IN THE previous chapter, all I talked about



were two algebraic operations, addition and subtraction. Now it is time to pass on to two more,



multiplication and division. These two operations



are also old friends, frequently used in ordinary



arithmetic, and used in exactly the same way



in algebra.



To show you how these new operations might



arise as part of equations, suppose that you buy a



number of oranges for You don't know exactly



how many oranges there are in the bag, but you



know that these particular oranges are apiece.



Therefore, you know that the number of oranges,



whatever that number is, multiplied by 4, will give



the answer 48. If you let the number of oranges



be represented by  x, you can write the equation



Now we need to solve for  x. But how does one
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go about this where the multiplication sign (X)



is involved?



In the previous chapter, remember, I said that



an equation remains an equation if the same number



is added to both sides or subtracted from both



sides. Well, it is also true that an equation remains



a true equation if both sides are multiplied by the



same number. For that matter, both sides may



also be divided by the same number (with the one



exception that neither side can be divided by zero,



as I shall explain shortly). Suppose, for instance,



we divide both sides of the equation just given by 4.



We can write the result this way, then:



where -5-is the symbol for division.



Now if we multiply a number by a particular



quantity, then divide the product by that same



quantity, we are back to the original number.



(If you're in doubt, try it on various numbers.)



Or, to put it another way, the expression 4 -f-4 is



equal to 1, so that is equal to



Then, since any number, known or unknown, multiplied by 1, remains unchanged,



The equation becomes, therefore,
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A very similar situation works itself out if we



have an equation involving a division such as



Suppose we multiply both sides of the equation



by 4. Then we have



Dividing by 4, then multiplying the quotient by 4,



gives us back the original  x, of course, so that the



equation becomes



Since division undoes the effect of multiplication,



and vice versa, these two are inverse operations



and form a pair after the fashion of addition and



subtraction.



If you go over what has been done so far in



this chapter, you will see that, just as in the case



of addition and subtraction, handling multiplications and divisions involves what seems a shift in



numbers from one side of the equation to the



other. This is so like the transposition I mentioned



in the previous chapter that I will call this shift by



the same name. This new kind of transposition is



still a short cut and nothing more. Remember that



what is really involved is multiplication (or division)
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by equal numbers on both sides of the equation.



And again, this new transposition changes an operation into its inverse; multiplication is changed to



division, and division is changed to multiplication.



We can make a general rule of this by using



letter symbols.



In dealing with division, by the way, mathematicians have a special rule that is quite important,



and I had better tell you about it now. This rule



absolutely forbids division by zero. Dividing by



zero makes no sense, you see, for ask yourself what



I or any number, for that matter,



divided by zero. That's like asking how many



zeros must be lumped together in order to reach 5,



or 10, or any number. It's like asking how many



times you must put nothing into a pail in order to



fill it. These are senseless questions, you see, and



to avoid trouble, they should not even be asked.



In arithmetic, it is easy not to divide by 0, but in



algebra, there are dangers. Sometimes a number is



divided by a combination of literal symbols that



happens to equal zero without the mathematician
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noticing. If ordinary rules of algebra are applied



to such an expression, nonsensical answers are often



produced. In fact, a very common source of fallacies is the accidental division by zero somewhere in



the manipulation of the equations.



Consequently, when I use an expression such as



can represent any value at all, as is



usual with literal symbols. The symbol  a, however,



can only represent any value  except zero. This



must be kept in mind.


ELIMINATING THE CONFUSION IN SYMBOLS



Actually, the multiplication and division signs,



although common in arithmetic, are hardly ever



used in algebra. For one thing, the multiplication



sign is very much like an  x. This symbol of the



unknown is not used in ordinary arithmetic, so



there is no danger of confusion there. In algebra,



however, where  x is used in almost every equation,



the possibilities of confusion between  x and X are



very good.



There are other ways in which the operation of



multiplication is often symbolized. One is by the



use of a dot. Instead of writing  x X 4, we could



write This is often done in algebra, but hardly



ever in ordinary arithmetic, for to write 2 • 3 instead



of 2 X 3 is to raise the possibility of confusion with



the decimal point. To be sure, the decimal point is
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written at the bottom of the line, 2.3, while the



multiplication dot is centered, but if you are



reading rapidly you are very likely not to notice



the difference.



A still greater simplification is that of doing away



with a symbol for multiplication altogether. Suppose



you say "four apples." What you really mean is



"four times one apple." Similarly, you can speak



of 4 pairs or 4 dozen or 4 anything.



You could even write or speak of 4 6's. By that



you would mean 6 and 6 and 6 and 6, and if you



are interested in the total quantity, that is 4 X 6.



To speak of 4 6's is therefore much the same as



speaking of 4 X 6. The difficulty of doing this in



ordinary arithmetic, however, is that to write 4



6's is to risk a great chance of confusion with the



number 46.



In algebra, however, you can easily write 4  x's to



indicate There's no danger of confusion



there. You could even bring the 4 and the  x right



up next to each other without leaving any space



and still have no confusion; and you can leave out



the plural (saying "four eks" rather than "four



ekses"). In other words, can be written



simply 4 x and, in algebra, this is almost always



done. It will be done from here on, in this book.



In order to use this very convenient system even



when only numerals are involved, parentheses can
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be used. Each number involved in the multiplication is enclosed in a parenthesis showing that it is



a number all by itself; thus, (4)(6) or (46)(23). The



numbers are thus kept apart and cannot be 46 in



the first place or 4623 in the second. Sometimes



this is made more emphatic by using the multiplication dot and writing but this is not really



necessary.



I will indicate the multiplication of numerical



symbols by means of parentheses in this book



from now on, in order to avoid the multiplication



sign. This may seem strange to you at first, but



you will quickly grow used to it.



The ordinary division sign in arithmetic also



allows room for confusion. It is too like the minus



sign, differing by only two dots which are easily



overlooked. And if the two dots smudge a little,



the sign can become similar to the plus sign.



In algebra, then, it is usual to indicate division



by drawing the two symbols together, with a line



between. The line may be either slanting or horizontal. The slanting line, /, is sometimes called a



"shilling mark" because the British use it as a



symbol for their coin, the shilling. The horizontal



line, —, used in division may look even more like



a minus sign than does the ordinary division sign,



but there are crucial differences. A minus sign lies



between two numbers, one on its left and one on
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its right. The horizontal division line separates



two numbers above and below, and there is actually



no danger of confusion at all.



Using this system for symbolizing multiplication



and division, we can write the general rules for



handling them in equations as follows:



If  ax = b



then  x = ~


a



And if - =  b


a



then  x = ba



Compare these with the rules given on page 34 and



you will see that I have only changed the system of



indicating the operations and nothing more.



Let me now explain something about multiplication and division that resembles a point I have



already made in connection with addition and



subtraction.



When you multiply two numbers together, it
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doesn't matter which number you multiply by which.



Thus, (6) (8) = 48 and (8) (6) = 48 also. This is a



general rule that can be written



It follows then that yet although these



two expressions have identical values, mathematicians always write  Ax and never write  xA. It isn't



incorrect to write  xA; it just isn't done. You



might almost think of it as a kind of mathematical



etiquette, like not using the wrong fork for salad,



even though you can eat the salad easily with it.



Whenever mathematicians, or any other group



of people, in fact, all make use of a particular



way of doing things when another way might do



just as well, they are adopting a "convention."



For instance, any letter, such as  q or m or even a



made-up sign such as ould do to represent an



unknown quantity, but it is conventional, the world



over, to use  x.



Such conventions are by no means a sign of



sheeplike behavior. They are an important convenience. They make certain that all mathematicians everywhere speak the same mathematical



language. It would be troublesome, time-wasting,



and a source of confusion to have one mathematician puzzled by the writings of another just because
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each was using a different convention. They would



both be right, perhaps, but neither would be clear



to the other.



As for division, here, as in the case of subtraction,



the order of the number does make a difference.


MANEUVERING FRACTIONS



We seem to have stumbled into fractions* here,



for certainly expressions such as look like



fractions. And, as a matter of fact, they are



fractions.



The solution of any equation involving a multiplication or division is quite likely to introduce a



fraction. Sometimes such a fraction can be con* I am going to assume in this book t h a t you know



how to handle fractions and decimals in ordinary



arithmetic. If, by any chance, you feel a little shaky



or just want to brush up on general principles, you



could glance through Chapters 4 and 5 of  Realm of


Numbers.
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verted to an ordinary "whole number" or "integer."



Thus, earlier in the chapter, we came up against



the fraction which can be written as the whole



number 12. This is the exceptional case, however.



Suppose, instead, that we have the equation



By transposing, we have



The fraction cannot be changed into a whole



number. The best you can do is write it as



A fraction can also be referred to as a "ratio,"



and it is important to remember that whole numbers



can also be written as fractions, or ratios. The



number 12 can be written



For that reason, whole numbers and fractions, both



positive and negative, are lumped together as



"rational numbers," that is, numbers which can be



expressed as fractions, or ratios.



Fractions in algebra are handled in the same



way as in arithmetic. For instance, equations



involving the addition and subtraction of fractions



introduce nothing new at all.
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(It might suddenly occur to you that by the



algebraic system of denoting multiplication, a number like 3  - might signify 3 multiplied by  - . However, it doesn't. In arithmetic, 3  - means 3 plus  - ,



and algebra accepts that as too familiar to change.



To write 3 multiplied by  - without using the multiplication sign, parentheses must be used thus,



Where literal symbols are used, we need



not be so careful, since there is nothing in ordinary



arithmetic for ;o be confused with. That expression means  x multiplied by - , but, of course, it is



always



alway writte



s



n  j



n  x


 j b


 x



y



 b convention



y



.



 convention I



.



f



 I  yo



f


u



 yo do want
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to indicate an addition, you write it out in full,



Now suppose you find yourself involved in the



multiplication of a fraction. Such a situation might



arise as follows. You are told that your share of a



certain sale will amount to of the total. The sale



is made and you are given $18. From that you can



calculate what the total sale amounted to. If you



let the unknown value of the total sale be represented by  x, then of that is 18 and you can write the



equation



There are several ways of proceeding. First, any



fraction multiplied by its reciprocal* is equal to 1.
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equation becomes simply  x, and by working out the



right-hand side in ordinary arithmetic, we find that


x equals 45. That is the full value of the sale, for



The general rule for such a situation, then, is that



a fraction involved in a multiplication, when transposed, is converted to its reciprocal, thus:



It may seem to you that here is a case where a



multiplication of a fraction is left a multiplication



of a fraction after transposition, instead of being



converted to the inverse operation. However, there
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r



is an explanation for this. An expression like



involves both a multiplication and a division since



it stands for  a multiplied by  x and then the product



divided by  b. (If you doubt this, check an expression involving numerals, such as ind see if



the answer isn't obtained by working out 2 multiplied by 6 and then the product divided by 3.)



When the fraction is transposed, the multiplication



becomes a division and the division becomes a



multiplication. It is because of this  double change



to the inverse that there seems to be no change



at all.



This can be made plainer by handling the fraction one piece at a time. Since ( e ) x signifies 2


2x



multiplied by  x divided by 5, it can be written -=-,


5



and the equation ( - J  x = 18 becomes
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and then transpose the 2, so that



Or, if you preferred, you could first transpose the



2 to give



(or 45)



Or perhaps you would like to work with decimals.



The fractioi is equal to 0.4 in decimals, so you



can say



If you multiply both sides of the equation by 10,



you can get rid of the decimal point since



is equal to 4. Therefore you have



4x = 180



And, by transposing



The important point here, once again, is that no



matter what rules you use for handling the equa-


x = (-5)(3)



and what does that mean as far as the value of  x



is concerned?



Now (—5) (3) indicates a multiplication of —5



by 3. It is the equivalent of tripling a five-dollar



debt. If three people each have a five-dollar debt,



the total for the group is a fifteen-dollar debt.



Therefore ( — 5)(3) is equal to —15 and that is the



value of  x in-the equation above. If you had taken



five debts of three dollars each, you would still have



ended with a fifteen-dollar debt, so (5) ( — 3) is also



equal to —15.



Using letter symbols to make the rule general:
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This does not use up all the variations that are



possible. What if both numbers being multiplied



are negative? For instance, in the equation



— 5, transposition shows that  x = (— 5) (— 3). How



do you evaluate  x now?



Unfortunately, there is no easy way of seeing the



meaning of such a multiplication of a negative by



a negative. It might represent a debt of five dollars



held by each of —3 people, but what on earth can



we mean by —3 people?



Instead of trying that, let's take a closer look at



the three rules for multiplication of signs I have



already given you. Notice that when a quantity is



multiplied by a positive number, the sign of the



product is the same as the sign of the original



quantity. If -fa is multiplied by a positive number,



the sign of the product is +; while if —a is multiplied by a positive number, the sign of the product



is —.



It sounds reasonable to suppose that when a



quantity is multiplied by a negative number, the



sign of the product is the reverse of the sign of the



original quantity. We have one case in the three
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rules where +o is multiplied by a negative number



and the sign of the product is —. If that is so,



then when —a is multiplied by a negative number,



the sign of the product should be +. This conclusion has proven satisfactory to mathematicians, so



we can say



The same rule of signs holds in division as in multiplication. This can be shown in several different



ways, but I shall do so by making use of reciprocals.



From ordinary arithmetic, we know that  -%• = 5



and that (10)  (^j = 5. Notice, tj», that - is the



reciprocal of 2 (which can be written, remember,


2\
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In short, you can try any number of such cases



and you will always find that it doesn't matter



whether you divide a quantity by a particular



number or multiply that quantity by the reciprocal



of that particular number. Either way, you get



the same answer. Speaking generally:



This means that just as we can always turn a



subtraction into an addition by changing the sign



of the number being subtracted, so we can always



turn a division into a multiplication by taking the



reciprocal of the divisor.



If we have the expression , which involves



the division of a negative number by a positive



number, we can change it to which



involves the multiplication of a negative number



by a positive number. Since must equal



— 3 by the rule of signs (negative times a positive



equals a negative), then must also equal —3.



Thus, the rule of signs must be the same in



division as in multiplication. If it were not, we
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would be stuck with two different answers according



to the method we used to obtain those answers.



We might get a +3 if we divided, but a —3 if we



used the reciprocal rule and then multiplied.



The rule of signs would then be "inconsistent"



with the reciprocal rule, and this is a fatal sin in



mathematics. Mathematicians feel they must be



"consistent" at all costs. All their rules must fit



together, and no one rule must contradict any other.



In the interest of consistency, then, the rule of



signs in divisions can be expressed thus:


4



Mixing the Operations


MORE THAN ONE



So FAR, I have kept my equations as



simple as I can. I have used no expression with



more than one plus sign or one minus sign in it.



There is no rule, though, that makes this necessary.



I have complete liberty to write an expression such



as  x + 3 + 2 — 72, or one of any length, if I wished.



Each of the items being added or subtracted in



such an expression is called a "term." It doesn't



matter whether the item is a numerical symbol or



a literal symbol. In the expression I have just



used, 72, 2, 3, and  x are all terms.



An expression which is made up of a single term



is called a "monomial." (The prefix "mono-" is



from the Greek word for "one.") Expressions with



more than one term are named by the use of prefixes



representing the particular number (in Greek) of



terms involved. An expression with two terms, such



as  x + 3, is a "binomial," one such as  x + 3 + 2



is a "trinomial," one such as x + 3 + 2 — 72 is a



"tetranomial," and so on. It is usual, however, to
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lump together all expressions containing more than



one term as "polynomials," where the prefix "poly-"



comes from the Greek word for "many."



In ordinary arithmetic, little attention is paid to



the number of terms in any expression, since by



adding and subtracting they can all be reduced to



a single term anyway. Faced with an expression



like 17 + 5 - 1 6 + 1 2 - 3 , it is the work of a



moment (thanks to a few years of painful drill in



the first few grades) to convert it into the single



term 15.



In algebra, however, where literal terms are



involved, matters aren't quite that simple. All is



not lost, though. For one thing, the numerical



terms, at least, can be combined into a single



term. The equation x + 3 + 2 + 5 = 17 + 4 -9



can be changed without trouble to  x + 10 = 12.



As for literal terms themselves, where more than



one is involved in a particular expression, something can be done where only one kind of literal



symbol is involved. If you are faced with  x +  a,



to be sure, there is no way of performing the addition until you have decided what quantities  x and


a stand for. If, however, you are faced with  x +  x,



you don't have to know what  x stands for.
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64x. For that reason, an equation like this



works out at once to


4x = 16



The terms  2x and and others like them,



consist of two parts, one numerical and one literal.



It is customary for mathematicians to refer to the



numerical part as the "coefficient," a word first



used for this purpose by no less a person than



Vieta, the father of algebra.



Letter symbols can also be considered coefficients,



so that in the term  ax, a is the coefficient. The



coefficient is always considered as being involved



with the unknown by way of a multiplication,



never by way of a division. A term that involves



a division must be converted to a multiplication



by the rule of reciprocals before you are safe in



deciding on the coefficient. For instance should



be written and then you will see that is the



coefficient and not 2.



As a matter of fact, even the expression  x can



be considered as having a coefficient. After all, it



can be written  lx just as a book can be referred



to as 1 book. The coefficient of  x is therefore 1.
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Where the coefficient is 1, it is generally omitted



so that you never write  2x —  lx =  lx, but always


2x —  x =  x. But the coefficient is there just the



same and it shouldn't be forgotten, because we'll



have occasion to think of it before the book is done.



But now a thought may occur to you. A term



like  2x involves an operation, that of multiplication.



An expression such as  2x + 3 involves two operations, one of multiplication and one of addition.



It is 2 times  x plus 3.



Does that mean that three terms are involved?



When I first spoke of terms, I mentioned them as



items that were being added or subtracted. What



about items that are being multiplfed or divided?



To answer these questions will require us to look



into these algebraic operations a little further.


WHICH COMES FIRST?



We have already decided that when two quantities are added, it makes no difference which is added



to which; in other words, that But



what if more than two quantities are being added?



If you try, you will see that in an expression like



8 + 5 + 3, your answer will be 16, in whatever



order you take the numbers.



In fact, you take it for granted that order makes



no difference in such cases. When you add a long



column of figures from the top down, you can check
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the results by adding it a second time from the



bottom up. You fully expect to get the same result



either way, provided you make no arithmetical



mistake, even though you've reversed the order the



second time.



If that is so, then the order doesn't matter in the



case of subtractions either, or where additions and



subtractions are combined,  provided all the subtractions are converted to additions by the use of



negative numbers, according to the method I described in Chapter 2. Thus, although



it is nevertheless true that 6 + (—3) = (—3) + 6 .



You can go through the same thing with multiplications and divisions. Try working out expressions



such as (8) (4) (2) and compare the answer you get



with that obtained in expressions such as (4) (8) (2),



(4)(2)(8), (8)(2)(4), (2)(4)(8), and (2)(8)(4). It will



be 64 in every case. If divisions, or multiplications



combined with divisions are considered, the same



thing holds. The order doesn't matter, provided



the divisions are converted to multiplications by the



use of reciprocals, according to the method 1



described in Chapter 3. Thus, although



The general rule is that the order in which operations are performed does not matter where only
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additions are involved, or where only multiplications are involved.



The next question, though, is, What happens if an



expression contains operations that are not only



additions and are not only multiplications, but contain some of both?



Let's take the simplest case, an expression that



involves one multiplication and one addition, and



let's use only numerical symbols to begin with.



In order to make things as clear as possible, I will



temporarily return to the use of the multiplication sign.



The expression we can consider is 5 X 2 + 3. If



we work out the operations from left to right, we



find that 5 X 2 is 10, and that 10 + 3 is 13. We



might want to check that answer by the same



method we use in checking the addition of columns



of figures; that is, by working it backward to see if



we get the same answer. Well, if we work it backward, 3 + 2 is 5, and 5 X 5 is 25.



The answers are not the same, since the expression



works out to 13 in one direction and 25 in the



other. There are no arithmetical errors here, but



we can't allow answers to change just by varying



the working methods of solving a problem. That



would be inconsistency. It is important to set up



some sort of system that will prevent that from



happening.
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The system now used (first decided upon about



1600) is to enclose in parentheses those operations



that ought to be performed first. The expression 5 X 2 + 3 might be written, for instance,



(5 X 2) + 3, in which case the multiplication is



carried out first so that the expression becomes



10 + 3 (with the parentheses disappearing once the



operation has been performed) or 13. If, instead,



the expression is written 5 X (2 + 3), the addition



is performed first and the expression becomes



5 X 5, or 25.



Now there is no inconsistency. Instead of a



single expression, we have two expressions which,



thanks to parentheses, can be written differently.



Each expression has only one answer possible.



Very complicated expressions, including many



additions and multiplications, can be handled by



setting up parentheses within parentheses. Usually



each set of parentheses is of a different shape for



the sake of clarity, but all have the same function.



The convention, then, is to perform the operations



of the innermost parentheses first and proceed outward in order.



If you have the expression



the innermost parenthesis contains the expression
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6 X 5, so that operation is performed first. It works



out to 30 and, with that parenthesis gone, what



remains is



The innermost parenthesis of those remaining



now contains the expression 4 + 30 — 12. Only



addition and subtraction are involved and it is no



great feat to reduce it to 22, so that what is left is



Now only multiplications are involved, and the



final value of the entire original expression is



therefore 8.



Where only numerical symbols are involved,



parentheses are easily removed by performing the



operations within them. In algebra, with its literal



symbols, parentheses cannot be removed that easily.



That is why the matter of parentheses is more



important in algebra than in arithmetic, and why



you generally don't encounter parentheses in any



important way until you begin the study of algebra.



Yet the same system applies to literal symbols



as to numerical ones. No new complications are


-



introduced. Consider the expression 6 X  x + 3.



If you want to perform the multiplication first,











6 0


A L G E B R A



you write the expression (6 X  x) + 3; and if you



want to perform the addition first, you write it



As you know well by this time, the multiplication



sign is generally omitted in algebraic expressions.



The two expressions just given can be written more



simply as (6x) + 3 when you want to indicate that



the multiplication is to be performed first, or as


6(x + 3) when the addition is to be performed first.



As usual, though, mathematicians omit symbols



when they can. In the expression 6JC, the two



symbols hug each other so closely that it seems



unnecessary to press them together even more



closely by means of a parenthesis. The parenthesis



is assumed and the expression  (6x) + 3 is written



simply  6x + 3; just as +5 is usually written simply



as 5, and  lx is written simply as  x.



This makes it all the more important, however,



to remember to include the parenthesis thus,


6(x + 3), when you want the addition performed



first. If the expression is written simply  6x + 3,



it is assumed as a matter of course that the parenthesis goes (invisibly, to be sure) about the  6x.



The same holds true for division. If you have the



expression you can write that either



depending on whether



you want the division or the subtraction to be



performed first. The algebraic way of writing these
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twp expressions should be



the former case, however, the 6 and the  x are again



so closely hugged that the parenthesis is omitted as



nonessential and the expression is written simply



As for the expression , the parenthesis can



be dropped because the mark is extended to cover



the entire expression  x — 1 in this fashion:



Now we have our answer as to what constitutes a



term. Any expression that does not include an operation, such as  x or 75, is a term. In addition, any



expression that includes one or more operations but



is enclosed in a parenthesis is a term. Thus,  x — 1



is an expression made up of two terms, but  (x — 1)



is made up of but a single term.



It is important to remember that multiplications



and divisions are treated as though they are enclosed



in parentheses even when those parentheses are not



written in. Thus,  6x is a single term, and



is a single term.


TRANSPOSING IN ORDER



Now we can talk about equations involving both



multiplication and addition, such as
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6x + 3 = 21



Here we are faced with a dilemma. If the equation were merely  x + 3 = 21, we would have no



problem. Transposing would make it  x = 21 — 3,



so that we see at once that  x equals 18.



If, on the other hand, the equation were simply



6a; = 21, transposition would set  x equal to



But in the equation both multiplication and addition are involved, and so the problem



arises as to which transposition to make first. If we



transpose the addition first and the multiplication



second, then:



But if we transpose the multiplication first and



the addition second:



Mixing the Operations 6 3



Now if the same equation is going to yield us two



different answers according to the method we use



to solve it, we are faced with an inconsistency that



must be removed. One or the other method must



be forbidden. To decide which method to forbid,



let's go back to our parentheses.



Remember that a multiplication in algebra is



always treated as though it were within parentheses.



The expression  6x + 3 could be more clearly written



as  (6x) + 3, which means we must get a numerical



value for  6x before we can add 3 to it. But we can't



get a numerical value for  6x because we don't



know what quantity  x represents.



The only thing we can do, then, is to leave the



expression  6x just as it is and to keep from breaking



it apart as long as there is an operation of addition



in the expression. To transpose the 6 would be to



break it apart, so this can't be done.



We can make a general rule, then. When one



side of an equation consists of more than one



term, we can transpose only complete terms. When,



however, one side of an equation consists of but a



single term, portions of that term can be transposed.



If we look again at the equation


6x + 3 = 21



we see that  6x + 3 contains two terms. The figure
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3 is a whole term by itself and can be transposed.



The figure 6, on the other hand, is only part of the



term  6x and cannot be transposed as long as more



than one term exists.



Therefore, we transpose the 3. That gives us


6x = 18. Now  6x is the only term on its side of the



equation and the 6 can be transposed. The answer



is that  x = 3, and it is the only answer. To work



the equation so that  x is made to be equal to



breaks the rules of transposition.



If, on the other hand, we had the equation


6(x + 3) = 21



we have the single term 6(x + 3) on the left-hand



side of the equation. Does that mean we can transpose either the 6 or the 3 at will? Well, remember



that the expression includes a multiplication and



therefore behaves as though it were written this



way:  [6(x + 3)]. This means, you will recall, that



the operation inside the innermost parenthesis,



which, in this case, is  x + 3, must be performed



first. Since this operation cannot be performed first



because a literal symbol is involved, the alternative



is to keep it intact the longest. In other words, if



operations are performed from innermost parentheses outward, transpositions must be performed



from outermost parentheses inward.
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So we transpose the 6 first, that being included



in the outermost parenthesis, and have



Now, with only the innermost parenthesis left



(which, however, is now omitted, because it is



usual practice to omit parentheses that enclose



entire expressions), we can transpose the 3:



By remembering the two rules:



(1) When more than one term exists, transpose



only entire terms;



(2) When a single term exists, perform transpositions from outermost parentheses inward;



you will always end up with the only possible solution for the equation. That, in fact, is the purpose



of the rules, to make sure that only one solution is



arrived at and to eliminate the possibility of wrong



turnings and consequent inconsistencies.



To be sure, it may now seem to you that solving



equations must become a matter of long brooding



while you count terms and locate parentheses.



Actually, believe it or not, this is not so. Once you



become accustomed to manipulating equations, you



get the hang of which transpositions come before


/
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which. The whole thing becomes so mechanical and



automatic that you never give the matter a thought.



Of course, the only way in which you can arrive



at such a happy state of affairs is to solve equation



after equation after equation. Practice makes perfect in manipulating equations just as in manipulating a piano keyboard.



It is for this reason that school texts in algebra



bombard the student with hundreds of equations to



solve. It may be hard for the student to realize


why there must be an endless drill while he is undergoing it, but that is like the finger exercises on the



piano. Eventually it pays off.



And, it stands to reason, the better you understand what you are doing and why you are doing it,



the more quickly it will pay off.


5
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Backwards, Too!


BOTH HERE AND THERE



So FAR, I have had literal symbols involved in algebraic operations on only one side of



an equation. There is no reason why matters should



be so restricted. Literal symbols could be present



on both sides. The  x's could be both here and



there, so to speak.



Here's an example of the type of problem that



would give you such a double-jointed situation.



Suppose Jim owns a certain number of books and



Bill owns twice as many. Jim buys five books to



add to his supply and Bill buys only one. They end



up with the same number of books. How many



did each have to begin with?



I started with the statement "Jim owns a certain



number of books," so let's call that "certain number"  x. Bill owns twice as many, or  2x. Jim buys



five books, making his total x + 5; while Bill buys



one, making his total  2x + 1. They end with the



same number so


2x + 1 =  x + 5
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This brings up a question at once. As long as I



kept literal symbols on one side of the equation



only, it may have seemed natural to keep that side



on the left. Now we have literal symbols on both



sides, so which side ought to be on the left? Might



I not have written the equation this way?


x + 5 = 2x + 1



And if I had, would it make any difference?



Perhaps this has never occurred to you as something to question. If 3 + 3 = 6, then surely



6 = 3 + 3. It can make no difference which way we



write it, can it? Or, if we want to make it a general



rule, we can say that if a = 6, then  b = a.



This is the sort of thing that is sometimes considered "obvious" or "self-evident." Everyone



accepts it without question. Such a self-evident



statement accepted by everybody is called an
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"axiom." I have used a number of others in this



book, too. For instance, the statement I introduced



in Chapter 2, that you can add the same quantity



to both sides of an equation and still have it an



equation, is another example of an axiom. This



could be put into words as "equals added to equals



are equal." It could also be put into the form of



general equations, thus: if  a = b, then a +  c =  b + c.



You may wonder why it is necessary to take any



special note of axioms if everyone accepts them.



Oddly enough, until nearly 1900 mathematicians



were a little careless about the axioms they used,



but then questions arose as td how much of the



mathematical system was really justified by logic.



Men such as the Italian mathematician Giuseppe



Peano (pay-AH-no) and the German mathematician



David Hilbert corrected this by carefully listing all



the axioms they were going to use. They then



deduced all the rules and statements of algebra



from those axioms only. Naturally, I don't try to



do anything of the sort in this book, but you might



as well know that it can be done. (Furthermore,



mathematicians began to consider axioms simply as



the basic beginnings for any system of orderly



thinking and didn't worry any longer about whether



they were "obvious" or not. Some axioms, actually,



are not at all obvious.)



Now let's go back to the equation
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2x + 1 =  x + 5



One thing we can do is to transpose the 1 from



the left-hand side of the equation to the right-hand



side, exactly as we have been doing all along. But



suppose that for some reason we wanted to transpose the 5 from the right-hand side to the left-hand



side instead, changing the operation to the inverse,



so that the equation reads


2x + 1 - 5 =  x



If you remember how I first showed that transposition could be allowed in the first place (in



Chapter 2), you will remember that I did it by



making use of the axiom "equals added to equals are



equal." This, of course, means that "equals subtracted from equals are equal," since a subtraction



is only the addition of a negative number.



We can make use of that axiom here, too. Suppose



we subtract 5 from each side of the original equation. We have



2x + l - 5 = x + 5 - 5



or


2x + 1 - 5 =  x



The same axiom, you see, that allows transposition from left to right, allows it also from right to
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left. We can do it frontward, and we can do it



backward, too!



There is no doubt, then, that we can maneuver



the numerical symbols either way and collect them



all on the left-hand side or on the right-hand side,



whichever suits our fancy. What about the hteral



symbols, though? So far in the book, I have not



transposed a hteral symbol.



But why not, if I wish? I said very early in the



book that both hteral and numerical symbols



represented quantities and that both were subject



to the same rules and could be treated in the same



way. If numerical symbols such as 1 or 5 can be



transposed, then a hteral symbol such as  x can be



transposed and that's that.



Therefore, in the equation


2x + 1 =  x + 5



let's transpose the 1 from left to right in the usual



manner and the  x from right to left in the backward



manner so that we have all the literal symbols on



the left side and all the numerical symbols on the



right side, thus:


2x - x = 5 - 1



In both cases, the operation was changed to the



inverse, so that both additions became subtractions.
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The equation now works out at a glance to



x = 4



and that is the solution of our problem.



What we have decided is that Jim owned 4 books



and that Bill owned twice as many, or 8. When Jim



bought 5 more books and Bill bought 1 more book,



they ended, exactly as the problem stated, with an



equal number of books, 9 apiece.



Does it strike you that this is a long and complicated way of solving the problem? Not at all. It



only seems long and complicated because I am



taking the trouble of explaining each step in detail.



Once you have the system of algebraic manipulation



down pat, however, you can go through such equations like a streak. In fact, an equation as simple as



the one with which I have been working in this



chapter would be so little trouble to you that you



could solve it in your head in short order.


CONSISTENCY AGAIN



Yet for all that the equation is so simple, I am



not through extracting the juice from it even now.



Let's see if reversing the direction of transposition



might not involve us in an inconsistency after all.



Here's the equation one more time:


2x + 1 =  x + 5
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I have just solved for  x by transposing in such a



way as to get all the literal symbols on the left-hand



side and all the numerical symbols on the right-hand



side. Is there some reason we are forced to do this?



Or would matters have gone as well if we had transposed all the literal symbols to the right-hand side,



rather than the left; and all the numerical symbols



to the left-hand side, rather than the right?



The straightforward thing is to try it and see if



we get the same answer when working it backward.



We therefore transpose the 5 from right to left



and the  2x from left to right. (The expression  2x



is a single term, remember, and must be transposed



intact as long as it forms part of a polynomial.)



The result is



1 - 5 =  x -  2x



which works out to



- 4 - - x



Now there is room for a little doubt. When we



had transposed terms in the forward direction, we



ended with  x = 4. When we transposed terms in



the backward direction, we ended with — 4 = —  x.



Are these different answers? Have we uncovered



an inconsistency?



To check that, let's remember that in Chapter 3





74


A L G E B R A



I said that both sides of an equation could be



multiplied by the same number without spoiling the



equation. (This is another axiom, which can be



expressed as "equals multiplied by equals are



equal," or, if a =  b, then  ac =  be.)



Suppose, then, that we take the expression



—4 = —  x and multiply each side of the equation



by — 1. This would give us



By following the rule of multiplication of signs,



this becomes



4 =  x



And by the axiom which tells us that it doesn't



affect the equation if we interchange the right and



left sides, we can say this is equal to


x = 4



So you see, we come out with the same answer



after all, no matter in which direction we make our



transpositions. From now on, we can certainly



feel secure in transposing either forward or backward.



And, incidentally, the trick of multiplying by — 1



can be used to change all signs on both sides of any



equation. Using general symbols, we can say:
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If  a + b = c + d



then  —a —  b = —c — d



And if  a — b = c — d



then —a + 6 = —c +  d



Since an expression such as —  a + & looks more



familiar to us if written  b — a, the last set of



expressions might be written:



If  a — b = c — d



then  b — a = d — c



As I continue to heap up the rules of manipulating



equations and show how flexible they are, you may



be getting the idea that they are a wonderfully



mechanical way of getting the truth out of a



problem. So they are, but don't expect too much



out of the situation. We have gone far enough now



for me to be able to explain that algebraic manipulation cannot get any more truth out of an equation



than is put into it in the first place.



Suppose that, instead of the equation  2x + 1 =


x + 5, which we have been pounding from every



side in this chapter, I were to present you with the



very similar equation



x + l = x + 5
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By transposing, you get


x — x = 5 — 1



or



0 = 4



which is a nonsensical answer.



How did that happen? The algebraic manipulation was strictly according to rule. Are the rules



wrong, then?



Well, look at the equation  x + 1 =  x + 5. This



says that if you take a particular number and add



1 to it, you get a result which is the same as that



obtained when you add 5 to it.



But this is nonsensical. Any number must yield



two different sums if two different quantities are



added to it. (This can be stated as "unequals added



to equals are unequals," or, if


x + b.)



Therefore  x + 1 cannot equal  x + 5 for any value



of  x at all, and x + l = 3C + 5 i s a false equation.



To pretend that it is a true equation and to use



rules of manipulation that are only intended for true



equations does us no good. We start with nonsense



and we end with nonsense.



Always be sure, then, that you are making sense



in the first place and the rules of algebra will then



take care of you. If you're not making sense to



begin with, then nothing can take care of you,



algebra least of all.


6



The Matter of Division


LITERALS IN THE DENOMINATOR



O F THE FOUR algebraic operations I have



discussed so far in the book, division certainly



seems the one hardest to handle. If you begin with



whole numbers and confine yourself only to addition and multiplication, you always end up with



whole numbers. If you deal with subtraction, you



have to add negative numbers to the list, .but they



are still whole numbers.



If, however, you subject whole numbers to division, you more often than not end up with fractions,



which are harder to handle than whole numbers are.



And if you try to convert fractions to decimals by



means of further division, you may find yourself



with an endless decimal. (Try to divide 10 by 7



in order to get a decimal value and see for yourself.)



It is not surprising, then, that algebraic equations



that involve division are sometimes a touch more



complex than are those that do not.



Often, an equation involving division (and always



remember we can never divide by zero) can be
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treated in just the same way as were those involving



multiplication which I described in the previous



chapter. In the equation



the  j is a single term and is treated as though it



were enclosed in a parenthesis. We don't break it



up, therefore, but transpose the 3:
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It is only then that we can transpose the 4, changing



the operatidn from division to its inverse, multiplication, of course:


x = (8)(4) (or 32)



On the other hand, if the equation were


(x + 3)/4 = 11



then the entire division, still being taken as enclosed



in a parenthesis, becomes a parenthesis within a



parenthesis:



The rule is that we break up parentheses from



the outside inward. We break up the outer parenthesis first, then, by transposing the 4 and leaving



the inner  (x + 3) intact:



Then, and only then, can we transpose the 3:



An additional touch of complexity, however,



arises from the fact that most often the division



is represented by a horizontal line rather than a



shilling mark, thus: Here both parentheses



are omitted, yet the expression must still be treated



as though it were [(x+3)/4] even though no paren-


80


A L G E B R A



theses are actually visible. You would still have to



remember to transpose the 4 first, as part of the



outer parenthesis, and then the 3 as part of the



inner parenthesis.



But don't be downhearted. Only sufficient drill



is required to make it all come second nature so



that you will never give a thought to omitted



parentheses. And if you know what you are doing



to begin with, you will find that you won't even



need very much practice to achieve this happy



result.



A more serious touch of complexity arises from



the fact that a literal symbol might easily be in the



denominator of a fraction. This is something we



haven't considered before, but there is no reason



why it can't come up. Here is an example:*



10



The expression on the left is a parenthesis within



a parenthesis and we ought, therefore,



to transpose the 10 first as being part of the outer



* In this example, you know at once t h a t whatever x



may be equal to, it cannot be equal to 5. Do you see



why? If  x were equal to 5, then  x — 5 would be equal



to zero, and you would have the expression — . This



involves division by zero, which is  forbidden.
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parenthesis. So far, though, we have never transposed the numerator of a fraction. How ought we



to go about it?



One way of managing' would be to convert the



division into a multiplication.



sents 10 divided by  (x — 5), we can write it instead



as 10 multiplied by the reciprocal of  (x — 5), or



For this reason we can change the



original equation to read



and now we can transpose the 10 in the usual



manner so that



1 5


x - 5 10



Having successfully transposed the numerator, however, we find we are still left with a fraction on



the left, and one that contains the literal symbol



in the denominator even yet.



An alternative plan of attack would have been to



transpose the denominator as a whole, parenthesis



and all. The presence of the inner parenthesis in



us we can't split up the expression



the outer parenthesis exists. How-
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so that  x is equal to 7, which is the solution of the



problem.



Still another method of tackling the equation



would be to sidestep the problem of the literal



symbol in the denominator altogether. It is easy to



put the literal symbol into the numerator by just



taking the reciprocal of the fraction and thus turn10



ing it upside down. Instead of writing x - 5 '


x — 5



we would write 10



Ah, but what does that do to the equation?



Well, let's go back to numerical symbols. If



what happens if we convert that fraction
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into its reciprocal You can see that is equal



to which is the reciprocal of 2.



In other words (and you* can check this by trying



other examples), an equation remains intact if you



take the reciprocal of  both sides of the equation.



In general expressions:



The equation



10


x - 5



can therefore be converted to



and by proper transpositions



and



The solution is, as before, that  x is equal  to 7.
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Remembering the rule of reciprocals, you might try



to take the reciprocals of all the fractions concerned, changing the equation to read  2x +  Sx = 5,



which can at once be changed to  5x = 5, and by



But if you substitute 1 for the  x of the original



equation, you find that



, which is not a true equation since, in



What is wrong?



If you tried by experimenting with different



equations, you would find that the rule of reciprocals



works only when the reciprocal of each side of an



equation is taken as a whole, and not as separate



parts. In other words if each side of the equation
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is a monomial, the reciprocal of each side of the



equation can he taken and the equation will stay



intact. If one or both sides of the equation is a



polynomial, however, taking the reciprocal of each



term separately almost inevitably reduces the equation to nonsense.



Then what if you  do have a binomial to deal



with, as on the left side of the equation



Clearly, what must be done, if you want to apply



the rule of reciprocals, is to convert that binomial



into a monomial, a single term. And that means



that we are faced with the problem of the addition



of fractions.



This subject, fortunately, comes up in ordinary



arithmetic and is dealt with thoroughly there. The



same rules developed in arithmetic can be used in



algebra, so a quick review is all that is needed.



To begin with, there is no problem in adding



fractions that have the same denominator. When



that happens, all we have to do is add numerators
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In adding fractions with different denominators,



you must somehow change them into fractions with



the same denominators or you are stymied. And



this must be done without changing the value of



the fractions, of course.



Now any fraction can be changed in form without



change in value if the numerator and denominator



are multiplied by the same number. Thus, if you



multiply the fraction top and bottom, by 2, you



end with If you multiply it top and bottom by 3,



you have ; if you multiply it top and bottom by



15, you have . The value doesn't change, you



see, even though the form does, for you know from



your arithmetic that equals , and that and



Now let's look at the equation that gave us



trouble at the beginning of this section:



If we multiply the denominator of the fraction



and the denominator of the fraction
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we end with the same denominator in each case,  6x.



That is fine, so far, but if we multiply a denominator



by 2, we must also multiply the numerator of that



fraction by 2 to keep the value unchanged; and if



we multiply another denominator by 3, we must



also multiply the corresponding numerator by 3.



The equation must therefore be written:
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That this is the correct answer can be shown if



we substitute for  x in the original equation.



That would look this way:
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or



which is, of course, a true equation, and shows that



we located the correct solution that time.


•


7



The Ins and Outs of Parentheses


REMOVING THE PARENTHESES



I AM SURE that by now you are perfectly



satisfied that parentheses can be useful in helping



solve an equation without confusion. Yet there



are times when parentheses are a positive embarrassment. I will give you an example of this.



Imagine two rectangles of known height, both



being 5 inches high. However, you don't know the



widths exactly; all you know is that one rectangle



is 3 inches wider than the other. You also know



that the total area of the two rectangles, taken



together, is 35 square inches. Now the question is:



What are the widths of the rectangles?



In order to determine the area of a rectangle, it is



necessary to multiply the width by the height. In



other words, a rectangle that is 17 inches wide and



12 inches high is 17 times 12, or 204 square inches*



in area.



* I could stop here and discuss the fact that the length



and width of a square are measured in inches while the



area must be measured in square inches, but t h a t



would take me far from the main subject of the book.
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With that understood, let's tackle the problem



and begin by calljng the width of the narrower



rectangle  x inches. The other rectangle, which is



3 inches wider, would naturally be  x + 3 inches



wide. In each case, the width must be multiplied



by the height (5 inches) to obtain the area. Therefore the area of the narrower rectangle is 5x square



inches, while that of the other is 5(x + 3) square



inches.



Since the sum of the areas is 35 square inches,



we can write



5(x + 3) +  5x = 35



(We don't have to write "inches" and "square



inches" in such an equation, because in ordinary



algebra we are dealing only with the quantities.



However, we must always keep in mind the correct



"units of measurement.")



In an equation such as this, how do we solve for x?



Our natural impulse is to get  x all by itself on one



side of the equation and all the numerical symbols



on the other, but how can we do that with the



parenthesis barring the way?



We can transpose the  5x and then the 5 and then



If you are not well acquainted with this sort of thing



and would like to go into it a bit more when you have



a chance, you will find it (and other matters involving



measurement) discussed in my book  Realm of Measure



(Houghton Mifflin, 1960).
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Now we have an x all by itself on the left-hand



side of the equation, but alas, we also have a



literal symbol on the right-hand side. In order to



get the  5x back on the left, we have to transpose



first the 3, then the 5, and only then the  5x, and



we are back where we started.



No, if we are to get anywhere we must get rid of



the parenthesis which keeps us from combining the


x within it and the  5x outside it into a single term.



How do we do that though?



Let's take a close look at the term  5(x + 3) and



ask ourselves what we would do if only numerical



symbols were involved. Suppose we had the term



5(2 + 3) instead. Of course, this is no problem



since 2 + 3 equals 5 so that we can change the



expression to (5) (5) and come out with an answer



of 25 at once.



However, we can't combine  x and 3, as we can
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combine 2 and 3, so we must ask ourselves: How



can we work out the value of the expression 5(2 + 3)



if, for some reason, we are forbidden to combine the



2 and the 3?



The natural thing to try, I think, is the multiplication of each number within the parenthesis



by 5. This gives us (5) (2) or 10, and (5) (3) or 15,



and come to think of it, 10 + 15 is 25. You can



try this with any combination of numbers and you



will find it will work. Thus 6(10 + 5 + 1) is (6) (16)



or 96. But if you multiply the 6 by each number



within the parenthesis separately, you have (6) (10)



or 60, (6) (5) or 30, and (6)(1) or 6; and if you add



the products, you have 60 + 30 + 6, which also



comes to 96.



Using general symbols, we can say that


a(b + c) =  ab +  ac



Certainly, then, this means that we can change
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I have retained the parenthesis just to show you



I haven't forgotten it is there, but since only additions are involved and the order of addition doesn't



matter, we might as well drop it:



We are now free to add the two x-containing



terms and to proceed with transpositions:



If we substitute 2 for  x in the original equation,



we have



and, as you see, all is well.



Of the rectangles I spoke of at the beginning of



the chapter, then, one is 2 inches wide and the other



(which is 3 inches wider) is 5 inches wide. The area



of the first is 2 times 5 or 10 square inches; that of
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the second is 5 times 5 or 25 square inches; so that



the total area is indeed 35 square inches as the



problem specified.


SUBTRACTING AND PARENTHESES



Now we come to another possible pitfall. In the



previous section, I removed a parenthesis by stating



quickly that only additions were involved. Is this



really justified? Let's try it in an expression using



numerical symbols only, such as 7 + 4(2 + 6). To



work out the value we first combine the numbers



within the parenthesis to give 8 so that the expression reads 7 + (4) (8). Multiplying first, we have



7 + 32 or 39.



Let's begin again and remove the parenthesis, so



that we have 7 + (4)(2) + (4)(6), or 7 + 8 + 24.



The answer is still 39, you see.



So far, good; but now let's just make a slight



change and consider the following expression:



7 — 4(2 + 6). By combining the numbers within



the parenthesis first, we have 7 — (4) (8), or 7 — 32,



or — 25 as the value of the expression.



However, if we remove the parenthesis exactly as



before, we have 7 - (4)(2) + (4)(6), or 7 - 8 + 24,



or + 2 3 . Now we are faced with an inconsistency,



for there are two answers, —25 and + 2 3 . What



is wrong?



Obviously the minus sign has introduced a com-96
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plication. Therefore, let's remove it and change it



to a plus sign. This can be done, for you remember



that we decided long ago that  a — b can be written


a + ( - 6 ) .



Instead of writing the expression, then, as



7 - 4(2 + 6), let's write it 7 + (-4)(2 + 6). Now



do you see what we've done? In removing the



parentheses we are going to have to multiply each



number inside the parenthesis not by 4, but by —4,



and that means a change in signs.



The expression becomes 7 + ( — 4) (2) + ( — 4) (6),



or 7 + ( - 8 ) + ( - 2 4 ) . And since  a + ( - 6 ) can



be written  a —  b, the expression can be written



7 - 8 - 24, or - 2 5 .



Now observe carefully. When you began with



the expression 7 + 4(2 + 6), you ended, after removing the parenthesis, with 7 + 8 + 24. But when



you began with the expression 7 — 4(2 + 6), you



ended, after removing the parenthesis, with 7 — 8 —



24. The signs inside the parenthesis had been



changed!



This is true even when a parenthetical expression



is simply subtracted, with no number visible outside it, as in the case of 5 — (2 + 3). If you combine



the numbers inside the parenthesis first, the value



of the expression is 5 — 5, or 0. If, however, you



try simply to drop the parenthesis, you have



5 — 2 + 3, which comes out to 6. Instead, consider
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such an expression as 5 — 1(2 + 3),. which is what



it really is, since 1 times any expression is equivalent to the expression itself.



This can be written 5 + (-1)(2 + 3), and,



in removing parentheses, we have 5 + ( —1)(2) +



( - l ) ( 3 ) , o r 5 + ( - 2 ) + ( - 3 ) , or 5 - 2 - 3, which



comes out to zero, as it should.



We can set up general rules as follows:



and so on.



Generally, this is stated to the effect that when



a minus sign appears before a parenthesis, all the



positive signs within it must be changed to negative



and all the negative signs to positive when the



parenthesis is removed. The student is drilled



endlessly to make sure he learns to do this automatically. Now that you see why the reversal of



sign must be made, you should have very little



trouble remembering to do it — I hope.


BREAKING UP FRACTIONS



Of course, don't get the idea that parentheses



must always be removed at all costs the instant



you see one. Sometimes, as you know, having
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them there helps. In fact, there are actually times



when you can make things simpler for yourself by



putting parentheses into an equation where none



existed before.



To see how that can come about let's begin by



looking at the fraction



Since the value of a fraction is not altered if



both numerator and denominator are divided by



the same quantity, can be divided, top and



bottom, by 2, and the fraction is obtained. From



ordinary arithmetic this has probably become second



nature to you so that you know at a glance that



When, by dividing a fraction, top and bottom,



you reach the smallest possible combination of



whole numbers which retain the value, that fraction has been "reduced to lowest terms." In other



words, has not been reduced to lowest terms, but



the equivalent fraction. has.



Now let's be a little more systematic about









The Ins and Outs of Parentheses 9 9



reducing fractions to lowest terms. A number may



be broken into two or more smaller numbers which,



when multiplied together, give the original number



as a product. The smaller numbers so obtained are



called "factors" and when the original number is



expressed as a product of the smaller numbers it is



said to be "factored."



For instance, you can factor 10 by writing it as



(5) (2). Consequently, 5 and 2 are both factors of 10.



You can factor 12 as (4)(3), or (2)(6), or (2)(2)(3).



Sometimes it is even convenient to write 10 as



(1)(10) or 12 as (1)(12).*



Suppose now that the numerator and denominator



of a fraction are both factored and it turns out that



at least one factor in the numerator is equal to one



factor in the denominator. For instance, the fraction can be written as , If you divide



* In many cases, a number can only be expressed as



itself times 1, with no other form of factoring possible.



For instance, 5 can be written as (5)(1), 13 as (13) (1),



17 as (17) (1), and in no other way. Such numbers are



called "prime numbers." In factoring a "composite



number," one that isn't prime, it is often convenient



to factor it to prime numbers. For instance, 210 can



be factored as (10) (21), or as (70) (3), or in any of a



number of other ways, but if you work it down to



prime numbers, 210 is equal to (2) (3) (5) (7). It is an



important theorem in t h a t branch of mathematics



known as "theory of numbers" t h a t every composite



number can be broken down to prime factors in only



one way.
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than go through this, the student quickly learns that



all he needs to do is cross out any factor that appears



both top and bottom. The 7's are "canceled" and



the result is that the fraction is reduced to lowest



terms, as you learned to do in arithmetic.



Of course, it is important to remember that the



canceling is only a short cut and that what you are



really doing is dividing the numerator and the



denominator by equal numbers. Canceling numbers



wildly can lead to many a pitfall and it will never



hurt, in doubtful cases, to go back to dividing



both parts of a fraction to make sure that you are



doing the right thing.



When numerator and denominator have no factor



in common other than 1, nothing can be canceled



and the fraction is already at its lowest terms.



There is no opportunity for cancellation here and



the fraction is at lowest terms.



Nevertheless, before you can be certain that a



fraction  is at lowest terms, you must be sure you



have factored the numerator and denominator as
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far as you can. Suppose you have the fraction



Since 24 can be factored as (8) (3) and 30 can be



factored as (6) (5), you could write the equation as



There would seem to be no factors in



common — but wait. After all, 8 can be factored as



(2) (2) (2) and 6 can be factored as (2) (3). Instead of



writing 24 as (8)(3), let's write it as (2)(2)(2)(3) and



instead of writing 30 as (6) (5), let's write it as



(2)(3)(5). Now the fraction can be written as



(2)(2)(2)(3) and we can cancel the 3 and one of the


(2)(3)(5)



2's. The fraction then become With



no more factors in common, the fraction is in



lowest terms.



Now let me warn you against a pitfall. Once a



student has learned to cancel, he is usually so eager



to do so that, as often as not, he will do so where



the rules don't permit it. Remember that cancellation involves factors and that factors are themselves



involved in multiplication. You can break up a



number into two smaller numbers that will give the



original number through addition as, for instance,



13 can be broken up into 7 + 6. However, 7 and 6



are  not factors of 13 and cannot be involved in



cancellation.
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Suppose that you are faced with the fraction



Numerator and denominator, here, have no factors



in common other than 1 and the fraction is at lowest



terms. The eager student, however, might break it



up this way, aid try to cancel 7's in order



to give the result which is clearly false. Of



course, the student would see that at once and



realize something was wrong. Where more complicated expressions are involved, he would not see



the error at once and it might take him quite a



while to spot it.


INSERTING THE PARENTHESES



The rules of factoring and cancellation can be



applied to literal symbols with hardly a hitch.



For instance, suppose you have the fraction



The 10 presents no problem; it can be factored as



(2) (5). What about the however? How can



that be factored? Well, can't be written as



Let's write the fraction, then, as and cancel



the 2's. The fraction, reduced to lowest terms, is



therefore
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But suppose we had started with The 10 can



still be factored as (2) (5) and the  2x can be factored



as (2)(x). The fraction can be written as



the 2's are canceled, and the fraction, in lowest



terms,



Naturally, I hope I don't have to explain why the



fraction ;an't be simplified by cancellation.



You might write the fraction but that won't



help you. The 2 in the numerator is not a factor.



On the other hand, the fraction can be



written as and the 3 in the numerator  is



a factor, although the 2 is not. The 3's can be



canceled and the equation can be written in its



lowest terms as



Of course, it is easy to see the factors in an expression involving literal symbols when the factors



happen to be right in the open. You can see that



the factors of 5s are 5 and  x and that the factors



of are 3 and  x + 2, but can you see the



factors present in an expression like  5x + 15?
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You will, in a moment.



Earlier in the chapter, we decided that  a(b + c)



could be written as  ab +  ac. This procedure works



in reverse as well. If you start with  ab +  ac, you



can write it as  a(b +  c).



Let's take a closer look. The expression  ab can



be factored as (a)(6), while  ac can be factored as



(a)(c). What we have done, then, is  to find the



common factor,  a, and place it outside a parenthesis we create for what remains.



If we go back to we see that  5x can be



written as (5)(x) and 15 as (5) (3). Since 5 is the



common factor, we can put it outside a parenthesis



enclosing the rest and have  5(x + 3). If the parenthesis is now removed by the rules described at the



beginning of the chapter, we get  5x + 15 back



again and consistency is upheld.



This makes it possible to simplify the fraction



As it stands, there seems to be nothing to cancel,



for the numerator is not divided into factors.



However, if the numerator is written as



it has been factored, the two factors being 5 and



x + 3. The denominator can, of course be factored as (5) (4). The fraction can therefore be



written , the 5's can be canceled and the
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fraction reduced to lowest terms as



As I promised at the beginning of the chapter, we



have actually introduced a parenthesis in order  fx>



simplify an expression.



It is possible, of course, not to bother putting in



the parenthesis. Each term in the numerator can



be factored separately so that the fraction may be



written Then it is simply necessary to cancel the 5 that occurs in all the terms



above and below to get This method is a



little quicker for the person who has had enough



drill at factoring, but it works only if a particular



factor does indeed occur in all the terms, above and



below, without exception. If even one term, either



in the numerator or in the denominator, lacks the



factor, canceling cannot take place. The beginner



is very apt to forget this and cancel when he ought



not to. The safe thing to do is to take the trouble



to insert the parenthesis and draw out the common



factor where you can see it plainly and know for



certain that it is a common factor. Then, in peace



and security, you may cancel.



Canceling, by the way, is not restricted to numerical symbols alone. Literal symbols can be treated



in precisely the same way. In the fraction
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is a factor both above and below and can be canceled



to yield the simpler fraction Or consider the



fraction The numerator can be factored as



and the denominator as The fraction can therefore be written as and bycanceling  7x, it is reduced to lowest terms as



However, you must always make sure in such cases



that you are not canceling an expression that happens to equal zero. Remember that cancellation



is really division and you must not divide by zero.


CANCELLATION EXTENDED



The rules of factoring and canceling, which I have



been using for fractions, will work for equations,



too. To see why this should be so, consider a



general equation in which we will call the left side  L



and the right side  R. The equation would be


L = R



I told you quite early in the book that both sides



of an equation can be divided by the same quantity



without spoiling the equation, so let's divide both



sides by the right side. The equation (provided, of



course,  R is not equal to zero) becomes
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or



The two sides of any equation can thus be



written as the numerator and denominator of a



fraction equal to one. It is not surprising, then,



that the rules of factoring and cancellation that



apply to fractions also apply to equations.



For a specific example, consider the equation



By transposing, we get



We can factor the fraction in order to reduce it to



lowest terms, thus:



Instead of doing this, we could factor and cancel



in the equation itself to begin with. We can write



This means we can



write the equation as



Now we cancel out the common factors, left and






1 0 8


A L G E B R A



right, just as we would do it, top and bottom, in a



fraction. The equation becomes


2x = 3



and, by transposing,



The same answer is obtained, you see, whether



you transpose first and factor afterward, as I did



in the first case, or factor the equation first and



transpose afterward, as I did in the second. In



the simple equations I use in this book (just to



explain the techniques of algebra) there isn't even



any difference in convenience. In more complicated



equations, however, it is usually far more convenient



to factor and cancel as much as possible before you



do anything in the way of transposition, so it is



best to get used to factoring first and transposing



afterward.



Naturally, you must watch out for the same pitfalls in factoring the expressions that make up



equations as in factoring fractions. In the equation


x + 6 = 15



you might write it thus:


x + (3)(2) = (3)(5)
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The Ins and Outs of Parentheses 10 9



The equation is still correct, but now you will



be subjected to the temptation of canceling the



3's right and left to give yourself the equation



Then, by transposing, you will decide



that x is equal to 5 — 2; that is, to 3. But something is wrong, for if you substitute 3 for  x in the



original equation, you have 3 + 6 = 15, which is



nonsense.



The mistake was in canceling the 3's, for in the



expression  x + (3) (2), 3 is  not a factor of the entire



expression; it is a factor of one term only. Cancellation can only proceed when each side of the equation has a common factor; each side, as a whole.



When factoring an expression involving more



than one term, the safest procedure is to bring in



a parenthesis. Suppose, for instance, we had the



equation



10x + 35 = 15



We could factor each term as follows:



(5)(2x) + (5)(7) = (5)(3)



The left side of the equation has two terms with



the common factor 5. That factor can therefore



be brought outside a parenthesis that encloses



the remaining factors so that the equation becomes
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Now the 5 on the left is indeed a factor of that



entire side of the equation and not of one term



only. The 5's can be canceled therefore, left and



right, and the equation reads


2x + 7 = 3



Whether you solve for  x in the equation



35 = 15 or, after factoring and canceling, in the



equation  2x + 7 = 3, you will come out with the



same answer. In the first case:



In the second case:



In other words, factoring and canceling before



transposing (when properly done) does not introduce inconsistencies.


<
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The Final Operations


SQUARES AND CUBES



WHAT HAVE WE done with literal symbols



so far? We have combined them with numerical



symbols by way of addition  (x + 7), subtraction


(x — 7), multiplication (7x), and division . We



have even combined them with other literal symbols



by means of addition subtraction



and division



The one combination I haven't used is that of a



literal symbol multiplied by another literal symbol,



and it is time to tackle that very situation now.



Here's how a case of multiplication among literal



symbols can arise naturally in mathematics. One



of the most familiar geometrical figures is the square.



It is a four-sided figure with all the angles right



angles,* which makes it a kind of rectangle. A



* A right angle is the angle formed when a perfectly



horizontal line meets a perfectly vertical one.


t >
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square differs from ordinary rectangles, though, in



that all four of its sides are equal in length.



To obtain the area of a square, we must multiply



the length by the height, as in any other rectangle.



However, since all the sides of a square are equal,



the length of a square is always equal to its height.



A square that is 2 inches long is also 2 inches high;



one that is 5 inches long is also 5 inches high, and



so on. The area of a square with a side of 2 inches



is therefore 2 times 2 or 4 square inches. The area



of a square with a side of 5 inches is 5 times 5 or



25 square inches, and so on.



Because of this connection with the square, 4 is



said to be the square of 2, and 25 is the square of 5.



In fact, the product of any number multiplied by



itself is the square of that number.



Suppose, though, we didn't know the length of



the side of a particular square. We could set the



side equal to  x and then we would at once have a



situation where literal symbols must be multiplied,
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for the area of that square would be  x multiplied



by  x, or  xx. Naturally,  xx would be the square of  x,



so although it might seem natural to read  xx as



"eks eks," it is more common to read it as "eks



square."



A similar situation arises in connection with a



cube, which is a solid figure with all its angles right



angles and all its edges of equal size. Dice and



children's blocks are examples of cubes. To obtain



the volume of a cube you multiply its length by its



width by its height. Since all the edges are of



equal size, length, width, and height are all equal.



A cube with an edge equal to 2 inches has a volume



of (2)(2)(2), or 8 cubic inches.* If it has an edge



* I'm sure cubic inches hold no terrors for you. Still,



if you feel the need for a little freshening on units of



volume, there is always  Realm of Measure to look



through.
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equal to 5 inches, it has a volume of (5) (5) (5), or



125 cubic inches.



Because of this, 8 is called the cube of 2, while



125 is the cube of 5. Three equal numbers of any



sort multiplied together yield a product that is the



cube of the original number.



Again, if we don't know the length of the edge



of a cube, and set that length equal to  x, we know



that the volume is equal to  xxx. Naturally,  xxx is



referred to as "eks cube."



The notions of squares and cubes of a number



originated with the Greeks, who were particularly



interested in geometrical figures. There are no



geometrical figures, however, that can be drawn or



built to represent situations where four or more



equal numbers must be multiplied, so there are no



special names for  xxxx or  xxxxx. Mathematicians



simply refer to such expressions as  "x to the fourth,"



"x to the fifth," and so on. If I said "x to the



seventeenth" you would know promptly that I



meant seventeen  x's multiplied together.



In the early days of algebra, mathematicians



found they had to get involved frequently with a



number of  x's multiplied together, and they naturally looked about for some simple and convenient



way of symbolizing such a situation. To write out



a series of  x's takes up space and can be confusing.



If you look at  xxxxxxxx, you can't tell at a glance
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whether you are dealing with x to the seventh, x to



the eighth, or  x to the ninth. You would have to



stop and count them.



A convenient shorthand for this sort of thing



was invented by the French mathematician Rene



Descartes (re-NAY day-KART), in 1637. He



showed the number of x's to be multiplied together



by using a little number placed to the upper right



of the  x. For instance,  xx would be written x2 and


xxx would be written  x3. These are still read "x



square" and "x cube." After that, you would have



x4,  x5, or even x218, for that matter, and these are



still read "x to the fourth," "x to the fifth," or "x to



the two hundred and sixteenth." The little number



in such an expression is called the "exponent."


HANDLING THE INVOLUTION



When we consider an expression like x3 or x5, we



say we are "raising x to a power." This is another



algebraic operation.



So far, we have considered addition, subtraction,



multiplication, and division — the four algebraic



operations that are commonly used in ordinary



arithmetic. Raising to a power is a fifth operation,



and one that is not commonly used in ordinary



arithmetic. This fifth operation can also be called



"involution."



You may wonder if it's fair to call involution a
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fifth operation. Is it not only a multiplication?



Isn't  x2 just  x multiplied by x?



So it is, but by the same token, multiplication



can be looked upon as a kind of addition, can't it?



For instance,  2x, which is an example of multiplication, can be looked on as simply  x plus  x, which



is certainly an addition.



One reason multiplication is considered a separate



operation is that it is handled differently in equations as compared with addition. If we consider



the equation  2x + 3 = 10, we know that we must



transpose the 3 before we transpose the 2; that we



cannot deal with the multiplication until after we



have dealt with the addition.



We could write the equation  x +  x + 3 = 10



and it would be the same equation, but now it



would involve only addition. You can now transpose any term at will; you can transpose one of the


x's, separating it from the other. Thus, you could



change the equation to read  x + 3 = 10 —  x. (This



wouldn't do you any good as far as solving for  x is



concerned, but at least it would leave the equation



consistent with what it was before.)



It also turns out, then, that involutions must not



be handled in the same way that multiplications



are, even though involution can be considered a



kind of multiplication. That is what makes involution a separate operation. To show what I mean,






The Final Operations



117



let's consider a simple expression involving numerical symbols only.



-What is the value of (2)(2)(5)? The answer, you



can see at once, is 20. It doesn't matter whether



you first evaluate (2) (2) to get 4 and then evaluate



(4)(5) to get 20; or do it in another order, (2)(5)



giving you 10 and (10) (2) giving you 20. The



answer is the same no matter in what order you



multiply.



Suppose, though, you had written not (2) (2) (5)



but (22)(5). It is the same expression, but now it



involves an involution. The value of 22 is 4, of



course, and if that is multiplied by 5, the answer



is 20. But can you multiply 2 by 5 first and then



perform the involution? Suppose, just to see what



would happen, you try to do this. Well, (2) (5) is



10 and 102 is 100, and now you have an inconsistency.



To avoid the inconsistency, involutions must be



performed first, before multiplications are performed; just as multiplications are performed before



additions.



As an example, let's look at the expression  3x2



and ask ourselves what it means. Does it mean



To answer that question, let's remember that I



have explained that since multiplications must be



performed before additions, a multiplication is



always treated as though it were in parentheses.
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The expression  3x + 2 is always treated as though



it were  (3x) + 2. In the same way, since involution must be performed before multiplication, in an



expression involving both, it is the involution that



is treated as though it were within parentheses.



Therefore, and its meaning is



No confusion is possible. It is only



because people have gotten into the habit of leaving



out the parentheses in expressions like that the



question arises in the minds of beginners.



(By now you may be a little impatient with the



way in which parentheses are left out. Why



shouldn't they be put in everywhere possible in



order to avoid confusion? Well, if they were,



equations would be simply cluttered with parentheses. And as you yourself got expert in manipulating equations, you would get tired of them, and



start leaving them out yourself.)
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Suppose, though, you really do want to multiply


3x by  3x. How would you indicate that? Again,



the very handy parentheses can be used and the



multiplication can be written (3x)2. It is easy to see



now that it is the entire expression within the



parenthesis that is being squared, just as we earlier



decided that in the expression 3(x + 2), it is the



entire portion within the parenthesis that is being



multiplied. By proper use of parentheses, we can



change the order in which operations must be



performed.



If we write out the expression (3a:)2 as a multiplication, it becomes (3)(x)(3)(x). Here only multiplications are involved and we can arrange the symbols



any way we choose without altering the over-all



value. We can therefore write the expression as


(3)(3)(x)(x), and this we can change back into



involutional form as (32)(x2). If you'll try the



same trick on (7x)5, you will find that can be



written as (7s) (x5).



In fact, we can write that



where * is the usual general symbol for an exponent.



Using this same line of argument, you should



have no trouble in seeing that (5x)(3x) is equal to



15x2 and that 30x3 can be factored as (2x)(3x)(5x),



or even as (2)(3)(5)(x)(x)(x).
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COMBINING INVOLUTIONS



What if we are presented with an operation



involving two involutions. As an example, consider



the expression  (x3)(x2), where one expression containing an involution is multiplied by another.



We can simplify this by substituting multiplication



for involution. Thus,  x3 is  xxx and Therefore,  (x3)(x2) is  (xxx)(xx). Since only multiplications



are involved, there is no need for parentheses and



the expression becomes  xxxxx or  x5. To put it



briefly,  (x3)(x2) =  x5. Apparently, we have just



added the exponents.



Try other examples and you will find this continues to be so. Exponents are added in all cases



of this kind. In general, we can write:



The obvious next step is to divide one expression



involving an involution by another. Can you calculate the value of



You might quickly suppose that since the multiplication of involutions involves addition of exponents, the division of involutions ought to involve



the subtraction of exponents. Thus to divide  x5 by


x3 would give the answer  x2, since 5 — 3 is equal to 2.



The expression  x5 can be written  xxxxx and  x3 can
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be written  xxx. Therefore, We can



cancel three of the  x's above and below since each


x represents a common factor. In this way the



three  x's in the denominator are subtracted from



the five  x's in the numerator and two are left, so



that the answer is indeed  x2.



In general, then:



This state of affairs can lead us to some interesting conclusions.



Descartes used exponents only when two or more



identical symbols were multiplied together. The



smallest exponent is 2 under those conditions. But



suppose you wanted to divide  x3 by x2? According



to the rules of subtraction of exponents, equals



x1, but what does that mean?



Well, if is written , then two of the  x's



can be canceled above and below and the value of



the fraction is simply  x. Therefore, So we



have two answers to the same problem,  x1 and  x,



depending on which route of solution we use. The



way to keep consistent is to decide that the two



answers are really one answer by saying that  x1 = x.
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In a way, this makes sense because, by Descartes'



rule,  x1 should represent a single  x multiplied



together. Even though you can't really multiply an



x all by itself (it takes two to multiply), you can



imagine it as just standing there untouched so that


x1 should equal  x. All this would hold true for any



symbol and so we can say


a1 =  a



But we can go further. Suppose you were to



divide  x3 by x3? Since any number divided by itself



equals 1, we can say that However, if we



use our subtraction-of-exponents rule, we must also



say that



Again, the only way to avoid an inconsistency



is to agree that the two results are the same and



that  x° is equal to 1. We can work out the same



result if we divided 23 by 23, or 75 by 75. We must



come to the conclusion that any symbol, whether



numerical or literal, raised to the zeroth power,



equals one. We can say, generally:



Here is an example which shows that consistency



in mathematics is more important than "common



sense." You might think that a:0 should represent


,
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zero x's multiplied together. That doesn't really



make sense, but to most people that would  sound



although the answer should be zero.



But if we let equal zero, we have the inconsistency that can equal either 1 or 0, depending



on which rule of division we use. We simply



cannot allow that, so we make  x° equal 1, regardless



of any "common sense" that tells us differently.



And we can go further than that, too. Suppose



we want to divide  x3 by  x5. Using the subtractionof-exponents rule, we have is equal to



Now what in the world does a negative exponent



mean? How can you possibly multiply — 2  x's



together?



But suppose we write out the expression in a



fashion that involves only multiplications, thus,



Now if we cancel three of the  x's, top and



bottom, we are left with



Again, we have two values for the same expression, and We must, therefore, set one



equal to the other. If we try this sort of thing with



other exponents, we would find that  x~7 must be
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Having taken care of the multiplication and



division of expressions involving involutions, how



about involuting an involution? That sounds odd,



but I can explain what I mean in a moment. Suppose



you wanted to multiply x3 by itself. The result



would be (x3)(x3) or (a:3)2, which is an example of



the involution of an involution.



But by the addition-of-exponents rule, (x3)(x3) is



equal to  x6. Therefore, (x3)2 = x6. In the same



way (x4)3 is (x4)(x4)(x4) or x12. In the involution of



involutions, we seem to be multiplying exponents



and we can say the general rule is



Thus, the use of exponents simplifies operations.



Involution of involution becomes multiplication of



exponents. Multiplication of involutions becomes



addition of exponents. Division of involutions



becomes subtraction of exponents.*



* The use of exponents in this fashion led to the invention of "logarithms" as a way of simplifying calculations. This was achieved about 1600 by a Scottish


.
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THE INVERSE OF INVOLUTION



The algebraic operations, other than involution,



exist in pairs. Addition has its inverse in subtraction and multiplication has its inverse in division. It wouldn't seem right to have involution



exist by itself and without an inverse.



What then is the inverse of involution? Well,



let's see. To multiply a quantity by itself thus,



(3) (3), is involution, and the product is 9. To



construct an inverse operation, we need only begin



with the product and work backward. What number multiplied by itself is 9? The answer, of course,



is 3.



Or we might ask: What number, taken five times



and multiplied together, will give 1024. We can



try to answer this hit-and-miss. We might try 2



first, but (2)(2)<2)(2)(2) comes to only 32. In the



same way, five 3's multiplied together would give



us 243. However, five 4's multiplied together would



indeed give us 1024, so our answer is 4.



(There are methods for working out such problems in better ways than hit-or-miss. In this book,



I won't deal with that. For the purpose of explaining algebra, I need only simple problems of this



mathematician named John Napier. I have no room



to talk about logarithms here, but if you are curious



you will find them explained in Chapter 8 of  Realm


of Numbers.
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kind — problems so simple you will be able to



work them out in your head.)



Mathematicians refer to this inverse of involution, this finding of a value which when multiplied



by itself a number of times gives a known answer,



as "evolution." I shall try to use this short term



whenever possible, but an older and much betterknown name for the operation is "extracting a root."



This old-fashioned term comes from the Arabic



mathematicians of the Middle Ages. I suppose



they looked upon the number 1024 as growing



out of a series of 4's as a tree grows out of its roots.



Therefore, 4 is a root of 1024. Then, just as tree



roots must be extracted from the soil, so 4 must be



"extracted" from 1024.



Of course, there are different degrees of roots.



Since (4)(4) is 16, (4)(4)(4) is 64, and (4)(4)(4)"(4)



is 256, 4 is a root of 16, 64, and 256, as well as of



1024. These different situations are distinguished



in the same way that different powers are distinguished in involution.



Thus, since 16 is the square of 4, 4 is the square



root of 16. Again, 64 is the cube of 4, so 4 is the



cube root of 64; 256 is the fourth power of 4, so 4



is the fourth root of 256, and so on.



The operation of evolution is indicated by means



of a sign called a "radical" (which has nothing to



do with politics but simply comes from a Latin
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word, "radix," meaning "root"). The sign looks



like this: V . It was invented by a German mathematician named Christoff Rudolff who used it first



in a book published in 1525. Before that, the letter



r (for "radix") was used and it is quite possible



that



By 1700, mathematicians came to distinguish one



kind of root from another by using a little number,



just as in the case of involution. Thus, the cube



root is w r i t t e n h e fourth root is written



the eighth roo and so on. The little number



is referred to as the "index."



By using this radical sign, we can show how



powers and roots are related in a very simple way:



If  an =  b



then



There is one exception to this general rule of



indexes, and that involves the square root. It



should be written if we were to be completely



logical. However, the square root is used so much



oftener than all other kinds of roots put together



that mathematicians save time by taking this



particular index for granted, just as they usually



leave out the 1 in expressions such as



In other words, the sign standing by itself















1 2 8


A L G E B R A



and without an index, is assumed to be the square



root. This is so common, in fact, that the sign is



almost never called the radical. It is almost always



called the "square-root sign."



Inverse operations always introduce new difficulties. It is subtraction, not addition, that introduces negative numbers. It is division, not multiplication, that introduces fractions.



What new complications will evolution introduce?



Suppose we take the apparently simple problem of



finding the square root of 2, or, to use symbols, V2.



The answer isn't 1 because (1)(1) gives a product of



1, which is less than the desired quantity, 2. The



answer isn't 2 either because (2) (2) is 4, which is



more than the desired quantity. The answer, then,



must he somewhere between 1 and 2, and if you



wish you can try various fractions in that range.



For instance, is almost right since gives



the produce It is necessary to find a



fraction then that is just a trifle greater than



Unfortunately, if you were to keep on trying,



you would never find the correct fraction. Every



one you tried would end up just a little' higher than



2 if multiplied by itself, or a little lower than 2.
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It would never come out exactly 2. Thus, the



fraction if multiplied by itself would give



a product of 2.000001237796, which is just a hair



above 2, but isn't 2 exactly.



It was the Greeks who first discovered that there



were numbers, such as the which could not



be expressed as fractions, and they were quite



disturbed about it. Such a number is now called



an "irrational number." Of course, in ordinary



speech, "irrational" means crazy or mentally unbalanced and perhaps you think this is a good



name for such numbers. In mathematics, however,



the name merely means "without a ratio," ratio, you



may remember, being another word for fraction.*



Almost all roots, with very few exceptions, are



irrational. In this book, I will be constantly using



those few exceptions as material to work with in



order to keep out of complications. However, don't



let that give you the wrong idea. Roots and irrational numbers go hand in hand just as division



and fractions do.



* I could very easily go on talking about irrational



numbers for many pages, but I won't. If you are



curious to know more about them, you will find a



discussion in  Realm of Numbers.
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EXPONENTS GO FRACTIONAL



In previous cases, we have always managed to



get rid of inverse operations in one way or another.



By using negative numbers, we got rid of subtractions, for instance, writing 8 + ( — 7) instead of



8 — 7. Again, we got rid of division by using



reciprocals, writing instead of



It would seem that we ought to be able to get rid



of evolution as well.



To do that, let's begin by considering an expression such as where a fractional exponent is



involved. Do not feel disturbed at this or begin to



wonder how half an  x can be multiplied together.



Remember that the notion of having exponents tell



us how many numbers are to be multiplied together



is too narrow. We've already gone beyond that in



considering expressions like  x° and and made



sense of those impressions. Why not find out how



to make sense of as well?



To begin with, let's multiply by itself. By the



rule of addition of exponents, is equal to



which makes it or simply  x.



If we were to ask then: What number multiplied



by itself gives us we would have to answer



But in asking what number multiplied by itself



gives us  x, we are asking: What is the square root
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of So we must say that the square root of x is



That gives us the meaning of the fractional



exponent It is another way of symbolizing the



square root.



In the same way, we would find that  (x*)(x*)(x$)



is equal to  x, so that is the cube root of  x, or



We can make this general by saying



Now you have all you need to understand what



is meant by an expression like This can be



written as and we know that this is the same as



because by the rule of multiplication of



exponents, is equal to



Since the exponent indicates the square root,



we can write In other words,



equals and, in general,



This way of shifting back and forth from indexes



to exponents can temporarily eliminate evolution



and make the multiplication of roots simpler. You



might well be puzzled, for instance, at being asked



to multiply the square root of  x by the cube root



of  x, if all you could do was write it thus:
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Change the indexes to exponents, however, and



you have instead and by the rule of addition



of exponents you have the answer



which can be written as



And now you can heave a sigh of relief. There



will be no new surprises sprung upon you in the



way of algebraic operations, for there are no more.



Only three pairs of operations exist in the whole of



algebra:



(1) Addition and subtraction



(2) Multiplication and division



(3) Involution and evolution



and you now have them all.



The next step is the matter of handling equations



that involve involution and evolution.
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Equations by Degrees


A NEW TRANSPOSITION



SUPPOSE THAT we had a cube with a



volume of 27 cubic inches and were anxious to know



the length of the edge. We consider the edge of the



cube to be  x inches long and, since the volume of



a cube is obtained by raising the length of the edge



to the third power, we have the equation



In earlier chapters, we found that the same



number could be added to or subtracted from both



sides of an equation; and that the same number



could be used to multiply both sides or to divide



into both sides. It isn't hard to suppose that involution and evolution can be added to the list. Both



sides of the equation can be raised to the same



power or reduced to the same root without spoiling



the equation.



In order to change  x3 to  x, we need only take the



cube root of  x3. The cube root of which
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is the same as  Xs, which, of course, equals  x1 or,



simply  x.



But if we take the cube root of one side of the



equation, we must take the cube root of the other,



too, to keep it an equation. Therefore:



The left-hand side of the equation is equal to  x,



as we have just decided, and the right-hand side is



equal to 3, since (3) (3) (3) is equal to 27. The



equation becomes


x = 3



which is the solution.



Suppose, on the other hand, we have an equation



like this:



Now in order to convert to  x, we cube



After all, the cube of the cube root of  x is



which can again be written as or simply  x.



In fact, we can set up the general rule for any



power or index by this line of argument:



If we return to our equation, and cube



both sides, we have
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or


x = 64



Just as in the case of the other operations, we



are solving equations involving involution and



, evolution by shifting a symbol from one side of the



equation to the other. We are shifting the little



figure that represents the index of an evolution or



the exponent of an involution. If you look at



the equations so far in this chapter again, you will



see that



In each case, you might say the little 3 has been



transposed. (Actually, the term "transpose" is confined to the operations of addition and subtraction.



However, I have used it for multiplication and



division as well and the shift in the case of evolution



and involution is so similar in some ways, that I



will even use the word here.) In this case, too, as



with the other operations, transposition means an



inversion. Involution becomes evolution as the
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exponent is converted to an index. And evolution



becomes involution as the index is converted to an



exponent. This is plain enough in the samples I



have just given you.



The reason this isn't as plain as it should be is



that almost all the roots used in algebra are square



roots, and this is the one case where the index is



omitted.



If we say, for instance, that


x2 = 16



you can see at once by what I have said so far that


x = V l 6



but now the little 2 seems to have disappeared in



the process, and the fact that it has been transposed



and changed from exponent to index is not noticeable. It would be noticeable if we wrote the square



root of 16 as as we should logically do — but



which we don't.



In the same way, if we start with



we can convert that to


x = 82



and a little 2 seems to have appeared out of nowhere.
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SOLUTIONS IN PLURAL



Mathematicians are very conscious of the appearance of powers in equations. They make equations



more difficult to handle. The higher the powers, in



fact, the more difficult equations are to handle. By



1600, therefore, mathematicians were classifying



•equations according to the highest power of the



unknown that appeared in them.



Equations are said to be of a certain "degree."



In a simple equation of the type I have used up to



this chapter, such as  x — 3 = 5, the unknown can



be written so this is an "equation of the first



degree."



In the same way, an equation such as  x2 — 9 = 25



is an "equation of the second degree" because the



unknown is raised to the second power. In an equation such as  x2 +  2x — 9 = 18, where the unknown



is raised to the second power in one term and to the



first power in another, it is the higher power that



counts and the equation is still of the second degree.



Equations such as  x3 — 19 = 8, or  2x3 +  Ax2 —


x = 72, are "equations of the third degree" and



so on.*



* Actually, these should be referred to as "polynomial



equations" of this degree or that, because they involve



polynomials, whereas some kinds of equations do not.



However, in this book, I talk about polynomial equations and no other kind, so I won't bother to specify



all the time.
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This is the simplest and most logical way of



classifying equations, but, unfortunately, mathematicians have become so familiar with these different types that they have also given them specialized



names. Since the specialized names are used more



often than the simple classification by degree, you



had better be told what they are.



An equation of the first degree is called a "linear



equation" because the graph of such an equation



is a straight line. (Graphs are, alas, not a subject



I can cover in this book.)



An equation of the second degree is called a "quadratic equation," from the Latin word "quadrus,"



meaning "square." A quadratic equation is an



equation involving squares, after all, so that's



fair enough.



An equation of the third degree, with even more



directness for English-speaking people, is called a



"cubic equation."



An equation of the fourth degree is called a



"quartic equation," and one of the fifth degree



is called a "quintic equation," from the Latin



words for "four" and "five" respectively. Sometimes an equation of the fourth degree is called



"biquadratic," meaning "two squares" because it



involves the multiplication of two squares. After



all,



Having settled that, then, let's take a close
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look at the simplest possible quadratic equation: *


x2 = 1



By transposing the exponent, we have



and all we need ask ourselves is what number



multiplied by itself will give us 1. The answer



seems laughably simple since we know that (1)(1)



is equal to 1, so


x = 1



But hold on. We haven't been worrying about



signs. When we say that  x2 = 1 and that  x = vT,



what we really mean is that  x2 = + 1 , and that



(The plus sign, remember, is another



one of the many symbols that mathematicians



keep omitting.)



This changes things. If we ask what number



multiplied by itself will give us + 1 , we are suddenly



in a quandary. It is true that is equal



to + 1 , but isn't it also true that ( —1)( —1) is



equal to + 1 ? Therefore, are not +1 and —1 both



solutions for  x in the equation  x2 = 1?



Does this sound like an inconsistency to you,



* It might seem to you t h a t  x2 = 1 is not a polynomial



equation because no polynomials are involved. However, by transposing, you have  x2 — 1 = 0 and there's



your polynomial.
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with two answers for the value of  x in one equation?



You might try to remove this troublesome complication by just deciding on a rule that won't count



negative numbers as a solution to an equation.



Mathematicians up into the 1500's actually did



use such a rule.



However, they were wrong to do it. Negative



numbers are so useful that to eliminate them



merely to avoid a complication is wrong. Besides,



the rule does no good. There are quadratic equations which give two answers that are both positive.



For instance, take the equation  x2 — 3x = —2.



Without actually going through the procedure of



solving for the value of  x, I will simply tell you



that both 1 and 2 are solutions. If you substitute



1 for  x, then x2 is 1, and  3x is 3, and 1 — 3 is indeed



— 2. If, however, you substitute 2 for  x, then  x2 is



4 and  3x is 6, and 4 — 6 is also equal to —2.



There are other quadratic equations in which two



solutions exist that are both negative. In the



equation  x2 +  3x = —2, the two solutions for  x



are — 1 and —2.



By 1600, mathematicians had resigned themselves to the thought that the rules for quadratic



equations weren't the same as those for linear



equations. There could be two different solutions



for the unknown in a quadratic equation.



Well, then, are we stuck with an inconsistency?
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Of course not. An inconsistency results when solving an equation by one method yields one answer,



and solving it by another yields a second answer.



Solving a quadratic equation gives two answers  at


the same time. And no matter what different



methods you use, you get the same two answers.



To make this quite plain, if I were to ask you the



name of the largest city in the United States, and



you answered New York one time and Chicago



another time, you would be inconsistent. If, however, I asked you the name of the two largest cities



in the United States and you answered New York



and Chicago, you would  not be inconsistent. You



would be correct.



In fact, to return to equations, it was soon discovered that the unknown in a cubic equation



could have three solutions and the unknown in a



quartic equation could have four solutions. In 1637,



Rene Descartes, the man who invented exponents,



decided that the unknown of any equation had a



number of solutions exactly equal to the degree of



the equation. This was finally proved completely



in 1799 by a German mathematician named Carl



Friedrich Gauss. (His name is pronounced "gows.")


IMAGINARY NUMBERS



But if this is so, and the unknown in a cubic



equation has three solutions, then in the very sim-
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plest cubic equation (in which I will include signs



this time)


xa = + 1



there should be three solutions for  x.



Transposing the exponent, we have



and we need only ask ourselves what number can



be taken three times and multiplied to give + 1 .



We can start off instantly by saying that +1 is



itself a solution since ( + 1 ) ( + 1 ) ( + 1 ) is equal to + 1 .



But where are the other two solutions? Can one



of them be - 1 ? Well, ( - 1 ) ( - 1 ) is +1 and multiplying that product by a third —1 gives us



(+1)(—1), which is equal to — 1. Therefore



( - 1 ) ( - 1 ) ( - 1 ) i s equal t o - 1 and



that —1 is not a solution to the cubic equation



above.



Nor is there any number, any fraction, or even



any irrational, either positive or negative, with the



single exception of + 1 , that is the cube root of + 1 .



Then what conclusion can we come to but that



here we have a cubic equation in which the unknown



has but a single solution?



Can it be that we have caught great mathematicians such as Descartes and Gauss in an error?



And so quickly and easily?
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That's a little too good to believe, so let's go



back a step to the quadratic equation again. Now



that we're introducing signs, let's try an equation



of this sort with a negative, like this:


x2 = - 1



By transposing the exponent, we have



and now we must find a number which, multiplied



by itself, equals — 1. Since both ( + 1 ) ( + 1 ) and



( —1)( —1) equal + 1 , we are suddenly left with the



thought that there is  no number which is the square



root of minus one. Can it be that in an equation



as simple as  x2 = — 1 , we are faced with no solution at all?



In 1545, however, Cardano, who, you may remember, introduced negative numbers, decided to invent



a number which, when multiplied by itself gave



— 1 as the product. Since this number didn't seem



to exist in the real world but only in imagination,



he called this number an "imaginary number." In



1777, the Swiss mathematician Leonhard Euler



(Oi-ler) symbolized the square root of — 1 as i (for



"imaginary").



In other words, i is defined as a number which,



when multiplied by itself, gives — 1. You can write
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It seems difficult for people to accept i as being a



number that is just as valid as 1. It doesn't help



to call i "imaginary" and numbers like +1 or — 1



"real numbers," but this is what is done to this day.



There is, in actual fact, nothing imaginary about i.



It can be dealt with as surely as 1 can be dealt with.



Thus, you can have two different kinds of i just



as you can have two different kinds of 1. You can



have +i and — i. Just as +1 and —1 have the



same square, + 1 , so +i and — i have the same



square, — 1 .



Thus the square root of —1 has two solutions



rather than none, the solutions being -f i and — i.



Often, when an unknown is equal to both the



positive and negative of a particular number, the



number is written with a sign made up of both the



positive and negative, thus ±. This is read "plus



or minus" so that the number ±1 is read "plus or



minus one." Using this sign:



If  x2 = - 1



then  x = ±i



Are you still anxious for some way of visualizing



what i is and of getting its exact nature clear in



your mind? Well, remember that at first people



had this trouble with negative numbers. One way



of explaining what the mysterious less-than-zero
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numbers might be was to use directions. Thus,



might be represented by a point 1 inch east of



a certain starting position while +2 might be



represented by a point 2 inches east of the starting



position, +5 by a point 5 inches east, and so on.



In that case, negative numbers would be represented by westward positions, and — 1 would be



represented by a point 1 inch west of the starting



position. —



We can follow right along with this and have +i



and the other positive imaginaries be represented



by distances to the north and — i and the other



negative imaginaries represented by distances to



the south.
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Imaginaries actually are represented in this way



and have helped mathematicians tremendously.



With only real numbers, mathematicians were confined to a single east-west line, so to speak. Once



imaginary numbers were introduced, they could



wander in all directions — east, west, north, and



south. It was just like being let out of prison, and



what is called "higher mathematics" would be



impossible without imaginary numbers.



The symbol i is all that is needed in dealing with



imaginary numbers. You might think, offhand, that



there would be an unending number of symbols



required for the unending number of imaginaries.



For instance, and so on are



all imaginary, for no real number of any sort will



give a negative number of any sort as a square.



To see why i is nevertheless sufficient, let's look



first at V36, which equals 6. The expression can be



written V(9)(4), and if this is broken apart into



the multiplication of two separate roots, thus,



we can evaluate it as (3) (2), which is



still equal to 6. Other examples will show that this



is a general rule and that



Now we can write which, by



the rule just cited, can be written as



which works out to (2)(i), or simply 2i. In the
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same way, works out to 4i, and



equals (The value of is an irrational



number, but a close value is 2.824, so we can say



that is about equal to 2.824 i.)



In fact, we can state the general rule that



and for that reason, the existence of i takes care



of the square roots of all negative numbers.



We can now say that the unknown of any quadratic equation has two solutions, provided we



remember that the solutions need not be real



numbers, but might be imaginaries.



We can even venture into a quartic equation



such as



By transposing the exponent, we have



and we need to find values for  x such that four of



them multiplied together give + 1 . Two possible



values for  x are +1 and — 1 , since (+1)(+1)( + 1)



(+1) = + 1 , and ( - l ) ( - l ) ( - l ) ( _ l ) = + 1 . If



you're not certain that the latter multiplication is



correct, think of it this way: [(-1)( -1)][( - 1 ) ( - 1 ) ] .



The first two — l's multiplied together give +1 as



the product and so do the last two —l's. The
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expression therefore becomes ( + 1 ) ( + 1 ) , or + 1 .



Two more possible values for  x are +i and — i.



In the first place, consider ( + i ) ( + i ) ( + i ) ( + i ) .



Break that up into pairs as [(+i)(+i)][(+i)(+i)]



and you see that the product of the first pair is



— 1, and so is the product of the last pair. The



expression therefore becomes ( —1)( — 1), which gives



the desired result of + 1 . By the same reasoning



( —i)( —i)( —i)( —i) is also equal to + 1 .



So you see that in the quartic equation  x* = + 1 ,



there are indeed four possible solutions for  x, these



being + 1 , — 1, + i , and —i. Imaginary numbers



are thus essential for finding the proper number of



solutions. But are they sufficient?


COMBINING THE REAL AND IMAGINARY



Let's go back  to the cubic equation


x3 = + 1



where, so far, we have found only one solution for


x, that solution being +1 itself. If we allow imaginary numbers, can it be that +i and — i are the



second and third solutions?



What about the expression ( + i ) ( + i ) ( + i ) ? The



first two + i ' s , multiplied together, equal — 1 , so



the expression becomes ( — l ) ( + i ) which, by the



law of signs, gives the product — i. Therefore,



+i is not a solution of the equation. In the same
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way, you can work out that ( —i)( —i)( —i) yields



the product — i, so — i is not a solution of the equation either. Where, then, are the second and third



solutions of the equation  x3 = + 1 ?



To find the answer to that question we must



realize that most numbers are neither entirely real



nor entirely imaginary. They're a combination of



both. Using general symbols, we can say that the



typical number looks like this: where  a is



a real number and an imaginary number.



Such numbers, part real and part imaginary,



were called "complex numbers" by Gauss in 1832.



Actually, those numbers that are entirely real or



entirely imaginary can also be considered as exam-
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pies of complex numbers. In the expression  a + 6i,



suppose  a is set equal to 0. The expression becomes



0 +  bi, or just By letting  b equal any value



except 0, any imaginary number can be produced.



All the imaginary numbers, then, are complex



numbers of the form 0 +  bi.



Suppose, on the other hand,  b were set equal to 0,



in the expression  a +  bi. The expression becomes


a + Oi. But Oi is 0, since any number multiplied by



zero is zero, so that the expression can be written


a + 0, or simply  a. By letting  a equal any value



except 0, any real number can be produced. All the



real numbers, then, are complex numbers of the



form  a + Oi.



The solutions of the equation  x2 = +1 can be



given as complex numbers. They are 1 + Oi and



— 1 + Oi. As for  x2 = — 1, the two solutions, as



complex numbers, are 0 + i and 0 — i.



But the complex numbers that serve as solutions



for  x in a particular equation do not have to have



zeros involved every time. A solution can consist



of a complex number,  a +  bi, in which neither  a nor


b is zero. And, in fact, that is what happens in the



cubic equation,  x3 = + 1 . The solution which I've



been calling +1 can be written in complex form as



1 + Oi. The other two solutions don't involve a



zero. They are
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If either of these expressions is cubed, the answer



is - 1 . *



It is by using the system of complex numbers



that it is possible to show that  x in any equation



has a number of solutions exactly equal to the



degree of the equation.



Now that this is settled, I will go back to quadratic equations and, for a while at least, we can



forget about equations of a higher degree than two.



* I'm going to ask you to take my word for this



because I have no room to go any further into imaginaries in this book. However, in  Realm of Numbers,



where I discuss imaginaries a bit more in detail, you



can find the cube of these expressions worked out



toward the end of Chapter 9.
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Factoring the Quadratic


TACKLING THE SECOND DEGREE



WE CAN make equations of the second



degree a little more complicated by adding other



operations, as in



3x2 - 8 = 100



I have already explained that a multiplication



is treated as though it were enclosed in a parenthesis. The same is true of involution, only more



so, so that when multiplication is also present, the



involution is enclosed in an inner parenthesis. The



equation could be written, if all parentheses were



included:



[3(x2)] - 8 = 100



Naturally, we must transpose first the 8, then



the 3, then the 2, working inward through the



layers of parentheses. The results are:


3x2 = 1 0 0 + 8 (or 108)
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which are the solutions.



Where parentheses are involved in different



arrangement, the order of transposition changes



accordingly. In the equation



(x + 3)2 - 7 = 42



which could be written, in full, as



[(* + 3)2] - 7 = 42



the 7 is transposed first, but the other operation of



addition is within an inner parenthesis and can't



be dealt with until the exponent in the outer parenthesis is taken care of. So the order of transposition



is the 7, then the then the 3, thus:


(x + 3)2 = 42 + 7 (or 49)



(either + 7 or - 7 )



Therefore, either



. * = 7 - 3 (or 4)



which is one solution, or


x = - 7 - 3 (or - 10)



which is another solution.



So "far, quadratic equations seem just like ordinary



linear equations with just the additional complica-
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tion of having three sets of operations to worry



about instead of two, and of having two solutions



instead of one.



The two solutions are each perfectly valid, of



course. Taking the second case as an example,



either numerical value determined for  x can be



substituted in the equation


(x + 3)2 - 7 = 42



Substituting 4, gives you:



(4 + 3)2 - 7 = 42



72 - 7 = 42



49 - 7 = 42



which is correct.



Substituting — 10, gives you:



( - 1 0 + 3)2 - 7 = 42



49 - 7 = 42



which is again correct.



And yet there is more to the quadratic equation



than you have seen so far. A quadratic equation,



remember, might also have a term containing an  x



to the first power, thus:
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x2 +  5x = 6



Such an equation can arise very naturally out of



a problem such as the following: Suppose you had



a rectangular object with its width 5 feet greater



than its length and with an area of 6 square feet.



What is the length and width of the rectangle?



To begin with, let's set the length equal to  x.



The width, being 5 feet greater than the length, is,



naturally. Since the area of a rectangle is



obtained by multiplying the length by the width,


x(x + 5) is that area, which is given as 6 square feet.



By the rules concerning the removal of parentheses, which I gave you earlier in the book, we



know that  x(x + 5) can be written as  (x)(x) +


(x)(5), which comes out to  x2 +  5x, and that gives



us our  x2 +  5x = 6.



We can get a sort of solution for  x by transposing



as follows:


x2 = 6 -  5x



but that gets us nowhere, for we have  x equal to an



expression which contains an  x, and we can't evaluate it. In fact, we have jumped from the frying



pan into the fire, for we have exchanged a power



for a "root, and the roots are harder to handle.
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FROM SECOND DEGREE TO FIRST



A possible way out of the dilemma lies in the



process of factoring. Factoring, as you recall, is



a method of breaking up an expression into two



other expressions which, when multiplied, give you



the original expression. Thus, 69 can be factored



into (23) (3), and  5x — 15 can be factored into



(5)(a; — 3). Factoring generally converts a complicated expression into two or more simpler ones and



there is always the good chance that the simpler



ones can be handled where the original complicated



one cannot.



Naturally, before we can figure out how to factor



an expression, we must have some ideas about the



process of multiplication. If we knew the kind of



multiplications that gave rise to a particular type



of expression, we would know better how to break



that expression apart.



I've already given an example of one multiplication that gives rise to a second-degree term,



when I talked about  x(x + 5). That was a multiplication that raised no problems since we know



that in such a multiplication, the term outside the



parenthesis is multiplied by each of the terms inside and that the products are all added. But



suppose I had an expression such as  (x +  7)(x + 4)?



How does one multiply that?
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It might seem logical to go one step further.



Take each term in one parenthesis and multiply



it by each term in the other, and then add all the



products. Would that give the correct answer?



To see if it does, let's go back to ordinary numerical symbols and see what that will tell us. Suppose



we were trying to multiply 23 by 14. Actually,



23 is 20 + 3 and 14 is 10 + 4, so (23) (14) can also



be written (20 + 3) (10 + 4).



Now let's try multiplication. First, we multiply



20 by each term in the other parenthesis; (20) (10)



is 200, and (20) (4) is 80. Doing the same next for



the 3, (3) (10) is 30, and (3) (4) is 12. If we add



all four "partial products" we have 200 + 80 +



30 + 12, or 322. Multiply 23 by 14 your own way



and see if that isn't the answer you get.



Of course, you may say that this isn't the way


you multiply, but actually it is. You have been



taught a quick mechanical rule of multiplying



numbers, but if you study it carefully you will find



that what you are really doing is exactly what I



have just done.



We can write the multiplication of 23 and 14



this way:
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with the arrows pointing out all the different



multiplications involved. In fact, some people



think that the crossed arrows in the center are



what gave rise to the sign X for multiplication.



Now this same system works when literal symbols replace numerical symbols. In the expression


(x + 7) (a; + 4), we can set up the multiplication



this way:



Now how do we add these four partial products?



There is no use trying to add a term containing  x2



with one containing  x or with one containing no



literal symbol.



The  x2 must remain  x2 and, by the same reasoning, the 28 must remain 28. However, the remaining two submultiples both contain  x. They



are  4x and  Ix and they, at least, can be added to



give l l x . So we end with the following:



This means that if you were to come across the



expression  x2 + l l x + 28, you could at once replace it by  (x +  l)(x + 4). The quadratic ex-
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pression would be factored, in this way, into two



expressions, each of which was, by itself, only of



the first degree.



Ah, yes, you may be thinking, but how does one



go about doing that? How can you tell just by



looking at  x2 + l l x + 28 that it can be factored



into The only reason we know



about it here is that we did the multiplication first,



and that's like looking at the answers in the back



of the book.



Well, you're right. Factoring is a tricky job and



sometimes it's a hard job. That's true even in



arithmetic. You know that 63 can be factored as



(7) (9), but how do you know that? Only because



you've multiplied 7 by 9 so many times in your life


V
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that 63 = (7) (9) is part of your general stock of



knowledge.



But can you factor the number 24,577,761?



Most people couldn't just by looking at it, any



more than they could factor a polynomial algebraic



expression. However, there are some rules to factoring. For instance, the digits in 24,577,761 add



up to 39, which is divisible by 3. This means that



3 is one factor of 24,577,761 and it can therefore



be factored as (3) (8,192,587).



There are rules that can guide you in factoring



algebraic expressions as well.



For instance, suppose we multiply two expressions, using general symbols instead of numerical



symbols. We will multiply  x +  a by  x +  b. The



multiplication would look like this:



The four partial products are  x2, ax, bx, and  ab.



The  ax and  bx can be combined as (a +  b)x, so



that we can state the following:



This gives us a pattern. The coefficient of the  x



term is  a +  b, while the term without the  x is  ab.



We can combine expressions now without even
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going to the trouble of multiplying them out. If



we have the multiplication  (x + 17) (x + 5), then



we see at once that the coefficient of the  x term must



be 17 + 5, or 22, while the term without the  x is



(17) (5) or 85. The product is therefore  x2 + 22*



+ 85.



To factor a polynomial, we need only work this



backward; look for two numbers which by addition



will give the coefficient of the  x term, and by multiplication the numerical term.



Consider the polynomial  x2 +  7x + 12. If you



consider 7 and 12, it might occur to you that the



key numbers are 3 and 4, for 3 + 4 is 7, while



(3) (4) is 12. You can factor the polynomial to


(x +  3)(x + 4). Multiply those factors and see if



you don't get the polynomial.



Or suppose you have the expression  x2 — 2x


— 15. If you think "a while, it may occur to you



that —5 + 3 is equal to —2, while ( —5)(3) is



— 15. These, —5 and 3, are the key numbers, then,



and you can factor the polynomial to  (x — 5) and


(x + 3).



Of course, for this to work out properly, the first



term must be  x2 and not 3x2 or  5x2 or something



like that. Where  x2 has a coefficient other than 1,



factoring can still be performed but it becomes a



trifle more complicated.



Sometimes you can factor an expression that
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lacks an  x term— one such as  x2 — 16, for instance.



To see how that is done, let's multiply general



symbols again, but with a small difference. This



time we will multiply  x +  a by  x — a. We set it



up, thus, substituting  x + ( —  a) for  x — a:



The four partial products are  x2, ax, —ax, and


—a2. The presence of the  — a, you see, makes two



of the submultiples negative. Now if you add the



submultiples together, you get  x2 +  ax — ax — a2.



The  ax and  —ax yield zero on addition, so that



you end with


(x +  a)(x —  a) = x2 — a2



Since that is so, an expression such as  x2 — 16



is easy to factor. It can be written  x2 — 42, since



42 is equal to 16, and from the pattern of the general



equation I have just given you, you see that  x2



— 42 must factor as  (x + 4)(x — 4). Multiply



those factors and see if you don't get  x2 — 16.



This by no means concludes the rules of factoring.



For instance, can you imagine what one must do if
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one has a coefficient to the  x2 term? How does one



factor an expression like  2x2 + 13x + 15? That,



however, I will leave to you. I have gone as far



into factoring as I need to for the purposes of this



book.


THE USES OF FACTORING



-Of course, you might be asking yourself how you



are helped by factoring. What does it do for you



as far as handling equations is concerned?



The best way to answer that is to give an example



of how factoring will change a seemingly complicated equation into a simple one. Let's begin with



the following equation:



One way to handle it would be to transpose the



denominator



remove the parentheses



bring all the literal symbols to the left and all



numerical symbols to the right by appropriate



transposition
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or



We can remove the negative sign at the beginning



by multiplying each side of the equation by — 1



to get



We might even try factoring the left-hand side



of the equation so as to have it read



but where do we go from there? We are stuck,



unless we try different values for  x, hit-and-miss,



and see which one will solve the equation.



Now let's return to the original equation



and try factoring before we do anything else.



Consider the numerator of the fraction, x2 +  x


— 20. The coefficient of the  x term is +1 (a coefficient of 1 is always omitted, of course, but don't



forget it's really there just the same and that I



warned you earlier in the book you would have to



keep it in mind) and the numerical term is —20.



Now it so happens that when +5 and —4 are



added, the sum is + 1 , while if they are multiplied,
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the product is —20. Therefore the numerator can



be factored as  (x +  5)(x — 4).



As for the denominator,  x2 — 25, that can be



written as  x2 — 52 and can therefore be factored as


(x +  5)(x — 5). Now we can write the equation as



But the factor  x + 5 appears in both the numerator and the denominator and can therefore be



canceled.



The equation becomes



and suddenly everything is quite simple. We transpose the denominator and proceed according to the



usual rules:



which is the solution.
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Factoring can help in another way, too. Suppose



you have the following equation:


x2 - 9x + 18 = 0



Since —3 and —6 will give —9 when added and



+ 18 when multiplied, we can factor the expression



and write the equation this way:



We can now take advantage of an arithmetical



fact. Whenever we multiply two factors and find



an answer of 0, then one factor or the other must



be equal to 0. If neither factor is 0, then the product



can never be zero.



Suppose, then, that  x — 3 is equal to 0. By



transposition, we can see at once that if


x - 3 = 0



then


x = 3



But it's possible that it is the other factor that



is 0; in other words, that


x - 6 = 0



and


x = 6



Which, then, is the correct answer? Is  x equal



to 3 or to 6? There is no reason to suppose that
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one factor has more chance to be 0 than the other



factor, so both answers are equally right. This



shouldn't bother us, since the equation is one of



the second degree and should have two solutions



anyway. We can check (just to make sure) by



trying both solutions in the original equation,


x2 - 9x + 18 = 0.



First we try the 3, so that the equation becomes



32 - (9) (3) + 18, or 9 - 27 + 18, which does indeed come out to be 0, so that 3 is a proper solution.



Next the 6 is substituted for  x and the equation



becomes 62 - (9) (6) + 18, which is 36 - 54 + 18,



which also comes out to 0, so that  6 is another



proper solution.



Naturally, we can only take advantage of this



device when we can set the product of two factors



equal to zero, and to do that, we must begin by



getting a zero on the right-hand side of the equation.



For instance, earlier in the chapter I spoke of a



rectangular object with a width 5 feet greater than



its length and with an area of 6 square feet. The



equation involved was:


x2 +  5x = 6



At the time, we could  go no further with the



equation, but now suppose we transpose the 6 to



the left in order to leave the very desirable zero on



the right. The equation would read:
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x2 +  5x - 6 = 0



Since the two numbers 6 and — 1 give a sum of 5



when added and a product of — 6 when multiplied,



the expression on the left can be factored and the



equation written


(x + 6)(x - 1) = 0



and our two solutions for  x are —6 and 1, these



being obtained by setting each factor equal to zero.



T h e meaning of the solution 1 is clear. T h e



rectangular object has a length of 1 foot. I t s width,



which is 5 feet greater than its length, is therefore



6 feet, and its area is (1)(6) or 6 square feet, as



stated in the problem.



B u t what about the solution —6? Can we say



the length is —6 feet, and the width, which is 5



feet greater, is —1 feet? The area would be ( — 6)



( —1) or still 6 square feet, but what is the meaning



of a negative length? The Greeks threw out negative solutions to such equations, feeling certain



there was no meaning to a negative length.



However, we can arrange a meaning by supposing measurements made in one direction to be



positive and in the other direction, negative. In



t h a t case, the two solutions actually apply to the



same object placed in two different fashions.
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Solving the General


THE FIRST DEGREE



THERE IS something unsatisfactory about



solving quadratic equations by factoring. After all,



some equations cannot be factored very easily.



Isn't there a way of solving  any quadratic equation,



without worrying about factors?



To show you what I mean, let's not consider



specific equations, but general equations. For



instance, here is the "general equation of the first



degree," one which uses parameters instead of



numbers so that it can represent any such equation:


ax +  b = 0



By allowing  a and  b to take on any particular



values, any particular equation can* be represented



by this expression. If  a is set equal to 2 and  b to 3,



the equation becomes  2x + 3 = 0. Subtractions



are not excluded because of the plus sign in the



general equation, for if  a is set equal to 2 and  b to



— 3, the equation becomes  2x + ( — 3) = 0, or


2x - 3 = 0.
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Even such an equation as can be



expressed in the general form. By removing the



parenthesis and transposing, we have:


9(x + 4) = 25


9x + 36 = 25


9x + 36 - 25 = 0


9x + 11 = 0



Therefore, the equation  9(x + 4) = 25 can be



put into the general form of  ax +  b = 0 with  a



equal to 9 and 6 to 11.



To solve the general equation of the first degree



is easy:


ax + b = 0


ax = —b



This means that if you have any equation in the



first degree, you need only put it into the general



form and you can obtain the value of  x at once.



You don't have to worry about transposing, simplifying, or factoring any further.  Ail you have to



know are the coeificients, the values of  a and  b.



Thus, in the equation the value of
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with no further ado. If it had been



the answer would be



As you see, the value of a; in the general equation



of the first degree can be any imaginable integer or



fraction, if the values of  a and  b are set at the



appropriate whole-number values. If you make up



a fraction at random, say then that is the



value of  x in the equation



We can put this in another way by saying that



in the general equation  ax + 6 = 0, where  a and  b


are any integers, positive or negative, the value of


x can be any rational number. It can never be an



irrational number, however, for the answer is bound



to come out a definite fraction.



You may wonder what happens if the values of a



and  b are not integers. Suppose they are fractions.



If so, those fractions can always be converted into



integers. Thus, in the equation



suppose you multiply both sides of the equation by



the product of the denominators of the two fractions; (22) (5)  or 110. We then have
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Removing parentheses in the usual way and remembering that (0)(110) (or zero times any number, in



fact) is 0, we have



Thus, this equation with fractional coefficients is



converted to one with integral coefficients and the



solution of  x is Any equation in any degree



can be converted from fractional coefficients to



integral coefficients, so we need only consider the



latter case.



Suppose, though, that  a and  b were not rational



numbers at all (that is, not fractions) but were



irrationals, as in the equation The



value of  x would then be and it would itself be



irrational. However, if we consider only general



polynomial equations with rational coefficients, then



we can say that the value of  x in an equation of



the first degree can be any rational number, but



cannot be an irrational number.



Solving the General



1 7 3


THE SECOND DEGREE



Having gone through all this, which is pretty



straightforward, we are ready to ask how we might



handle the general equation of the second degree.



How could we solve for  x by just knowing the coefficients and arranging them according to some set



formula?



The general equation may be written  ax2 +  bx +



c = 0, where  a, b, and c can be any integers or, in



fact, any rational numbers. The symbols 6 and c



can even be zero. If  b is zero, then the equation



becomes  ax2 + c = 0; if c is zero, the equation



becomes  ax2 +  bx = 0; and if both 6 and c are



zero, the equation becomes  ax2 = 0. All these forms



are still second-degree equations.



However, a cannot be allowed to equal zero, for



that would convert the equation to the form  bx +



c = 0. In a general equation of any degree, the



coefficient of the term to the highest power must



not equal zero or the equation is reduced in degree



Even in the first-degree equation  ax +  b = 0,  b may



be set equal to zero, but a must not. In the latter



case, the equation would become simply 6 = 0,



which is no longer a first-degree equation.



The difficulty of solving the general equation of



the second degree rests with the fact that it cannot
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be factored. What we must do then is to convert



it into a form that can be factored.



First, the rules I gave for factoring in the previous



chapter always involved a quadratic equation containing a simple  x2. Let's see if we can't arrange



that much to begin with. To do that, let's divide



both sides of the equation by  a, thus:



As far as the left-hand side of the equation is concerned, we know from ordinary arithmetic that



can be written (Try it and see if



the answer isn't 3 in both cases, and if, in other



cases of the same sort, you don't get the same



answer either way.)



We can therefore write the equation, thus:



In the fraction we can cancel the a's. The



fraction can be written and, as for the



right-hand side of the equation, is, of course, 0.



Now the equation can be written:
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We have the simple  x2 in this form of the general



equation of the second degree, but we still can't



factor it. We need two quantities which when



added will give the coefficient of the  x term



(which is -J and when multiplied will give the



numerical term according to the rules



I gave in the previous chapter. There is no obvious



way in which this can be done, however.



Why not, then, remove the term and substitute



something else which will be easier to handle. To



remove the - term is easy. We need only transpose,



thus:



The question then arises, What do we substitute



for it? Well, the simplest way of finding two values



that will add up to a given quantity is to take half



the quantity and add it to itself. In other words,



4 is equal to 2 plus 2, 76 to 38 plus 38, and so on.
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So we have two values, which when



added give the coefficient of the  x term. What will



those same two values give when multiplied? The



answer is:



We have to add that to the left-hand side of the



equation and, in order to do that, we have to add it



to the right-hand side also, so that the equation



becomes



Now, for just a moment, let's concentrate on the



right-hand side of the equation. Suppose we multiply the fraction top and bottom, by the



quantity  4a. That gives us which doesn't



change the value of the fraction, but which gives



it the same denominator as the second fraction



on the right-hand side. The right-hand side of the



equation now becomes



or
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Our general equation can therefore be written



It is time, now, to look at the left-hand side of



the equation. We have arranged it in such a way



as to have two values, and , which when



added give the coefficient of the  x term, and



when multiplied give which represents the



term without an unknown. This means, according



to the rules of the previous chapter, that the lefthand side of the equation can be factored as



Now the equation becomes


(b2 - 4ac)



We can transpose the exponent, and that will



give us



As you see, forming the square root makes it necessary to insert a plus-or-minus sign.



As for the right-hand side,



can
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the numerator can't be worked out, but the square



root of the denominator can be, since (2a) (2a)



equals 4a2. C o n s e q u e n t l y i s equal to 2a.



The equation can now be written



By transposition we have



Since the two fractions have the same denominator, we can combine them and have the equation



read, at last:



This is the general solution for  x in any seconddegree equation, expressed in terms of the coefficients undergoing various algebraic operations. To



solve any quadratic equation, it is only necessary



to put it into its general form and substitute the



coefficients into the above formula for  x.



In the equation 17x2 —  2x — 5 = 0, for instance,


a = 17,  b = — 2, and c = — 5. Let's substitute
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Notice first that there are two answers since



there is a plus-or-minus sign involved. It is one



answer if the plus is used and a second if the minus



is used:



Notice also that is an irrational number.



You see, then, that it is possible, in equations of



the second degree, to obtain a value of  x that is



irrational, even though the coefficients of the equation are rational. In practical problems involving



such solutions, an approximate answer can be



found by taking the value of the irrational number



to as many decimal places as necessary. (Fortu-
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nately, such values can be worked out, or even just



looked up in tables.)



The value of V86, for instance, is approximately



9.32576. The two answers, therefore, are approximately 0.6074 and -0.4309.



Of course, it is possible to have rational solutions



to a quadratic equation also.



In the equation  x2 +  5x + 6 = 0,  a is equal to 1,



6 to 5, and c to 6. Substitute these values in the



general formula and you have:



Here, you see, the square root disappears, for



VT is equal to 1. The two solutions are therefore:



or



which, to be sure, are solutions we might have



gotten directly by factoring.
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HIGHER DEGREES



General solutions for equations of the first and



second degree were known before the rise of algebra



in the 1500's. At that time, therefore, mathematicians interested themselves in the possibility



of a solution for the general equation of the third



degree in terms of algebraic manipulations of the



coefficients.



I won't go into the nature of the general solution, but it was discovered, and the discovery



involves a certain well-known story.



It was in 1530, that an Italian mathematician



named Nicolo Fontana succeeded, at last, in discovering the general solution. (Fontana had a



speech imperfection and he received the nickname



- Tartaglia (tahr-TAH-lyuh) — the Italian word for



"stammerer" — as a result. The use of the nickname was so widespread that today he is hardly



ever referred to as anything but Nicolo Tartaglia.)



In those days, mathematicians sometimes kept



their discoveries secret, much as industries today may keep their production methods secret.



Tartaglia won great fame by being able to solve



problems which involved cubic equations and which



no one else could solve. Undoubtedly, he enjoyed



his position as a mathematical wonder-worker.



Other mathematicians naturally kept begging
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Tartaglia to reveal the secret. Finally, Tartaglia



succumbed to the pressure and, in 1545, revealed



the solution to Geronimo Cardano, the mathematician who introduced negative numbers and



imaginary numbers. He insisted that Cardano



swear to keep the matter secret.



Once Cardano had the solution, however, he



promptly published it and said it was his own.



Poor Tartaglia had to begin a long fight to keep the



credit for himself and, ever since, mathematicians



have been arguing as to who should get credit for



the discovery.



Nowadays, you see, we consider it quite wrong



for any scientist to keep a discovery secret. We



feel he must publish it and let all other scientists



know about it; that only so can science and knowledge progress. In fact, the scientific world gives



credit for the discovery of any fact or phenomenon



or theory to the man who first publishes it. If



someone else makes the same discovery earlier but



keeps it secret, he loses the credit.



According to this way of thinking, Tartaglia was



wrong to keep his solution a secret and Cardano was



right to publish, and rightfully deserves the credit.



However, in the 1500's this was not the common



viewpoint, and we should make allowance for the



fact that it wasn't considered wrong at the time



to keep scientific secrets.
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Besides, even if Cardano was right, as a mathematician, to publish the solution, he was wrong, as



a human being, to claim it was his own and not to



give Tartaglia credit for thinking of it first. However, as it happens, although Cardano was a great



mathematician, he was also a great scoundrel in



many ways.



At about the same time, Cardano tried to work



out a solution for the general equation of the fourth



degree. He couldn't manage that and passed the



problem on to a young man named Ludovico



Ferrari, who was a student of his. Ferrari promptly



solved it.



Naturally mathematicians felt that, after that,



only patience and hard work were necessary to



work out the solution for the general equation of



any degree, but when they took up the general



equation of the fifth degree, they found themselves



in trouble. Nothing seemed to work. For nearly



three hundred years, they tried everything they



could think of and for nearly three hundred years



they failed. Even Euler (the man who first used



i for the square root of minus one), one of the



greatest mathematicians of all time, tackled the



fifth degree and failed.



Then, in 1824, a young Norwegian mathematician, Niels Henrik Abel (who was only 22 at the



time, and who was to die only five years later), was
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able to prove that the general equation of the fifth



degree was insoluble: It could not be solved in



terms of its coefficients by means of algebraic operations. There were other ways of doing it, but not



by algebra.



It turned out that no equation of degree higher



than the fourth could be solved in this way. In



1846, a brilliant young French mathematician,



Evariste Galois (ay-vah-REEST ga-LWAH), who



was tragically killed in a duel at the age of only 21,



found a new and more advanced mathematics, the



"theory of groups," that could handle equations of



high degree, but that is not for this book, of course.


BEYOND THE DEGREES



If we take a general equation of any degree, then



any value which can serve as a solution for x is



called an "algebraic number."



For instance, I have already said that for the



general equation of the first degree any rational



number, positive or negative, can serve as a solution. Even zero can serve as a solution for  x, in



the equation  ax — 0. All rational numbers are



therefore algebraic numbers.



For the general equation of the second degree,



any rational number can serve as a solution. So



also can certain irrational numbers. Thus, the
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square root of any rational number can serve as



a solution.



For the general equation of the third degree,



rational numbers, square roots, and cube roots will



serve as solutions. The fourth degree will add



fourth roots to the list, the fifth degree will add



fifth roots, and so on.



In the end, the list of algebraic numbers includes



all rational numbers and all irrational numbers that



are roots (in any degree) of rational numbers.



But does this include all numbers? Are there



irrational numbers which are not the roots, in one



degree or another, of some rational number?



In 1844, a French mathematician named Joseph



Liouville (lyoo-VEEL) was able to show that such



irrational numbers did exist, but he wasn't able to



show that some particular number was an example.



It wasn't until 1873 that another French mathematician, Charles Hermite (ehr-MEET), turned



the trick.



He showed that a certain quantity, much used in



higher mathematics and usually symbolized as  e,



was an irrational number that was not the root,



in any degree, of any rational number. (Hermite



also solved the general equation of the fifth degree



by nonalgebraic methods.)



The approximate value of e is 2.7182818284590-
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452353602874 . . . Modern computers have worked



out the value to 60,000 places. The quantity e



was the first nonalgebraic number to be discovered



and is an example of a "transcendental number"



(from Latin words meaning to "climb beyond,"



because these existed beyond the long list of algebraic numbers).*



Another interesting quantity is the one usually



represented by mathematicians as which is the



Greek letter "pi." This quantity represents the



ratio of the circumference of a circle to its diameter.



If the length of the diameter of a circle is multiplied by the length of the circumference is



found. The approximate value of is 3.14159265358979323846264338327950288419716939937510 . . .



and modern computers have worked out its value



to ten thousand places.



In 1882, the German mathematician Ferdinand



Lindemann, using Hermite's methods, proved that



was transcendental. It is now known that almost



all logarithms are transcendental; that almost all



"trigonometric functions" such as the sine of an



* The importance of e rests in the fact t h a t it is



essential in the calculation of two sets of values of



great importance in mathematical computations and



relationships. These are logarithms (see  Realm of


Numbers) and the ratios of the sides of right triangles



("trigonometric functions"). Almost all logarithms



and trigonometric functions are irrational, and those



that are, are also transcendental.
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angle (matters taken up in that branch of mathematics called "trigonometry") are transcendental;



that any number raised to an irrational power, such



as is transcendental.



In fact, there are far more transcendental numbers than there are algebraic numbers. Although



there are more algebraic numbers than anyone can



possibly count, it remains true, even so, that almost



all numbers are transcendental.*



* One way of putting this is t h a t while the set of all



algebraic numbers is infinite, the set can be represented by the lowest transfinite number. The set of



all transcendental numbers is also infinite, but can be



represented by a higher transfinite number. If you



are curious about this, I go into some detail in this



matter in the last chapter of  Realm of Numbers.
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Two at Once


EQUATIONS WITHOUT SOLUTIONS



So FAR, we have never considered a problem



or equation in which more than one quantity was



unknown. And yet it is possible to have more than



one unknown.



Here's a case. Suppose you are told that the



perimeter of a certain rectangle is equal to 200



inches (the perimeter being the sum of the lengths



of all four sides). The question is: What are the



lengths of the four sides?



To begin with, let's place the length of one side



of the rectangle equal to  x. The side opposite to



that must also equal  x (for it is one of the properties



of the rectangle that opposite sides are equal in



length). Together these two opposite sides are  2x



in length.



Now what about the other pair of opposite sides?



Has one any idea of what their length is?



I'm afraid not, at least not in actual numerical



values. They are as unknown as the first pair and



must also be given a literal symbol representing an
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unknown. It would be confusing to use  x because



that is already in use in this problem. It is customary, however, to use  y as a second unknown.



The other pair of sides can therefore each be set



equal to  y in length, giving a total of  2y.



Now we can say that


2x +  2y = 200



We can try to solve this equation for  x and hope for



the best, and we can begin by factoring:



2(x +  y) = 2(100)



If we divide each side of the equation by 2, then


x + y = 100



Then, by transposing,


x = 100 -  y



There's our value of  x, but what good is it?



* Since we don't know the value of  y, we can't convert our value for  x into a numerical value. Of



course, if we knew that  y was equal to 1 inch, then


x would be equal to 100 — 1 or 99 inches. Of if we



had some way of telling that  y was equal to 7 inches,


x would be equal to 100 — 7 or 93 inches. Or if


y were equal to 84.329 inches, then  x would be



equal to 100 - 84.329 or 15.671 inches.



Each pair of values would satisfy the equation.



1 9 0


A L G E B R A



2(99) + 2(1) = 200



2(93) + 2(7) = 200



2(15.671) + 2(84.329) = 200



You could make up any number of other pairs



that would satisfy the equation, too. This doesn't



mean, of course, that any two numbers at all would



do. Once you pick a value for  y, there is then only



one value possible for  x. Or if you start by picking



a value for  x, only one value remains possible for  y.



Another warning, too. You can't pick a value



for either  x or y that is 100 or over without having



certain practical difficulties. If you let  y equal 100,



then  x equals 100 — 100 or 0. You don't have a



rectangle at all, then, but just a straight line. Or



if you decide to let  y equal 200, then  x equals 100



— 200 or —100 and you have to decide what you



mean by a rectangle with a side equal to a negative



number in length.



Despite practical difficulties, however, such sets



of values do satisfy the equation mathematically:



2(0) + 2(100) -  200



2(-100) +2(200) = 200



But then even if you decide to limit the values of


x and  y to the range of numbers greater than 0



and less than 100, there are still an endless number
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of pairs that you can choose which would satisfy



the equation. And there would be no reason for



you ever to think that one pair of values was any



more correct as a solution than any other pair.



You could not possibly pick among those endless



numbers of pairs and for that reason an equation



such as  2x + 2y = 200 is called an "indeterminate



equation."


INTEGERS ONLY



You might think that an equation without a



definite solution would be dull indeed and that



mathematicians would turn away from it with nose



in air. Not so. Actually, such equations have



fascinated mathematicians greatly.



One of the first to interest himself in such indeterminate equations was a Greek mathematician



called Diophantus, who lived about A.D. 275 in the



city of Alexandria, Egypt. He was particularly interested in equations where the solutions could only



be integers. Here is an example of a problem leading to such an equation.



Suppose there are 8 students in a class, some boys



and some girls. How many boys are there and how



many girls? If we set the number of boys equal ta


x and the number of girls to y, then we have the



equation


x + y = 8
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Now we can only let  x and  y equal certain values.



We can't have either  x or y equal to



because we can't have an irrational quantity of



children or even a fractional quantity. Furthermore, we can't have either  x or y equal to zero,



because we have said that there are both boys and



girls in the class. Nor can we let either be equal to 8,



since then the other would be equal to 0, or to more



than 8, for then the other would be equal to some



negative number, and we don't want a negative



number of children either.



For this reason, there are only a very limited



number of possible solutions to the equation. If


x = 1, then  y = 7; if  x = 2, then  y = 6, and so on.



In fact, there are only 7 sets of possible answers:



1 boy and 7 girls, 2 boys and 6 girls, 3 boys and 5



girls, 4 boys and 4 girls, 5 boys and 3 girls, 6 boys



and 2 girls, and 7 boys and 1 girl.



Even though the number of answers is limited,



the equation is still indeterminate because we have



no way of telling which of the seven pairs of numbers



is the correct answer, because there is no one correct



answer. All are equally correct.



An indeterminate equation to which the solutions



must be expressed as whole numbers only is called



a "Diophantine equation" in honor of the old Greek



mathematician.



Two at Once



1 9 3



Some Diophantine equations have great fame in



the history of mathematics.



For instance, the Greeks were very much interested in the right triangle (a three-sided figure



in which one of the angles is a right angle). A



Greek mathematician named Pythagoras, who lived



about 530 B.C., was able to show that the sum of the



squares of the lengths of the two sides making up



the right angle of the right triangle was equal to the



square of the length of the side opposite the right



angle (called the "hypotenuse"). In his honor, this



mathematical fact is often called the "Pythagorean



theorem."



We can express this algebraically, by letting the



length of one side equal  x, of the second equal y,



and of the hypotenuse equal (what else?)  z. The



equation becomes


x2 +  y2 = z2



Since we have three unknowns in a single equation, we have an infinite number of possible solutions. Pick any values you choose for any two of



the unknowns and you can work out a value for the



third. If you decide to let both  x and y equal 1,



then  z2 equals l2 plus l2 or 2, and  z is consequently



equal to V2\ Or if you decide to let  x equal 2 and


y equal 13, then  z2 equals 22 plus 132 or 173, and  z



equals VI73.
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Here are two sets of three numbers, then — 1, 1,



and — that satisfy the Pythagorean



equation. You can find any number of additional



sets with hardly any effort.



But suppose you are interested only in solutions



where  x, y, and  z are all whole numbers, so that the



equation becomes Diophantine.



You might wonder first if any such all-integer



solutions exist. Well, suppose you set  x equal to 3



and  y equal to 4. Then  z2 is equal to 32 plus 42 or



25, and  z is equal to V25 or 5. There you have a



set of integers — 3, 4, and 5 — which serve as a



solution to the equation.



There are other such solutions, too. For instance
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52 + 122 = 132, so that 5, 12, and 13 are a solution.



In fact, there turn out to be an endless number of



such all-integer solutions to the equation. Mathematicians have worked out rules for finding such



solutions and in doing so have learned a great deal



about the handling of whole numbers.



In the early 1600's, there lived a French mathematician named Pierre de Fermat (fehr-MAH),



who studied the behavior of integers so thoroughly



that he founded a branch of mathematics dealing



with integers and called "the theory of numbers."



Fermat had a habit of scrawling in the margins



of books he was reading and one time he wrote that



he had discovered an interesting fact about equations of the type



where  n can equal any whole number. (The Pythagorean equation is the special variety of this group



in which  n equals 2.)



Fermat wrote that he had found that whenever


n was greater than 2 in such an equation, there



were no solutions that consisted of integers only.



In other words, you could add the squares of two



whole numbers and end with the square of another



whole number as in 32 + 42 = 52, but you couldn't



add the cubes of two whole numbers and ever end



with the cube of another whole number, or add the
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fourth powers of two whole numbers and ever end



with the fourth power of another whole number, and



so on.



Fermat wrote in the book that he had a beautiful



and simple proof of this, but that the margin was



too small to contain it. He never did write the



proof (or, if he did, no one has ever found it) and



what is called "Fermat's Last Theorem" has never



been proved to this day.



But mathematicians searched for it. Fermat was



such a brilliant worker that they couldn't believe he



had made a mistake. Surely the proof existed.



Every great mathematician had a try at it. Prizes



were offered. It seems to be true — but no one has



ever found the proof to this day.



Probably Fermat was mistaken in thinking he had



a proof, but we can never be sure.



If only the margin of the book had been a little



bigger.


ADDING TO THE INFORMATION



What makes for an indeterminate equation is



lack of information. If we are told that the boys



and girls in a class total 8, then all we can say is that


x +  y = 8 and there is no clear solution. But suppose our information is increased. Suppose we are



also told that there are three times as many girls as



boys. If we have decided to let  x equal the number
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of boys and  y the number of girls, then we can say



that  y = 3x.



So our information now enables us to set up two



equations, each in two unknowns:


x + y = 8


y = 3x



These are called "simultaneous equations," because



the same values of  x and  y must simultaneously



satisfy both equations.



Since  y = 3x, we can naturally substitute  3x for


y wherever  y occurs. In particular, we can substitute 3x for  y in the first equation and get


x +  3x = 8



Suddenly, we have an equation with only one unknown, and a very simple equation at that, which



works out to:



4x = 8



8


X = 4


x = 2 ^ ^ ^



The number of boys is 2, and we can now substitute 2 for  x wherever that occurs. We can do it



in the equation  y = 3x, which becomes  y = 3(2)



or 6. Our final solution then is that there are 2 boys
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and 6 girls in the class. The sum is indeed 8 and



there are indeed three times as many girls as boys.



The same principle works in more complicated



situations. Suppose we have two equations as



Let's solve for  x in the first equation:



Now we can substitute for  x in the



second equation and get:



5(7 + 3y)
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I hope the reasons for each step have been clear



to you so far. Now let's remove fractions, just as



we would in arithmetic by multiplying each side



of the equation by 7:



Now that we know that y = 7, we can go back



to either of the original equations and substitute
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Or, if we prefer to use the second equation:



Either way, the sole answer we get is that  x is



equal to 4 and  y is equal to 7, and if both values are



substituted in either equation, you will find that



they are valid solutions.



What's more, if we had solved for  x in the second



equation and substituted its value in the first, or if



we had solved for  y in either equation and substituted its value in the other, we would have ended



with the same solution;  x is 4 and  y is 7. (You



might try it for yourself and see.)
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In fact, we could proceed by solving both equations for either  x or  y; let's say for  y. In the first



case:



We now have two different expressions for  y. If



we are to avoid inconsistency, we must assume that



the two different expressions have the same value,



so we can set them equal to each other:



Now we have a single equation  Jmth one unknown. We can begin by clearing fractions in the



usual arithmetical way of multiplying both frac^


^


^


1
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And, of course, if we substitute 4 for  x in either



of the original equations, we find that v turns out



to be equal to 7.


AND STILL ANOTHER WAY



There is still one more device we can apply to our



two unknowns in two equations. To understand



this new device, let's begin by considering two very



simple general equations:  a = b and  c = d.



We know that a particular value can be added to



both sides of an equation or subtracted from both



sides without making the equation false. So far
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I have always added or subtracted the same expression on both sides, but that is really not necessary. I can add (or subtract) different expressions



provided they have the same value. In other words



I can add 5 to one side of the equation and 17 — 12



to the other side.



Well, then, if c =  d, I can add c to one side of an



equation and  d to the other without making the



equation false. To put it in symbols:



and so on.



Now we can go back to our two equations:



By the general rule I have just discussed, I can add



the left-hand side of the second equation to the



left-hand side of the first, and the right-Hand side
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of the second equation to the right-hand side of the



first. I get:



You may well ask what I have accomplished and



the answer is nothing. But wouldn't it have been



nice if in adding I could have gotten rid of either


x or v. If we could arrange the y term in one



equation to equal 0 when added to the y term in the



other, we could do just that. And here's how.



Suppose I multiply the first equation by 2, both



right and left, as I can without spoiling the equation. I get:



Then, suppose I multiply the second equation,



left and right, by 3:



As you see by this arrangement I have managed



to have a — 6y in one equation and a + 6 y in the



other. Now, if I add the two equations, these two
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terms add up to zero and there is no longer a y term



in the equation:



and, by substitution, y will equal 7 again.



By a number of different devices, then, it is always possible to take two equations, each containing two unknowns, and make of them one equation



containing one unknown. One important point to



remember, however, is that the second equation



must be independent of the first; that is, it must



really add new information.



If one equation can be converted into the second



by adding the same value-to both sides, or by subtracting, multiplying, dividing, raising to a power,



or taking a root on both sides equally, they are



really the same equation. No new informatiob is



added by the second.



To take a simple case, suppose you had:
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You could convert the first equation to the second



by simply multiplying each side by 2; or you could



convert the second equation to the first by dividing



left and right by 2. They are therefore the same



equation. If you ignore that and decide to go ahead



anyway and see what happens, you can solve the



first equation for  x and find that  x = 2 +  y.



Next substitute 2 +  y for  x in the second equation:



2(2 +  y) - 2y = 4



4 +  2y - 2y = 4



The terms containing  y add up to zero and you



have left only that


4 = 4



which is certainly true but doesn't help you much



in determining the value of  x and  y. This is an



example of "arguing in a circle."



Naturally, if you have three unknowns, you need



three independent equations. Equations 1 and 2



can be combined to eliminate one of the unknowns



and equations 1 and 3 (or 2 £|id 3) can be combined



to eliminate that same unknown. That gives you



two equations with two unknowns, from which



point you can proceed in the manner I have just



given you.



In the same way, numerical values for four un-Two at Once
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knowns can be found if four independent equations



exist; five unknowns if five independent equations



exist, and so on. The process quickly gets tedious,



to be sure, and special techniques must be used,



but the mere number of unknowns should never be



frightening in principle — so long as you have



enough information to work with.
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Putting Algebra to Work


GALILEO ROLLS BALLS



IT MAY BE that, as you read this book, the



thought occurs to you: But what good is all this?



I'm sure you know in your heart that mathematics is really very useful, but as you try to follow



all the ways in which equations must be dealt



with, you may still get a little impatient. Is algebra



really worth all the trouble it takes to learn it?



Of course, it can come in handy in solving problems that come up in everyday life. For instance,



suppose you have $10 to spend but intend to shop



at a store where all sales are at 15 per cent discount



from the list price. If you have a catalog giving



you only the list prices, what is the cost of the most



expensive item you can buy?



You might, if you wished, just take some prices



at random and subtract 15 per cent until you



found one that gave you a discount price of $10.



That would be clumsy, however. Why not tell



yourself instead that with a 15 per cent discount,



you are paying 85 per cent or of the list price,
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85



so that : r ^ of some unknown value which you will



call  x is $10. The equation is:



§ ^ = 10



100



and you ought to be able to solve it easily according



to the principles discussed in this book:



_ (10X100) 65


X 85 85



To the nearest penny, this comes out $11.77.



If you check this, you will find that a 15 per cent



discount of $11.77 is, to the nearest penny, $1.77,



leaving you a net price of $10.00.



Or suppose someone is following a recipe which



is designed to make 4 helpings of a particular dish,



while what is needed is 7 helpings. The cook will



naturally want to increase all quantities of ingredients in proportion. In real life, this is usually done



by guess, which is why cooking sometimes turns



out badly even though a recipe is before your eyes.



Why not use algebra? If you are required to add



1  = teaspoons of flavoring in the original recipe, you



can say, "Four is to seven as one and a half is to



something I don't know yet." One way of writing



this



put statemen



s it in thet mathematicall



 form of



y



 "ratios. is



" : 4 : 7 : : 1.5:  x, which
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However, when I mentioned fractions on page 41,



I said they could be considered as ratios, so the



equation can also be written as



and the equation can be solved as follows:


4x = (1.5)(7) = 10.5


x = 1M = 2.625



Naturally, you are not going add



 to add flavoring to



the nearest thousandth of a teaspoon, but you can



try to add just a trifle over 2 - teaspoons, which



will be far better than just making a wild guess.
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Of course, these are little things and you might



feel that algebra isn't very important if it is used



only in calculating prices and adjusting recipes.



But that is  not all it is used for. The main use of



algebra arises in connection with the attempts of



scientists to understand the universe. Let's see how



it can be used in that connection, and how a few



symbols can help achieve the most astonishing



accomplishments. I'll begin at the beginning.



The ancient Greek philosophers were very interested in the shapes and forms of objects, so they



developed geometry to great heights. They were



not interested in actually measuring and weighing



and so they did not develop algebra.



The result was that their notions were a little



fuzzy. For instance, the greatest of the Greek



philosophers, Aristotle, was .interested in the way



bodies moved when left to themselves. He was



content, however, to say that solid and liquid



bodies moved downward, spontaneously, toward the



center of the earth, while air and fire moved, spontaneously, upward away from the center of the



earth. Moreover, he stated that heavy objects



moved downward (or fell) more quickly than light



objects, so that a stone fell more rapidly than a



leaf, for instance.



He did not think to try to measure how quickly a



stone fell, or whether it fell at different speeds at the
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beginning of its fall as opposed to the end of its fall.



Toward the dawn of modern times, things began



to change. The Italian artist Leonardo da Vinci,



near the end of the 1400's, suspected that falling



objects increased their rate of movement as they



fell. But it wasn't till a century later, toward the



end of the 1500's, that the Italian scientist Galileo



Galilei (usually known by his first name only)



actually set out to measure the rate of fall.



To do this wasn't easy, because Galileo had no



clocks to work with. To keep time, he had to use



his pulse, or he had to measure the weight of water



pouring out of a small hole at the bottom of a



water-filled bucket. This wasn't good enough to



measure the short time-intervals involved in studying objects falling freely as a result of the action of



gravity. What he did then was to roll balls down



gently sloping tracks.



In this way, balls rolled more slowly than they



would if they were falling freely. The pull of



gravity was, so to speak, diluted, and Galileo's



crude time measurements were good enough.



In such experiments, Galileo I found that the



velocity with which a ball moved'down an inclined



plane was directly proportional to the time it



moved. (I won't bother describing how he measured



velocities, since that is not what we are interested



in here.)
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Thus, it might be that the ball, after starting



from a standing position at the top of the tracks,



would be moving 3 feet per second at the end of one



second. At the end of twice the time (2 seconds),



it would be moving at twice the velocity (6 feet



per second). At the end of four times the time



(4 seconds), it would be moving at 4 times the



velocity (12 feet per second), and so on.



As you see, in order to work out the velocity, it is



only necessary to multiply the time during which



the ball has been rolling by some fixed number.



In the case I have just described, the fixed number



or "constant" is 3, so that you can decide at once



that after 37.5 seconds the ball would be moving



at the velocity of (37.5) (3) or 112.5 feet per second.



To express this generally, we can let the time



during which the ball has been rolling be symbolized



as  t. (It is often customary in experiments of this



sort to symbolize different quantities by initial



letters.) The velocity, therefore, is symbolized as


v and the constant as  k (which has the sound of the



initial letter c, anyway).



The equation Galileo could write to represent his



discovery about moving bodies was


v =  kt



Now  k had a constant value in one particular



experiment, but Galileo found that this value
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would shift if he changed the slant of his tracks.



As the track was made to slant more gently, the



value of  k declined, and if the track was made



steeper, its value increased.



Clearly, the value of  k would be highest if the



track was as steep as it could get — if it were



perfectly vertical. The ball would then be falling



freely under the pull of gravity, and the constant



could then be symbolized as  g (for gravity). The



equation of motion for a freely falling body is, then,


v = gt



From the experiments with inclined planes,



Galileo could calculate the value of  g (not by ordinary algebra, to be sure, but by another branch of



mathematics called trigonometry) and this turned



out to be equal to 32, so that the equation becomes


v = 32t



This means that if a body is held motionless



above the surface of the earth and is then dropped



and allowed to fall freely, it would be moving at



the end of one second at the rale of 32 feet per



second; at the end of two seconds, 64 feet per



second; at the end of three seconds, 96 feet per



second; and so on.



Galileo also found by experiment that the same



equation of motion held for all bodies rolling or
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falling downward under the pull of gravity — all



bodies, however heavy or light. There was a second



force, the resistance of air, which counteracted the



pull of gravity, but which was very weak so that it



showed a noticeable effect only on very light bodies



that offered a large surface to the air — feathers,



leaves, pieces of paper, and so on. These fell



slowly and that was what had deluded Aristotle into



thinking the force of gravity was different on



different bodies.



Galileo also measured the distance covered by a



body rolling down an inclined plane. Naturally,



since its velocity was increasing, it covered more



ground each second than it did the second before.



In fact, Galileo found by experiment tjiat the total



distance was directly proportional to the square of



the time. In 3 seconds it covered (3) (3) or 9 times



the distance it covered in 1 second. In 17 seconds,



it covered (17) (17) or 289 times the distance it



covered in 1 second, and so on.



The equation worked out by Galileo for the distance,  d, covered by a freely falling body was



Since  g is equal to 32, this equation works out to


d = 16t2



This means that, after 1 second, a freely falling
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body covers a distance of (16)(1)(1) or 16 feet;



after 2 seconds, it covers a distance of (16) (2) (2) or



64 feet; after 7 seconds, a distance of (16) (7) (7) or



784 feet, and so on.



In this way, Galileo was able to express the



behavior of moving bodies by



sap



 mealis



s of algebraic



equations. This meant that the benavior could be



described in sharper, clearer fashion than by words



alone. Furthermore, by making use of equations,



problems involving falling bodies could be solved by



making use of the algebraic techniques that mathe-Putting Algebra to Work
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maticians had been working out during the previous century.



The study of moving bodies moved ahead swiftly



as a result and the whole world of scholarship was



treated to the spectacle of how knowledge increased



once mathematics and mathematical techniques



were applied to natural phenomena. As a result,



algebra (and, eventually, higher mathematics, too)



came to seem essential to science and, in fact,



the birth of modern science is dated with Galileo's



experiments on rolling bodies.


NEWTON DEDUCES GRAVITATION



The equations used in expressing experimental



observations can be used to deduce important



generalizations about the universe.



For instance, suppose Galileo's inclined plane



were made to slope as gently as possible; in other



words, suppose it were to be perfectly horizontal.



In that case,  k would equal 0. (You could find this



out by direct experiment with a horizontal plane,



or calculate it, by means of trigonometry, from



experiments with planes that are not horizontal.)



The equation of motion on a horizontal surface is,



therefore:


v = Ot



or



o = 0
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This means that a ball resting on a horizontal



surface remains motionless.



Now suppose that a ball were moving at a fixed



velocity, which we can represent as  V, and were



then to start rolling down an inclined plane. Its



velocity would increase according to the equation



we had already used, but at every point, there



would be added, to that changing velocity, the



fixed velocity with which it had started. In other



words,


v = kt+V



But suppose the inclined plane were horizontal



so that  k equaled zero. The motion of a ball that



had started with a fixed velocity would then be,



according to the equation,


v = 0t+V



or


v =  V



In other words, a body moving at a fixed velocity



under conditions in which gravity or some other



force could not act upon it, would continue to


move at that fixed velocity. There is no term



involving  t in the equation so there is no change



in velocity with time.



The scientist who expressed this clearly for the



first time was the English mathematician Isaac



Newton, who was born in 1642, the year Galileo died.
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Newton said that every object at rest remains



at rest unless acted on by an outside force such as



gravity, and every body in motion continues to



move at a constant velocity in a straight line unless



acted on by an outside force, such as gravity.



This is the "First Law of Motion" or the "principle of inertia."



None of the ancient philosophers had stumbled



on this truth. They thought that a body in motion



tended to come to rest spontaneously, unless some



continuing force kept it in motion. The reason they



thought this was that actual phenomena are complicated. Rolling balls seem to come spontaneously



to rest, if set rolling on a level surface, because of



the action of outside forces such as air resistance



and friction.



Even Newton, perhaps the greatest thinker of all



time, might not have seen the First Law of Motion



if he could do no more than watch the behavior of



objects actually moving on the surface of the earth.



His principle arose out of a consideration of Galileo's



equations, which were deliberately simplified by


ignoring the action of air resistance and friction.



It has often proven to be the case since Newton's



time, too, that the use of equations has succeeded



in simplifying natural phenomena to the point where



an underlying pattern could be seen.



Newton worked out two other laws of motion,
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in similar fashion, and these are called the "Three



Laws of Motion."



In the century between 1550 and 1650, great new



astronomical discoveries had been made. The Polish



astronomer Nicolaus Copernicus maintained that



the sun was the center of the solar system, and that



the earth was not. (Most of the old Greek philosophers, including Aristotle, had insisted the earth



was central.) Then, the German astronomer Johann



Kepler showed that the planets, including Earth,



moved about the sun in ellipses and not in circles,



as previous astronomers had thought.



The question then arose as to just why planets



should be moving about the sun in ellipses and at



varying velocities according to their distance



from the sun. (Kepler also worked out what these



velocities must be.) Both Kepler and Galileo felt



there must be some force attracting the planets to



the sun, but neither was quite able to make out



just how that force worked.



Newton realized that, in outer space, there was



nothing to create friction or resistance as planets



moved, and that the Laws of Motion would therefore work perfectly. He manipulated the equations



representing those laws in such a way as to show



that the force between any two bodies in the universe was directly proportional to the amount of
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matter (or "mass") in one body multiplied by the



mass of the other.



Furthermore, this force as it moved away from



a particular body could be imagined as stretching



out in a gigantic sphere that grew continually



larger and larger. The force would have to stretch



out over the surface of that sphere and get weaker



as it had more area to cover.



How did the area of a sphere vary with its size?


area = 256«


multiplying radius by 4 multiplies area by 16


multiplying radius by 8 multiplies area by 64


\
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Well, the area of a sphere  (A) varied according to



the square of the radius (r), which is the distance



from the center to the surface of the sphere. The



exact formula is



where  T is the quantity I referred to at the end of



Chapter 11.



Since the area of the sphere increased according



to the square of the distance from center to surface,



Newton decided that the strength of the gravitational attraction between two bodies must weaken



as the square of the distance from one to the other.



He was now ready to put his thoughts about the



force of gravity into the form of an equation and



here it is:



where  F symbolizes the force of gravity, mi the



mass of one body,  m2 the mass of the other body,



and  d the distance between them (center to center),



while  G is a constant called the *'gravitational



constant." I



Now let's see how the equation works. Suppose



you double the mass of one of the bodies; instead of
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, which can be written . The new



expression is just twice as large as the old, which



means that doubling the mass of one of the bodies



doubles the gravitational force. If you double the



mass of both bodies, you have or



, or four times the gravitational force.



Suppose you triple the distance between the



bodies. The expression becomes



or , showing that the force is now only



what it was, or, in other words, has weakened



ninefold. It has weakened, you see, as the square



of the distance, which has increased only threefold.


CAVENDISH WEIGHS THE EARTH



Newton's equation was found to explain, quite



exactly, the motion of all the bodies in the solar



system. This impressed the scholars of the 1700's



so much that all of them tried to imitate Newton



in making great generalizations from small beginnings, and to solve all problems by reasoning. The



century is, in fact, referred to as the "Age of Reason."



In the 1800's Newton's equation gained still
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more fame, when it was found to apply even to



distant double stars, circling each other, trillions



upon trillions of miles from Earth. Then, when a



newly discovered planet, Uranus, was found not



quite to obey Newton's equation, astronomers deduced the existence of a still undiscovered planet



whose attraction pulled Uranus out of line. That



undiscovered planet was searched for and found at



once — thanks to the manipulations of algebraic



equations.



Let me give you an example of the sort of thing



Newton's equation can do.



Suppose you were holding a stone at the lip of



the Grand Canyon and let go. It would start



falling. At the end of each second (ignoring air



resistance) it would be falling 32 feet per second



more quickly than at the end of the previous



second. This increase of speed (or "acceleration")



is considered, according to Newton's Second Law of



Motion, to be equal to the force of Earth's gravitational pull upon the stone.



Most scientists don't like to use feet to measure



length, but prefer to utilize the metric system*



and to measure length in "centimeters." A centi* The metric system is discussed in considerable detail



in  Realm of Measure.
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meter is equal to about - of an inch and gravitao



tional acceleration comes to 980 centimeters per



second each second. Thus  F, in Newton's equation,



can be set equal to 980.  \



Next, suppose the stone we are holding weighs



exactly 1 gram. (A gram is a measure of weight in



the metric system and is about ^ of an ounce.)



Its distance from the center of the earth is about



3959 miles or 637,100,000 centimeters.



If we substitute 980 for  F, 1 for  mu and 637,100,000 for  d in Newton's equation, we have:


«



Now it would be exciting if we could solve for



m2, which represents the mass of the earth, but all



we can say, by transposing, is that



and we don't know the value of  G, which is the



gravitational constant. Newton didn't know, and



no one after him, for a century, knew.
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In 1798, however, an English scientist named



Henry Cavendish tried an experiment. This is



what he did. He suspended a light rod by a wire



to its center. At each end of the rod was a light



lead ball. The rod could twist freely about the



wire and a light force applied to the balls would



produce such a twist. Cavendish calculated how



large a force would produce how large a twist by



actual experiment.



Now he brought two large balls near the two



light balls, on opposite sides. The force of gravity



between the large balls and the light ones twisted



the wire. From the amount of twist, Cavendish



could calculate the amount of gravitational force  (F).



He knew the masses of his various balls



and the distance between them, center to center  (d).



Let's take simple values just to show how things



worked out, and suppose the heavy balls (m2)



weighed 1000 grams, and the light ones (mi)



weighed 1 gram; that they were at a distance  (d)



10 centimeters apart, and that Cavendish calculated



the gravitational force between them to be equal



to 0.000000667 — a very small force, as you see.



Substituting in Newton's equatio\ we have ~
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Therefore, by ordinary arithmetic,
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Does this impress you with the usefulness of



algebra?



If it does, look deeper. The real importance of



algebra, and of mathematics in general, is not that



it has enabled man to solve this problem or that,



but that it has given man a new outlook on the



universe.



From the time of Galileo onward, mathematics



has encouraged man to look at the universe with



the continual question: "Exactly how much?"



In doing so, it brought into existence the mighty



structure of science, and that structure itself is



far more important than any fact or group of facts



that merely make up part of the structure.
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